
On the Expressiveness of TPTL and MTL

Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

LSV – CNRS UMR 8643 & ENS de Cachan
61, avenue du Président Wilson,

94230 Cachan, France
e-mails: {bouyer,chevalie,markey}@lsv.ens-cachan.fr

Abstract. TPTL and MTL are two classical timed extensions of LTL.
In this paper, we answer a 15 year old conjecture that TPTL is strictly
more expressive than MTL. But we show that, surprisingly, the TPTL for-
mula proposed in [AH90] for witnessing this conjecture can be expressed
in MTL. More generally, we show that TPTL formulae using only the
F modality can be translated into MTL.

1 Introduction

Temporal logics. Temporal logics [Pnu77] are a widely used framework in the
field of specification and verification of (models of) reactive systems. In par-
ticular, Linear-time Temporal Logic (LTL) allows to express properties about
the executions of a model, such as the fact that any occurrence of a problem
eventually raises the alarm. LTL has been extensively studied, both about its
expressiveness [Kam68,GPSS80] and for model checking purposes [SC85,VW86,
Var96].

Timed temporal logics. At the beginning of the 90s, real-time constraints have
naturally been added to temporal logics [Koy90,ACD90], in order to add quanti-
tative constraints to temporal logic specifications of timed models. The resulting
logics allow to express, e.g., that any occurrence of a problem in a system will
raise the alarm in at most 5 time units.

When dealing with dense time, we may consider two different semantics for
timed temporal logics, depending on whether the formulae are evaluated over
timed words (i.e. over a discrete sequence of timed events; this is the pointwise
semantics) or over timed state sequences (i.e., roughly, over the continuous be-
havior of the system; this is the interval-based semantics). We refer to [AH92b,
Hen98] for a survey on linear-time timed temporal logics and to [Ras99] for more
recent developments on that subject.

Expressiveness of TPTL and MTL. Two interesting timed extensions of LTL are
MTL (Metric Temporal Logic) [Koy90,AH93] and TPTL (Timed Propositional
Temporal Logic) [AH94].

2 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

MTL extends LTL by adding subscripts to temporal operators: for instance,
the above property can be written in MTL as

G (problem⇒ F≤5 alarm).

TPTL is “more temporal” [AH94] in the sense that it uses real clocks in order to
assert temporal constraints. A TPTL formula can “reset” a formula clock at some
point, and later compare the value of that clock to some integer. The property
above would then be written as

G (problem⇒ x.F (alarm∧ x ≤ 5))

where “x.ϕ” means that x is reset at the current position, before evaluating ϕ.
This logic also allows to easily express that, for instance, within 5 t.u. after any
problem, the system rings the alarm and then enters a failsafe mode:

G (problem⇒ x.F (alarm ∧ F (failsafe∧ x ≤ 5))). (1)

While it is clear that any MTL formula can be translated into an equivalent
TPTL one, [AH92b,AH93] state that there is no intuitive MTL equivalent to
formula (1). It has thus been conjectured that TPTL would be strictly more
expressive than MTL [AH92b,AH93,Hen98], formula (1) being proposed as a
possible witness not being expressible in MTL.

Our contributions. In this paper, we prove that the above-mentioned conjecture
does hold for both pointwise and interval-based semantics. But we also prove
that formula (1) is not a witness for that conjecture under the interval-based
semantics, since we build an MTL formula that is equivalent to formula (1) under
that semantics.

For the pointwise semantics, we prove that formula (1) cannot be expressed
in MTL. In order to prove the conjecture for the interval-based semantics, we
had to find another formula, namely x.F (a ∧ x ≤ 1 ∧G (x ≤ 1⇒ ¬b)), stating
that the last atomic proposition before time point 1 is an a, and prove that it
cannot be expressed in MTL.

As side results, we get that, for both semantics, MTL+Past (where the past-
time modality “Since” is used [AFH96]) is strictly more expressive than MTL,
and we also get that the branching-time logic TCTL with explicit clock [HNSY94]
is strictly more expressive than TCTL with subscripts [ACD93], which has been
conjectured in [Alu91] and in [Yov93].

Finally, we prove that, under the interval-based semantics, the fragment of
TPTL where only the F modality is allowed (we call it the existential fragment
of TPTL) can be translated into MTL. This generalizes the fact that formula (1)
can be expressed in MTL.

Related work. Over the last 15 years, many researches have focused on expres-
siveness questions for timed temporal logics (over both integer and real time).
See [AH92a,AH93,AH94,AFH96,RSH98] for original works, and [Ost92,Hen98,
Ras99] for a survey on that very topic.

On the Expressiveness of TPTL and MTL 3

MTL and TPTL have also been studied for the purpose of verification. If the
underlying time domain is discrete, then MTL and TPTL have decidable verifica-
tion problems [AH93,AH94]. When considering dense time, verification problems
(satisfiability, model checking) become much harder: [AFH96] proves that the
satisfiability problem for MTL is undecidable when considering the interval-based
semantics. This result of course carries on for TPTL. It has recently been proved
that MTL model checking and satisfiability are decidable over finite words under
the pointwise semantics [OW05], while it is still undecidable for TPTL [AH94].

MTL and TPTL have also been studied in the scope of monitoring and path
model checking. [TR04] proposes an (exponential) monitoring algorithm for MTL

under the pointwise semantics. [MR05] shows that, in the interval-based seman-
tics, MTL formulae can be verified on lasso-shaped timed state sequences in
polynomial time, while TPTL formulae require at least polynomial space.

Plan of the paper. The paper is organized as follows: in Section 2, we define
the logics TPTL and MTL together with their two possible semantics. In Sec-
tion 3, we present our main result, namely that TPTL is strictly more expressive
than MTL (for both semantics), whereas the last section (Section 4) focuses on
the existential fragments of TPTL and MTL, where we prove that those two
fragments are equally expressive under the interval-based semantics.

2 Linear-Time Timed Temporal Logics

In the sequel, AP represents a non-empty, countable set of atomic propositions.

Basic definitions. Let R denote the set of reals, R+ the set of nonnegative
reals, Q the set of rationals and N the set of nonnegative integers. An interval
is a convex subset of R. Two intervals I and I ′ are said to be adjacent when
I ∩ I ′ = ∅ and I ∪ I ′ is an interval. We denote by IR the set of intervals, and
by IQ the set of intervals whose bounds are in Q.

Given a finite set X of variables called clocks, a clock valuation over X is a
mapping α : X → R+ which assigns to each clock a time value in R+.

Timed state sequences and timed words. A timed state sequence over AP is
a pair κ = (σ, I) where σ = σ1σ2 . . . is an infinite sequence of elements of 2AP and
I = I1I2 . . . is an infinite sequence of intervals satisfying the following properties:

– (adjacency) the intervals Ii and Ii+1 are adjacent for all i ≥ 1, and
– (progress) every time value t ∈ R+ belongs to some interval Ii.

A timed state sequence can equivalently be seen as an infinite sequence of ele-
ments of 2AP × IR.

A time sequence over R+ is an infinite non-decreasing sequence τ = τ0τ1 . . .

of nonnegative reals satisfying the following properties:

– (initialization) τ0 = 0,

4 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

– (monotonicity) the sequence is nondecreasing: ∀ i ∈ N τi+1 ≥ τi,
– (progress) every time value t ∈ R+ is eventually reached: ∀t ∈ R.∃i. τi > t.

A timed word over AP is a pair ρ = (σ, τ), where σ = σ0σ1 . . . is an infinite
word over AP and τ = τ0τ1 . . . a time sequence over R+. It can equivalently be
seen as an infinite sequence of elements (σ0, τ0)(σ1, τ1) . . . of (AP× R).

We force timed words to satisfy τ0 = 0 in order to have a natural way to
define initial satisfiability in the semantics of MTL. This is no loss of generality
since it can be obtained by adding a special action to the alphabet.

Note that a timed word can be seen as a timed state sequence: for example
the timed word (a, 0)(a, 1.1)(b, 2) . . . corresponds to the timed state sequence
({a}, [0, 0])(∅,]0, 1.1[)({a}, [1.1, 1.1])(∅, [1.1, 2[)({b}, [2, 2]) . . .

2.1 Clock Temporal Logic (TPTL)

The logic TPTL [AH94,Ras99] is a timed extension of LTL [Pnu77] which uses ex-
tra variables (clocks) explicitly in the formulae. Formulae of TPTL are built from
atomic propositions, boolean connectives, “until” operators, clock constraints and
clock resets:

TPTL ∋ ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 U ϕ2 | x ∼ c | x.ϕ

where p ∈ AP is an atomic proposition, x is a clock variable, c ∈ Q is a rational
number and ∼ ∈ {≤, <,=, >,≥}.

There are two main semantics for TPTL, the interval-based semantics which
interprets TPTL over timed state sequences, and the pointwise semantics, which
interprets TPTL over timed words. This last semantics is less general as (as we
will see below) formulae can only be interpreted at points in time when actions
occur.

In the literature, these two semantics are used indifferently, but results highly
depends on the underlying semantics. For example, a recent result by Ouaknine
and Worrell [OW05] states that MTL (a subset of TPTL, see below) is decidable
under the pointwise semantics, whereas it is known to be undecidable under the
interval-based semantics [AFH96].

Interval-based semantics. In this semantics, models are time state sequences
κ, and are evaluated at a date t ∈ R+ with a valuation α : X → R+ (where X is
the set of clocks for formulae of TPTL). The satisfaction relation (denoted with
(κ, t, α) |=i ϕ) is defined inductively as follows:

(κ, t, α) |=i p iff p ∈ κ(t)

(κ, t, α) |=i ϕ1 ∧ ϕ2 iff (κ, t, α) |=i ϕ1 and (κ, t, α) |=i ϕ2

(κ, t, α) |=i ¬ϕ iff ¬[(κ, t, α) |=i ϕ]

(κ, t, α) |=i ϕ1 U ϕ2 iff ∃t′ > t such that (κ, t′, α) |=i ϕ2

and ∀t < t′′ < t′, (κ, t′′, α) |=i ϕ1 ∨ ϕ2

(κ, t, α) |=i x ∼ c iff t− α(x) ∼ c

(κ, t, α) |=i x.ϕ iff (κ, t, α[x 7→ t]) |=i ϕ

On the Expressiveness of TPTL and MTL 5

We write κ |=i ϕ when (κ, 0,0) |=i ϕ where 0 is the valuation assigning 0 to all
clocks.

Following [Ras99], we interpret “x.ϕ” as a reset operator. Note also that the
semantics of U is strict in the sense that, in order to satisfy ϕ1 U ϕ2, a time
state sequence is not required to satisfy ϕ1; this semantics is more expressive
than the non-strict semantics (see section 2.4).

In the following, we use classical shorthands: ⊤ holds for p ∨ ¬p, ϕ1 ⇒ ϕ2

holds for ¬ϕ1 ∨ ϕ2, F ϕ holds for ⊤U ϕ (and means that ϕ eventually holds at
a future time), and G ϕ holds for ¬(F ¬ϕ) (and means that ϕ always holds in
the future).

Pointwise semantics. In this semantics, models are timed words ρ, and sat-
isfiability is no longer interpreted at a date t ∈ R but at a position i ∈ N in the
timed word. For a timed word ρ = (σ, τ) with σ = (σi)i≥0 and τ = (τi)i≥0, we
define the satisfaction relation (ρ, i, α) |=p ϕ inductively as follows (where α is a
valuation for the set X of formula clocks):

(ρ, i, α) |=p p iff σi = p

(ρ, i, α) |=p ϕ1 ∧ ϕ2 iff (ρ, i, α) |=p ϕ1 and (ρ, i, α) |=p ϕ2

(ρ, i, α) |=p ¬ϕ iff ¬[(ρ, i, α) |=p ϕ]

(ρ, i, α) |=p ϕ1 U ϕ2 iff ∃j > i s.t. (ρ, j, α) |=p ϕ2

and ∀i < k < j (ρ, k, α) |=p ϕ1

(ρ, i, α) |=p x ∼ c iff τi − α(x) ∼ c

(ρ, i, α) |=p x.ϕ iff (ρ, i, α[x 7→ τi]) |=p ϕ

We write ρ |=p ϕ whenever (ρ, 0,0) |=p ϕ.

Example 1. Consider the timed word ρ = (a, 0)(a, 1.1)(b, 2) . . . which, as already
mentioned, can be viewed as the time state sequence

κ = ({a}, [0])(∅, (0, 1.1))({a}, [1.1, 1.1])(∅, (1.1, 2))({b}, [2, 2]) . . .

If ϕ = x.F (x = 1 ∧ y.F (y = 1 ∧ b)), then

ρ 6|=p ϕ whereas κ |=i ϕ

This is due to the fact that there is no action at date 1 along ρ.

2.2 Metric Temporal Logic (MTL)

The logic MTL [Koy90,AH93] extends the logic LTL with time restrictions on
“until” modalities. Formulae of MTL are built from atomic propositions, boolean
connectives and time-constrained “until”:

MTL ∋ ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | ϕ1 UI ϕ2

where p ranges over the set AP of atomic propositions, and I an interval in IQ.

6 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

For defining the semantics of MTL, we better view MTL as a fragment
of TPTL: ϕ1 UI ϕ2 is then interpreted as x.(ϕ1 U (x ∈ I ∧ϕ2)). As for TPTL, we
will thus consider both the interval-based (interpreted over time state sequences)
and the pointwise (interpreted over timed words) semantics.

We omit the constraint on modality U when [0,∞) is assumed. We write
U∼c for UI when I = {t | t ∼ c}. As previously, we use classical shorthands
such as FI or GI .

Example 2. In MTL, the formula ϕ of Example 1 expresses as F =1F =1b. In the
interval-based semantics, this formula is equivalent to F =2b, and this is not the
case in the pointwise semantics.

2.3 Adding Past-Time Modalities

The logics defined above only allow to deal with future time points. As for LTL,
we can define a symmetric version of the “Until” modality, named “Since”, that
deals with events that occurred in the past [Kam68,LPZ85]. The semantics of
that modality is defined symmetrically:

– For the interval-based semantics:

(κ, t, α) |=i ϕ1 S ϕ2 iff ∃t′ < t such that (κ, t′, α) |=i ϕ2

and ∀t′ < t′′ < t, (κ, t′′, α) |=i ϕ1 ∨ ϕ2

– For the pointwise semantics:

(ρ, i, α) |=p ϕ1 S ϕ2 iff ∃j < i s.t. (ρ, j, α) |=p ϕ2

and ∀j < k < i (ρ, k, α) |=p ϕ1

This way, formula x.(pS (q ∧ x = −2)) expresses that q held 2 t.u. earlier,
and that p held between that time point and the current one.

The corresponding MTL modality is defined in the obvious way. We note
MTL+Past (resp. TPTL+Past) the logic MTL (resp. TPTL) extended with the
“Since” modality. Such extensions have been defined and studied in [AH92a,
AH93].

2.4 Relative Expressiveness

Let S be a set of models, and L and L′ two logical languages interpreted over
models in S. We say that a formula ϕ ∈ L is equivalent to ψ ∈ L′ if for every
π ∈ S, π satisfies ϕ iff π satisfies ψ. L′ is strictly more expressive than L over S
iff all formulae in L have an equivalent formula in L′ and there exists a formula
in L′ which has no equivalent in L. We say that L and L′ are equally expressive
whenever all formulae in L (resp. L′) have an equivalent in L′ (resp. L).

Let us mention some classical results about expressiveness of linear-time tem-
poral logics:

On the Expressiveness of TPTL and MTL 7

– first of all, it is quite obvious that the strict until is at least as expressive
as the non-strict one. The converse inclusion does not hold in general (for
example, it can be shown that formula ¬a∧(aU b), involving the strict until,
cannot be expressed using only non-strict until).

– adding past-time modalities to LTL does not increase its expressive power:
any LTL+Past formula can be expressed in LTL [Kam68,GPSS80]. But there
are cases where the resulting LTL formula is exponentially larger [LMS02].
Those result don’t carry on to timed temporal logics: [AH92a] shows that
past-time modalities strictly increase the expressive power of MITL, a weak
version of MTL where punctuality (i.e. singular intervals) are not allowed as
timing constraints.

Proving expressiveness results is sometimes involved. In order to prove that a
given formula ϕ cannot be expressed in a logic L, the basic technique is to build
two models M and N such that ϕ distinguishes between them (i.e. evaluates to
true on one model and to false on the other one), and prove that no formula of L
distinguishes between those two models. However, that technique is generally
too “naive”, and it is often needed to build two families of models (Mi) and (Ni)
s.t. ϕ distinguishes between Mi and Ni for all i, and such that no formula in L
with size less than i distinguishes between Mi and Ni. This technique is applied
e.g. in [EH86,Eme91,Lar95,BCL05] as well as in this paper.

Other techniques involve translations of temporal logics to other formalisms,
such as automata theory, language theory, algebraic structures or pebble games.
Many examples can be found in the literature [Kam68,GPSS80,AH92a,TW96,
LMS02].

3 TPTL is Strictly More Expressive Than MTL

3.1 Conjecture

It has been conjectured in [AH92b,AH93,Hen98] that TPTL is strictly more
expressive than MTL, and in particular that a TPTL formula such as

G (a⇒ x.F (b ∧ F (c ∧ x ≤ 2)))

can not be expressed in MTL. The following proposition states that this formula
is not a good witness formula for proving that TPTL is strictly more expressive
than MTL.

Proposition 1. The TPTL formula x.F (b∧F (c∧ x ≤ 2)) can be expressed in
MTL for the interval-based semantics.

Proof. Let Φ be the TPTL formula x.F (b∧F (c∧ x ≤ 2)). This formula expresses
that, along the time state sequence, from the current point on, there is a b

followed by a c, and the delay before that c is less than 2 t.u. For proving
the proposition, we write an MTL formula Φ′ which is equivalent to Φ over

8 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

time state sequences. Formula Φ′ is defined as the disjunction of three formulae
Φ′ = Φ′

1 ∨ Φ
′
2 ∨ Φ

′
3 where:




Φ′
1 = F≤1 b ∧ F[1,2] c

Φ′
2 = F≤1 (b ∧ F≤1 c)

Φ′
3 = F≤1 (F≤1 b ∧ F=1 c)

Let κ be a time state sequence. If κ |=i Φ′, it is obvious that κ |=i Φ. Suppose
now that κ |=i Φ, then there exists 0 < t1 < t2 ≤ 2 such that1 (κ, t1) |=i b and
(κ, t2) |=i c. If t1 ≤ 1 then κ satisfies Φ′

1 or Φ′
2 (or both) depending on t2 being

smaller or greater than 1. If t1 ∈]1, 2] then there exists a date t′ in (0, 1] such
that (κ, t′) |=i F≤1 b∧F=1 c which implies that κ |=i Φ′

3. We illustrate the three
possible cases on Fig. 1. �

b c

0 1 2
|= Φ′

1

b c

0 1 2
|= Φ′

2

b c

0 1 2
|= Φ′

3

F≤1 b ∧ F=1 c

Fig. 1. Translation of TPTL formula Φ in MTL

From the proposition above we get that the TPTL formula G (a ⇒ Φ) is
equivalent over time state sequences to the MTL formula G (a ⇒ Φ′). However
this does not imply that the conjecture is wrong, and we will now prove two
results:

– x.F (b ∧ F (c ∧ x ≤ 2)) can not be expressed in MTL for the pointwise
semantics (thus over timed words)

– the more involved TPTL formula x.F (a ∧ x ≤ 1 ∧G (x ≤ 1⇒ ¬b)) can not
be expressed in MTL for the interval-based semantics.

This implies that TPTL is indeed strictly more expressive than MTL for both
pointwise and interval-based semantics, which positively answers the conjecture
of [AH92b,AH93,Hen98].

3.2 Pointwise Semantics

We now show that the formula Φ = x.(F (b∧F (c∧x ≤ 2))) cannot be expressed
in MTL for the pointwise semantics.

1 In this reasoning we abstract away the value for clock x as it corresponds to the
date.

On the Expressiveness of TPTL and MTL 9

We note MTLp,n the set of MTL formulae whose constants are multiples of
p and whose temporal height is less than n. We construct two families of timed
words (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N such that:

– Ap,n |=p Φ whereas Bp,n 6|=p Φ for every p ∈ Q and n ∈ N,
– for all ϕ ∈ MTLp,n−3, Ap,n |=p ϕ ⇐⇒ Bp,n |=p ϕ.

The two families of models are presented in Fig. 2. Note that there is no action
between dates 0 and 2− p. In Ap,n (resp. Bp,n) the first b occurs at time 2− 5p

4n
(resp. 2− p

4n); in both models the first c occurs at time 2−p+ p
2n and actions b and

c are repeated with period p
n
. It is obvious that Ap,n |=p Φ whereas Bp,n 6|=p Φ.

c c c c c c cb b b b

p

n

p

4n

0 2− p 2

c c c c c c cb b b

0 2− p 2

Ap,n

Bp,n

Fig. 2. Models Ap,n and Bp,n

The expressiveness proof will be decomposed into several steps:

– we first prove that the two models Ap,N+3 and Bp,N+3 can not be distin-
guished by MTLp,N formulae after date 2−p for the interval-based semantics

– we then show how we can use this result for the pointwise semantics
– we finally prove that the two models Ap,N+3 and Bp,N+3 can not be initially

distinguished by an MTLp,N formula in the pointwise semantics

We will prove two lemmas which show that Ap,N+3 and Bp,N+3 are indis-
tinguishable at time 2 − p. For simplicity reason, we prove this two lemmas in
the interval based semantics and then show that they can also be used for the
pointwise semantics.

Lemma 2. For all ϕ ∈ MTL, for all x > 2− 5p
4(N+3) ,

(Ap,N+3, x) |=i ϕ ⇐⇒ (Bp,N+3, x) |=i ϕ

For all ϕ ∈ MTL, for all x ≥ 2− p,

(Ap,N+3, x) |=i ϕ ⇐⇒ (Bp,N+3, x+
p

N + 3
) |=i ϕ

Proof. The first property is due to the fact that for x > 2 − 5p
4(N+3) , the two

models are the same. The second property is due to the fact that for x > 2 −
5p

4(N+3) , model Bp,N+3 is a shift of model Ap,N+3 of length p
N+3 . �

Lemma 3. For all ϕ ∈ MTLp,k with 0 ≤ k ≤ N , for all x ∈ [2− p, 2− (k+2)p
N+3),

Ap,N+3, x |=i ϕ ⇐⇒ Bp,N+3, x |=i ϕ

10 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

The proof of this lemma is done by induction on k and ϕ and is given in
appendix A.

We now want to use Lemmas 2 and 3 for the pointwise semantics, we thus
show that the interval-based semantics is somehow “finer” than the pointwise
semantics. We denote by action the formula

∨
a∈AP

a which means that an action
occurs, and for every formula ϕ ∈ MTL, we construct a formula ϕ̃ inductively as
follows:

– p̃ = p if p is a propositional variable
– ϕ̃1 ∧ ϕ2 = ϕ̃1 ∧ ϕ̃2

– ¬̃ϕ = ¬ϕ̃

– ˜ϕ1 UI ϕ2 = (action⇒ ϕ̃1)UI (action ∧ ϕ̃2)

The following lemma relates both semantics and is then straightforward, by
induction on the structure of formula ϕ:

Lemma 4. If ρ = (σi, τi)i≥0 is a timed word, we note κ(ρ) its correspond-
ing time state sequence. Then for every ϕ ∈ MTL, for every timed word ρ,
(κ(ρ), τi) |=i ϕ̃ ⇐⇒ (ρ, i) |=p ϕ.

Note that if ϕ is in MTLp,N , then ϕ̃ is also in MTLp,N . Thus lemmas 2 and
3 also hold in the pointwise semantics, as if two models cannot be distinguished
in MTL (resp. MTLp,N) in the interval-based semantics, neither can they in the
pointwise semantics.

We can now prove the following lemma:

Lemma 5. For every ϕ ∈ MTLp,N ,

(Ap,N+3, 0) |=p ϕ ⇐⇒ (Bp,N+3, 0) |=p ϕ

The proof of this lemma is given in appendix A.

This concludes the expressiveness proof: we have constructed two families
of timed words (Ap,N+3)p∈Q,N∈N and (Bp,N+3)p∈Q,N∈N such that Ap,N+3 |=p
Φ, Bp,N+3 6|= Φ, but Ap,N+3 and Bp,N+3 can not initially be distinguished by
formulae in MTLp,N for the pointwise semantics. This implies that formula Φ

has no equivalent formula in MTL (as every formula of MTL is in some MTLp,N

for some p ∈ Q and N ∈ N). We can now state the following theorem:

Theorem 6. TPTL is strictly more expressive than MTL for the pointwise se-
mantics.

Since the MTL+Past formula F≤2 (c ∧ ⊤S b) also distinguishes between the
families of models (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N, we get the following corol-
lary:

Corollary 7. MTL+Past is strictly more expressive than MTL for the pointwise
semantics.

On the Expressiveness of TPTL and MTL 11

Note that the above result is a main difference between the timed and the
untimed framework where it is well-known that past does not add any expres-
siveness to LTL [Kam68,GPSS80], but this is to be put together with the result
of [AH92b] where it is proved that past adds expressive power to MITL, a subset
of MTL where punctuality is not allowed.

3.3 Interval-Based Semantics

As we have seen, the formula which has been used for the pointwise semantics can
not be used for the interval-based semantics. We will instead prove the following
proposition:

Proposition 8. The TPTL formula Φ = x.F (a ∧ x ≤ 1 ∧G (x ≤ 1⇒ ¬b)) has
no equivalent MTL formula over time state sequences.

Proof. Assume some formula Ψ ∈ MTL is equivalent to Φ over time state se-
quences, and define its granularity p as follows:

p =
∏

a
b
∈Ψ

1

b
·

W.l.o.g., we may assume that Ψ uses only constraints of the form ∼ p, with
∼ ∈ {<,=, >}. Let N be the temporal height of this formula, i.e. the maximum
number of nested modalities. We write MTL

−
p,n for the fragment of MTL using

only ∼ p constraints, and with temporal height at most n. Thus Ψ ∈ MTL
−
p,n.

Now, we build two different time state sequences Ap,n and Bp,n, such that
Φ holds initially in the first one but not in the second one. We will then prove
that they cannot be distinguished by any formula in MTL

−
p,n−3.

Let us first define Ap,n. Along that time state sequence, atomic proposition a
will be set to true exactly at time points p

4n +α
p
2n , where α may be any nonneg-

ative integer. Atomic proposition b will hold exactly at times (α + 1) · p2 −
4p
6n ,

with α ∈ N.
As for Bp,n, it has exactly the same a’s, and b holds exactly at time points

(α+ 1) · p2 −
p
6n , with α ∈ N.

The portion between 0 and p
2 of both time state sequences is represented on

Fig. 3. Both time state sequences are in fact periodic, with period p
2 .

a a a a a a a a ab

0
p

2

p

2n

p

6n

a a a a a a a a ab

0
p

2

Ap,n

Bp,n

Fig. 3. Two timed paths Ap,n and Bp,n

The following lemma is straightforward since, for each equivalence, the suf-
fixes of the paths are the same.

12 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

Lemma 9. For any positive p and n, for any nonnegative real x, and for any
MTL formula ϕ,

Ap,n, x |=i ϕ ⇐⇒ Bp,n, x+
p

2n
|=i ϕ (2)

Ap,n, x |=i ϕ ⇐⇒ Ap,n, x+
p

2
|=i ϕ (3)

Bp,n, x |=i ϕ ⇐⇒ Bp,n, x+
p

2
|=i ϕ (4)

We can now prove the following lemma:

Lemma 10. For any k ≤ N , for any ϕ ∈ MTL
−
p,k, for any x ∈

[
0, p2 −

(k+2)p
2(N+3)

)
,

for any nonnegative integer α, we have

Ap,N+3, α
p

2
+ x |= ϕ ⇐⇒ Bp,N+3, α

p

2
+ x |= ϕ

Proof. The proof is by induction on both k and the structure of the formula ϕ.

– The case where k = 0 is easy, since ϕ may only be a propositional for-
mula, and all positions in the interval we consider are labeled with the same
propositions.

– Assume the result holds for some k < N . We prove it for k + 1.
• the case of atomic propositions and boolean combinations is still straight-

forward.
• Assume ϕ = ϕ1 U=p ϕ2: Pick some value x ∈

[
0, p2 −

(k+1+2)p
2(N+3)

)
and α ∈

N, and assume Ap,N+3, α
p
2 + x |= ϕ1 U=p ϕ2. Then ϕ2 holds at position

(α + 2)p2 + x, and ϕ1 holds at all intermediate positions. Applying the
induction hypothesis, we get that Bp,N+3, (α + 2)p2 + x |= ϕ2. We also
obtain that ϕ1 holds along Bp,N+3 at positions between αp2 + x and
αp2 +x+ p

2(N+3) . It also holds at positions between αp2 +x+ p
2(N+3) and

(α+2)p2+x thanks to equation (2). This entails that Bp,N+3, α
p
2+x |= ϕ.

Conversely, assume that Bp,N+3, α
p
2 + x |= ϕ1 U=p ϕ2. With the induc-

tion hypothesis, we get that Ap,N+3, (α + 2)p2 + x |= ϕ2. From equa-
tion (2), we know that ϕ1 holds between αp2+x and (α+2)p2+x−

p
2(N+3)

along Bp,N+3. Last, equation (3) ensures that it also holds between
(α+ 2)p2 + x− p

2(N+3) and (α+ 2)p2 + x, which completes the proof.

• Assume ϕ = ϕ1 U<p ϕ2: Pick some value x ∈
[
0, p2 −

(k+1+2)p
2(N+3)

)
and α ∈

N, and assume Ap,N+3, α
p
2 + x |= ϕ1 U<p ϕ2.

∗ If the witness for ϕ2 lies between αp2+x and (α+1)p2+x, then by ap-
plying equation (2), we get that Bp,N+3, (α+ 1)p2 + x |= ϕ1 U<

p

2
ϕ2.

The induction hypothesis ensures that ϕ1 holds on time state se-
quence Bp,N+3 between αp2 +x and (α+1)p2 +x, and we deduce that
Bp,N+3, α

p
2 + x |= ϕ1 U<p ϕ2.

∗ Now, if the witness lies between (α+1)p2 +x and (α+2)p2 + x, with
equation (3), there is also a possible witness between αp2 + x and
(α + 1)p2 + x, and we apply the previous proof.

On the Expressiveness of TPTL and MTL 13

Conversely, assume Bp,N+3, α
p
2 + x |= ϕ1 U<p ϕ2. We still consider two

cases:
∗ If the witness for ϕ2 lies between αp2 +x and αp2 +x+

p
2(N+3) , we can

apply the induction hypothesis to ϕ1 and ϕ2, and we get the result.
∗ Otherwise, it suffices to apply equation (2).

• Last, assume that ϕ = ϕ1 U>p ϕ2: Pick some value x in the interval[
0, p2 −

(k+1+2)p
2(N+3)

)
and α ∈ N, and assume Ap,N+3, α

p
2 + x |= ϕ1 U>p ϕ2.

By applying equation (2), and the induction hypothesis for ϕ1, we get
that Bp,N+3, α

p
2 + x |= ϕ1 U>p ϕ2.

Conversely, if Bp,N+3, α
p
2 + x |= ϕ1 U>p ϕ2, if the witnessing position

for ϕ2 lies after αp2 + x+ p
2(N+3) , it suffices to apply equation (2). Oth-

erwise, equation (3) ensures that we can find another witness for ϕ2

satisfying this condition. This completes the proof. �

As a corollary of the lemma, when k = N and α = x = 0, we get that any
formula in MTL

−
p,N cannot distinguish between models Ap,N+3 and Bp,N+3. This

is in contradiction with the fact that Ψ is equivalent to Φ, since Ψ holds initially
along Ap,k but fails to hold initially along Bp,k, for any k. This concludes the
proof of Proposition 8. �

We can now state our main theorem:

Theorem 11. TPTL is strictly more expressive than MTL for the interval-based
semantics.

Note that the formula x.F (a ∧ x ≤ 1 ∧G (x ≤ 1 ⇒ ¬b)) does not use the U
modality, so the fragment of TPTL using F and G modalities is also strictly
more expressive than MTL for the interval-based semantics. This is not the case
for the fragment of TPTL using only the F modality (see section 4).

Since the MTL+Past formula F=1 (¬bS a) distinguishes between the two fam-
ilies of models (Ap,n)p∈Q,n∈N and (Bp,n)p∈Q,n∈N, we get the following corollary:

Corollary 12. MTL+Past is strictly more expressive than MTL for the interval-
based semantics.

Up to our knowledge, this is the first expressiveness result for timed linear-
time temporal logics using past modalities under the interval-based semantics.

4 On the Existential Fragments of MTL and TPTL

TPTLF is the fragment of TPTL which only uses the F modality (and not a
general U modality) and which does not use the general negation but only
negation of atomic propositions. Formally, TPTLF is defined by the following
grammar:

TPTLF ∋ ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | F ϕ | x ∼ c | x.ϕ.

14 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

An example of a TPTLF formula is x.F (b ∧F (c ∧ x ≤ 2)) (see Subsection 3.1).
Similarly we define the fragment MTLF of MTL where only F modalities are
allowed:

MTLF ∋ ϕ ::= p | ¬p | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | FI ϕ.

From Subsection 3.2, we know that, under the pointwise semantics, TPTLF

is strictly more expressive than MTLF , since formula x.F (b∧F (c∧ x ≤ 2)) has
no equivalent in MTL (thus in MTLF). On the contrary, when considering the
interval-based semantics, we proved that this TPTLF formula can be expressed
in MTLF (see Subsection 3.1). In this section, we generalize the construction of
Subsection 3.1, and prove that TPTLF and MTLF are in fact equally expressive
for the interval-based semantics.

Theorem 13. TPTLF is not more expressive than MTLF for the interval-based
semantics.

Proof. We may assume w.l.o.g. that all constants appearing in formulae of
TPTLF are integers.

Normal form of TPTLF formulae. For the sake of simplicity, we assume w.l.o.g.
that all F modalities are directly embedded into some reset operator “x.”, and
that any clock x appearing in the formula is reset only once. Every TPTLF

formula can be easily transformed into an equivalent formula of the following
logic:

ϕ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | x ∼ c | x.F ϕ (5)

where p ∈ AP is an atomic proposition, x is a clock variable, c is a rational and
∼ ∈ {≤, <,=, >,≥}. We call atom an atomic proposition or its negation.

We now recursively build a normal form for TPTLF formulae, which is some
kind of disjunctive normal form.

Definition 14. A TPTLF formula is said simple if it is an atom, a clock con-
straint or if it is of the form:

x.F

(
l1∧

k=1

ak ∧

(
l2∧

k=1

xk ∼k ck

)
∧

l3∧

k=1

ϕk

)

where ak are atoms, xk are clocks, ck are rationals, ∼k ∈ {≤, <,=, >,≥} and
ϕk are simple TPTLF formulae.

The following lemma is straightforward, using the property that x.F (ϕ1∨ϕ2)
is equivalent to (x.F ϕ1) ∨ (x.F ϕ2).

Lemma 15. Every TPTLF formula is equivalent to some boolean combination
of simple TPTLF formulae.

On the Expressiveness of TPTL and MTL 15

From TPTLF formulae to systems of difference inequations. In this part, we
recursively transform a TPTLF formula into a system of inequations, where a
subformula x.F ϕ is represented by the date y at which ϕ holds. This yields extra
conditions between y and the other clocks and variables that already appear in
the transformation.

We first define the so-called systems of difference inequations, into which we
want to transform TPTLF formulae.

Definition 16. Let X be the set of formula clocks, and Y be a finite set of vari-
ables disjoint from X. A system S over Y is a pair (V,J) where V : Y → MTLF

associates to every variable an MTLF formula, and J is a set of (difference)
inequations of the form x− x′ ∼ c or x ∼ c where x, x′ are elements of X ∪ Y .

The conjunction of two systems S = (V,J) and S ′ = (V ′,J ′), denoted
by S ∧ S ′, is the system (V ′′,J ∪ J ′) where V ′′ : y 7→ V (y) ∧ V ′(y). By abuse
of notation, for any y ∈ Y , we will simply write S(y) instead of V (y), and if e is
an inequation of J , we will note e ∈ S.

Let S be a system over Y , κ be a time state sequence, v : Y → R+ be a
valuation, and α : X → R+ a context for clocks in X . We say that (κ, v, α) ⊢ S
iff the context α′ : X ∪ Y → R+ that naturally extends v and α satisfies the
following properties:

∀e ∈ S. α′ |= e and ∀y ∈ Y. (κ, v(y)) |=i S(y).

Now, the satisfaction relation is defined as follows:

(κ, t, α) |= S iff ∃v : Y → R+ s.t. (κ, v, α) ⊢ S and ∀ y ∈ Y, v(y) ≥ t.

Now, let ϕ be a simple TPTLF formula. We explain how to inductively build
a system Sϕ such that

(κ, 0, α) |=i ϕ iff (κ, 0, α) |= Sϕ.

– If ϕ is an atom, the system has no constraint and only one variable y, and
S(y) = ϕ;

– If ϕ is a clock constraint x ∼ c, the system has one constraint, y ∼ c, and
S(y) = ⊤.

– The main case is now if ϕ is x.F
(∧l1

k=1 ak ∧
(∧l2

k=1 xik ∼k ck
)
∧
∧l3
k=1 ϕk

)
,

where we assume that ϕk have the form xjk .F ψk and that we already com-
puted a system Sϕk

over Yk for each 1 ≤ k ≤ l3; The construction of the sys-

tem is done inductively as follows: Sϕ is the system over Y =
⋃l3
k=1 Yk ∪{y},

where y is a fresh variable representing the current date, defined by the
following conjunction:

Sϕ =
∧

1≤k≤l3

Sϕk
[xjk ← y] ∧

{
V : y 7→

∧l1
k=1 ak

J = {y > x} ∪ {y − xik ∼k ck | 1 ≤ k ≤ l2}

16 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

where Sϕk
[xjk ← y] is the system Sϕk

in which variable xjk has been replaced
by y. For the outer-most “x.F ” we replace x by 0 because we start evaluating
the formula at date 0.

Example 3. For the formula x1.F (a ∧ x2.F (b ∧ x1 ≤ 2)), the system which is
constructed is:

S =





V : y1 7→ a

y2 7→ b

J =




y2 ≤ 2
y2 > y1
y1 > 0





It is just a technical matter to prove that:

(κ, t, α[x 7→ t]) |=i ϕ ⇐⇒ (κ, t, α[x 7→ t]) |= Sϕ.

The proof is by induction on the structure of ϕ, and is given in Appendix B.

Note that thanks to the above equivalence, the construction of the system
gives a decidability procedure for the satisfiability of TPTLF : to decide satis-
fiability of formula ϕ we roughly have to decide whether the system Sϕ has a
solution using simple linear programming and to ensure consistence of the solu-
tion, i.e. to check that whenever V (yi) is not consistent with V (yj), then yi 6= yj
(see corollary 20).

Properties of systems. Let S be a system and ψ be an MTLF formula. We say
that S and ψ are equivalent if, for every time state sequence κ,

(κ, 0,0) |= S iff (κ, 0) |=i ψ.

Our goal is thus to find a MTLF formula ψ equivalent to Sϕ.

We say that two systems S = (V,J) and S ′ = (V ′,J ′) are equivalent when-
ever V = V ′ and J and J ′ have the same solutions. Note that two equivalent
systems represent TPTLF formulae that are equivalent over time state sequences.

The following lemma can easily be proved.

Lemma 17. Let S1 = (V,J1) and S2 = (V,J2) be two systems, and S be a
system equivalent to (V,J1 ∨ J2). Then

(κ, t, α) |= S ⇐⇒ (κ, t, α) |= S1 or (κ, t, α) |= S2.

Thanks to this lemma, we have the following property: if ϕi is an MTLF

formula equivalent to a system Si, then ϕ1 ∨ ϕ2 is an MTLF formula equivalent
to S.

On the Expressiveness of TPTL and MTL 17

Reduction to bounded systems of difference inequations. We fix a system S =
(V,J), assuming J = {xi − xj ≺i,j mi,j | i, j = 0 . . . n} is a set of constraints in
normal form (i.e. all constraints are tightened. See how such sets of constraints
or equivalently DBMs can be manipulated in [Bou04]). We assume in addition
(even if it means adding constraints of the form xi ≤ xj) that constraints in
J imply that xi−1 ≤ xi for every 0 < i ≤ n, and we let M be the maximal
constant appearing in J . For every b : {1, . . . , n} → {≤, >}, we define a new set
of constraints J b where constraints {xi − xi−1 b(i) M | 1 ≤ i ≤ n} are added
to J . We claim the following two lemmas:

Lemma 18. (ai)0≤i≤n is a solution of J iff it is a solution of J b for some
b : {1, . . . , n} → {≤, >}.

Lemma 19. We pick some b : {1, . . . , n} → {≤, >} such that J b is consistent
(i.e. J b has a solution), and write ≡b for the following equivalence on indices:

i ≡b j iff for all i ≤ k < j, b(k) = ≤.

Then J b is equivalent to

{xi − xj ≺i,j mi,j | i ≡b, j} ∪ {xi − xi−1 b(i)M | 1 ≤ i ≤ n}.

Lemma 19 can be depicted as follows:

0 >M︷ ︸︸ ︷ >M︷ ︸︸ ︷
︸ ︷︷ ︸

bounded

︸ ︷︷ ︸
bounded

On this picture, each point on the line represents a variable, and a part denoted
“bounded” gathers variables whose differences are bounded by the system of
inequations J b. Two “bounded” parts are separated by at least M t.u.

From Lemma 18, if ψb is an MTLF formula equivalent to Sb, then the disjunc-
tion of all ψb’s, when b ranges in the whole set of functions {1, . . . , n} → {≤, >},
is equivalent to S. It remains to explain how we construct a formula equivalent
to a system Sb.

We fix a b : {1, . . . , n} → {≤, >}, and denote by (Ii)0≤i≤p the equivalence
classes for ≡b (in increasing order). For each 0 ≤ i ≤ p, we denote by ni the
largest index in Ii. We assume we have a procedure which computes MTLF

formulae equivalent to a system S = (V,J) where J implies that all variables
are bounded. We will describe such a procedure in the next paragraphs. We note
the resulting MTLF formula Ψ(S). By a decreasing induction we define systems
(Si)0≤i≤p as follows: Si = (Vi,Ji) is a system over {xj | j ∈ Ii} and




{
Vi(xj) = V b(xj) if (i = p and j ∈ Ii) or if j ∈ Ii r {ni}
Vi(xni

) = V b(xni
) ∧ F>M Ψ(Si+1) if i 6= p

Ji = J b

|Ii
is the restriction of J b to variables {xj | j ∈ Ii}

From Lemma 19, formula ψb is equivalent to formula Ψ(S0) defined above. That
way, we have reduced our initial problem to that of finding MTLF formulae
equivalent to systems S = (V,J) where constraints in J imply that all variables
are bounded.

18 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

Decomposition of bounded systems of difference inequations. We fix S = (V,J).
We assume that the variables involved in J are {xi | 0 ≤ i ≤ n}, and that they
are bounded by M . Following region decompositions of timed automata [AD94],
we split J in systems where constraints are regions. Roughly, a region specifies
in which elementary intervals (interval of the form (c; c+1) or singleton {c} for
c ≤ M) lie the differences xi − xj . It is then sufficient to find MTLF formulae
for systems S = (V,J) where J represents a bounded region.

A region R can be equivalently characterized by sets of variables (Xi)0≤i≤p
(that form a partition of {xi | 0 ≤ i ≤ n}) such that2

– x ∈ X0 iff 〈x〉 = 0,
– x, y ∈ Xi iff 〈x〉 = 〈y〉,
– x ∈ Xi and y ∈ Xj with i < j implies 〈x〉 < 〈y〉.

Let S ′ = (V ′,J ′) be the system over {Xi | 1 ≤ i ≤ p} (Xi are viewed as
variables here) such that for every 1 ≤ i ≤ p, V ′(Xi) =

∧
x∈Xi

F=⌊x⌋ V (x), and
J ′ is the system 0 < X1 < . . . < Xp < 1.

If we can find an MTLF formula ψ′ equivalent to S ′, then formula3

(
∧

x∈X0

F=⌊x⌋ V (x)

)
∧ ψ′

will be equivalent to S.

MTLF formulae for simple systems. It remains to find MTLF formulae Ψ[1...p],r

equivalent to systems Sp,r = (V,Jp,r) over {Xi | 1 ≤ i ≤ p}, where r is any
rational and Jp,r is the set of constraints 0 < X1 < · · · < Xp < r. Note
that we assume we have a unique function V which is used for all systems
Sp,r even if it is a notation abuse. We do the construction by induction on p:
Ψ[1],r = F<r V (X1), and Ψ[1...p],r is the conjunction of the following four formulae
Φ1 to Φ4, distinguishing between the possible positions of the variables:

– if there is no variable in the interval
(
0, r

p

]
and all p variables are in the

interval
(
r
p
, r
)
:

Φ1 = Ψ1 ∨F< r
p
(Ψ1) .

where

Ψ1 =

p−1∨

i=1

((
F=r− i.r

p
V (Xp)

)
∧ Ψ[1...p−1],r− i.r

p

)

The formula Φ1 distinguishes between the possible positions for the last

variable Xp: it is in one of the intervals
[
r − i.r

p

]
or
(
r − i.r

p
, r − (i−1).r

p

)

with 1 ≤ i ≤ p− 1.

2 〈α〉 represents the fractional part of α.
3 ⌊x⌋ represents the lower bound of the interval in which variable x lies in R (if interval

for x is {c} or (c; c+ 1), then ⌊x⌋ is c).

On the Expressiveness of TPTL and MTL 19

Note that Φ1 does not exactly express the above property: it may contain
some more cases, but still expresses that 0 < X1 < · · · < Xp < r. The same
remark also applies for the other three formulae.

– if there is 0 < h < p variables in the interval
(
0, r

p

)
and p − h variables in

the interval
(
r
p
, r
)
:

Φ2 = Ψ[1...h], r
p
∧ F= r

p

(
Ψ[h+1...p],r− r

p

)
.

– if there is 0 < h < p variables in the interval
(
0, r

p

)
, one variable at date r

p
,

and p− h− 1 variables in the interval
(
r
p
, r
[
:

Φ3 = Ψ[1...h], r
p
∧ F= r

p

(
V (Xh+1) ∧ Ψ[h+2...p],r− r

p

)
.

– last case, if all variables are in the interval
(
0, r

p

)
:

Φ4 = F< r
p

(
V (X1) ∧ F< r

p

(
V (X2) ∧ (· · ·)

))

It can easily be proved, by induction, that the resulting formula is equivalent
to Sp,r. �

Our construction from TPTLF to MTLF is exponential. We first compute the
normal form of the TPTLF formula ϕ by choosing for every disjunction one of the
disjuncts: the normal form is then the disjunction of all the formulae obtained by
such choices. This gives an exponential number of formulae whose disjunction
corresponds to ϕ, the size of each formula being linear in the size of ϕ. The
reduction to bounded systems produces for each formula an exponential number
of systems (whose size is polynomial in the size of ϕ). Then for each system
we compute the corresponding MTL formula which has an exponential size in
the size of the system. The MTL formula for ϕ is finally a combination of this
exponential number of exponential formulae, its size is thus simply exponential.

It is known [AFH96] that the satisfiability problem for TPTL and MTL is
undecidable for the interval-based semantics, whereas it has been proved recently
that the satisfiability problem for MTL is decidable but non primitive recursive
for the pointwise semantics [OW05]. As a corollary of the previous proof (in
particular of the construction of the system), we get:

Corollary 20. The satisfiability problem for TPTLF (and thus MTLF) is NP-
complete for the interval-based semantics.

First guess for each disjunction of the formula one of the disjuncts, and build
the system S = (V,J) for the new formula which is directly in normal form,
then guess an order on the variables which is consistent with the constraints
in J , finally solve a simple linear programming problem. For each guess, the
problem can be solved in polynomial time and all guesses are independent, we
thus get that the problem is in NP. As SAT is a subproblem of the satisfiability
of TPTLF , we conclude that the latter is NP-complete.

20 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

5 Conclusion

In this paper we have proved the conjecture (first proposed in [AH90]) that
the logic TPTL is strictly more expressive than MTL. However we have also
proved that the TPTL formula G (a→ x.F (b∧F (c ∧ x ≤ 1))), which had been
proposed as an example of formula which could not be expressed in MTL, has
indeed an equivalent formula in MTL for the interval-based semantics. We have
thus proposed another formula of TPTL which can not be expressed in MTL.

As side results, we have obtained that MTL+Past is strictly more expres-
sive than MTL, which is a main difference with the untimed framework where
past modalities do not add any expressive power to LTL [Kam68,GPSS80]. In
the timed framework, no such result was known, it was only known that past
modalities add expressive power to MITL (a strict subset of MTL) under the
pointwise semantics [AH92b].

Linear models we have used for proving above expressiveness results can be
viewed as special cases of branching-time models. Our results thus apply to the
branching-time logic TCTL (by replacing the modality U with the modality
AU), and translate as: TCTL with explicit clocks [HNSY94] is strictly more
expressive than TCTL with subscripts [ACD93], as conjectured in [Alu91,Yov93].

Finally, we have proved that the fragment of TPTL which only uses the F
modality can be translated in MTL. However the construction we provide suffers
from an exponential blowup. An interesting problem would then be to study the
conciseness of the fragment of TPTL compared with MTL.

As further developments, we would like to study automata formalisms equiv-
alent to both logics TPTL and MTL. Three existing works may appear as inter-
esting starting points, namely [AH92b,LW05,OW05].

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Proc. 5th Annual Symposium on Logic in Computer
Science (LICS’90), pages 414–425. IEEE Computer Society Press, 1990.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, 1993.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AFH96] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of
relaxing punctuality. Journal of the ACM, 43(1):116–146, 1996.

[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and
expressiveness. In Proc. 5th Annual Symposium on Logic in Computer Sci-
ence (LICS’90), pages 390–401. IEEE Computer Society Press, 1990. Pre-
liminary version of [AH93].

[AH92a] Rajeev Alur and Thomas A. Henzinger. Back to the future: towards a
theory of timed regular languages. In Proc. 33rd Annual Symposium on
Foundations of Computer Science (FOCS’92), pages 177–186. IEEE Com-
puter Society Press, 1992.

On the Expressiveness of TPTL and MTL 21

[AH92b] Rajeev Alur and Thomas A. Henzinger. Logics and models of real-time:
a survey. In Real-Time: Theory in Practice, Proc. REX Workshop 1991,
volume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and
expressiveness. Information and Computation, 104(1):35–77, 1993.

[AH94] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal
of the ACM, 41(1):181–204, 1994.

[Alu91] Rajeev Alur. Techniques for Automatic Verification of Real-Time Systems.
PhD thesis, Stanford University, Stanford, CA, USA, 1991.

[BCL05] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal logics
for timed control. Research Report LSV-05-04, Laboratoire Spécification &
Vérification, ENS de Cachan, France, 2005.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata. Formal
Methods in System Design, 24(3):281–320, 2004.

[EH86] E. Allen Emerson and Joseph Y. Halpern. "Sometimes" and "not never"
revisited: On branching versus linear time temporal logic. Journal of the
ACM, 33(1):151–178, 1986.

[Eme91] E. Allen Emerson. Temporal and Modal Logic, volume B (Formal Models
and Semantics) of Handbook of Theoretical Computer Science, pages 995–
1072. MIT Press Cambridge, 1991.

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In Conference Record 7th ACM Symposium
on Principles of Programming Languages (POPL’80), pages 163–173. ACM
Press, 1980.

[Hen98] Thomas A. Henzinger. It’s about time: Real-time logics reviewed. In Proc.
9th International Conference on Concurrency Theory (CONCUR’98), vol-
ume 1466 of Lecture Notes in Computer Science, pages 439–454. Springer,
1998.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model-checking for real-time systems. Information and Compu-
tation, 111(2):193–244, 1994.

[Kam68] Johan A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, UCLA, Los Angeles, CA, USA, 1968.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[Lar95] François Laroussinie. About the expressive power of CTL combinators.
Information Processing Letters, 54(6):343–345, 1995.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Temporal
logic with forgettable past. In Proc. 17th Annual Symposium on Logic
in Computer Science (LICS’02), pages 383–392. IEEE Computer Society
Press, 2002.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past.
In Proc. Conference on Logics of Programs, volume 193 of Lecture Notes in
Computer Science, pages 413–424. Springer-Verlag, 1985.

[LW05] Slawomir Lasota and Igor Walukiewicz. Alternating timed automata. In
Proc. 8th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’05), volume 3441 of Lecture Notes in
Computer Science, pages 250–265. Springer, 2005.

[MR05] Nicolas Markey and Jean-François Raskin. Model checking restricted sets
of timed paths. Theoretical Computer Science, 2005. To appear.

22 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

[Ost92] Jonathan S. Ostroff. Formal methods for the specification and design of real-
time safety critical systems. Journal of Systems and Software, 18(1):33–60,
1992.

[OW05] Joël Ouaknine and James B. Worrell. On the decidability of metric tempo-
ral logic. In Proc. 19th Annual Symposium on Logic in Computer Science
(LICS’05). IEEE Computer Society Press, 2005. To appear.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proc. 18th Annual Sympo-
sium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Computer Society Press, 1977.

[Ras99] Jean-François Raskin. Logics, Automata and Classical Theories for Deciding
Real-Time. PhD thesis, University of Namur, Namur, Belgium, 1999.

[RSH98] Jean-François Raskin, Pierre-Yves Schobbens, and Thomas A. Henzinger.
Axioms for real-time logics. In Proc. 9th International Conference on Con-
currency Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer
Science, pages 219–236. Springer, 1998.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional
linear temporal logics. Journal of the ACM, 32(3):733–749, 1985.

[TR04] Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric tem-
poral logic specifications. In Proc. 4th International Workshop on Runtime
Verification (RV’04), Electronic Notes in Computer Science. Elsevier, 2004.
To appear.

[TW96] Denis Thérien and Thomas Wilke. Temporal logic and semidirect products:
an effective characterization of the until hierarchy. In Proc. 37th Annual
Symposium on Foundations of Computer Science (FOCS’96), pages 256–
263. IEEE Computer Society Press, 1996.

[Var96] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Proc. Logics for Concurrency: Structure versus Automata, volume 1043
of Lecture Notes in Computer Science, pages 238–266. Springer, 1996.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In Proc. 1st Annual Symposium on Logic
in Computer Science (LICS’86), pages 322–344. IEEE Computer Society
Press, 1986.

[Yov93] Sergio Yovine. Méthodes et outils pour la vérification symbolique de sys-
tèmes temporisés. PhD thesis, Institut National Polytechnique de Grenoble,
Grenoble, France, 1993.

A Proofs of Section 3

Lemma 3. For all ϕ ∈ MTLp,k with 0 ≤ k ≤ N , for all x ∈
[
2− p, 2− (k+2)p

N+3

)
,

Ap,N+3, x |=i ϕ ⇐⇒ Bp,N+3, x |=i ϕ

Proof. We can assume that ϕ is of the form ϕ1 U=kp ϕ2 or ϕ1 U(kp,(k+1)p) ϕ2

with k ∈ N as every formula is a boolean combination of atomic propositions
and such formulae.

The proof will be done by induction on k and then on ϕ.

On the Expressiveness of TPTL and MTL 23

Case k = 0. In both models, interval
[
2− p, 2− 2p

N+3

)
are similar, atomic

propositions (and boolean combinations) have the same truth values on both
models.

Induction step. We take 1 ≤ k ≤ N , and we assume that the lemma has been
proved for k − 1. We take some formula ϕ ∈ MTLp,k. ϕ is either of the form
ϕ1 U=lp ϕ2 with l ≥ 1 or ϕ1 U(lp,(l+1)p) ϕ2 with l ∈ N. Both formulae ϕ1 and ϕ2

are in MTLp,k−1. We now take x ∈
[
2− p, 2− (k+2)p

N+3

)
.

– We assume that ϕ = ϕ1 U=lp ϕ2 with l ≥ 1.
• We assume that Ap,N+3, x |=i ϕ1 U=lp ϕ2. It means that Ap,N+3, x +
lp |=i ϕ2 and ∀0 < t < lp, Ap,N+3, x+ t |=i ϕ1.
Obviously, as x + lp ≥ 2, Bp,N+3, x + lp |=i ϕ2 (Lemma 2, first point).
Take some 0 < t < lp.

∗ if x + t < 2 − ((k−1)+2)p
N+3 = 2 − (k+1)p

N+3 , by induction hypothesis (ϕ1

has depth k − 1), Bp,N+3, x+ t |=i ϕ1.

∗ if 2 − (k+1)p
N+3 ≤ x + t < x + lp (in which case x < x + t − p

N+3 and
thus Ap,N+3, x+ t− p

N+3 |=i ϕ1), using Lemma 2 (second point), we
get that Bp,N+3, x+ t |=i ϕ1.

Thus Bp,N+3, x |=i ϕ1 U=lp ϕ2.
• We assume that Bp,N+3, x |=i ϕ1 U=lp ϕ2. It means that Bp,N+3, x+lp |=i
ϕ2 and ∀0 < t < lp, Bp,N+3, x+ t |=i ϕ1.
Obviously, as x + lp ≥ 2, Ap,N+3, x + lp |=i ϕ2 (Lemma 2, first point).
Take some 0 < t < lp.
∗ if x+ t < x+ lp− p

N+3 , Bp,N+3, x+ t+ p
N+3 |=i ϕ1, and thus, using

Lemma 2 second point, Ap,N+3, x+ t |=i ϕ1.
∗ if x+lp− p

N+3 ≤ x+t < x+lp, in particular we have x+t ≥ 2− p
N+3 >

2− 5p
4(N+3) . From Lemma 2 first point, Ap,N+3, x+ t |=i ϕ1.

Thus Ap,N+3, x |=i ϕ1 U=lp ϕ2.
– We assume that ϕ = ϕ1 U(lp,(l+1)p) ϕ2 with l ≥ 1.

We can do the same proof as for the case = lp (we keep the same distance
before ϕ2 holds).

– We assume We assume that ϕ = ϕ1 U<p ϕ2.
• We assume that Ap,N+3, x |=i ϕ1 U<p ϕ2. It means that Ap,N+3, x+t |=i
ϕ2 for some 0 < t < p and ∀0 < t′ < t, Ap,N+3, x+ t′ |=i ϕ1.
∗ 0 < t ≤ p

N+3 , then we simply take d = t, and by induction hypothesis

(all x+d′ < 2− (k+1)p
N+3 whenever d′ ≤ d), we get that Bp,N+3, x+d |=i

ϕ1 and for all 0 < d′ < d, Bp,N+3, x+ d′ |=i ϕ1.
∗ if p

N+3 < t < p − p
N+3 , then we simply take d = t + p

N+3 , and we
get that Bp,N+3, x + d |=i ϕ2 (Lemma 2), and for all p

N+3 < d′ <

d, Bp,N+3, x + d′ |=i ϕ1 ⇐⇒ Ap,N+3, x + d′ − p
N+3 |=i ϕ1. We

deduce that Bp,N+3, x + d′ |=i ϕ1. Assume that 0 < d′ ≤ p
N+3 , we

have that x + p
N+3 ∈

[
2− p, 2− (k+1)p

N+3

)
. By induction hypothesis,

Ap,N+3, x + d′ |=i ϕ1 ⇐⇒ Bp,N+3, x + d′ |=i ϕ1. We thus get that
Bp,N+3, x+ d′ |=i ϕ1.

24 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

∗ if p− p
N+3 ≤ t < p, we take d = t. In that case x+ d > 2 − 5p

4(N+3) ,

thus using Lemma 2, we get that Bp,N+3, x+ d |=i ϕ2. We take now
p

N+3 < d′ < d. We have that Ap,N+3, x + d′ − p
N+3 |=i ϕ1 ⇐⇒

Bp,N+3, x + d′ |=i ϕ1 (Lemma 2). As 0 < x + d′ − p
N+3 < t, we

get that Bp,N+3, x + d′ |=i ϕ1. We take 0 < d′ ≤ p
N+3 , in this case,

x+d′ < 2− (k+1)p
N+3 , by induction hypothesis, we get that Ap,N+3, x+

d′ |=i ϕ1 ⇐⇒ Bp,N+3, x + d′ |=i ϕ1, thus Bp,N+3, x + d′ |=i ϕ1 (as
0 < d′ < t).

We get that Bp,N+3, x |=i ϕ1 U<p ϕ2.

• We assume that Bp,N+3, x |=i ϕ1 U<p ϕ2. It means that Bp,N+3, x+ t |=i
ϕ2 for some 0 < t < p and ∀0 < t′ < t, Bp,N+3, x+ t′ |=i ϕ1.

∗ if t > p
N+3 , we take d = t − p

N+3 . Using Lemma 2 (second point),
we get that Ap,N+3x + d |=i ϕ2 ⇐⇒ Bp,N+3, x + t |=i ϕ2, thus
Ap,N+3x + d |=i ϕ2. Similarly, for all 0 < d′ < d, Ap,N+3, x + d′ |=i
ϕ1 ⇐⇒ Bp,N+3, x+ d′ + p

N+3 |=i ϕ1. As d′ + p
N+3 < t, we get that

Ap,N+3, x+ d′ |=i ϕ1.
∗ if t ≤ p

N+3 , we take d = t. By induction hypothesis (as x + d′ <

2 − (k+1)p
N+3 for all 0 < d′ < d), we get that Ap,N+3, x + d |=i ϕ2 and

for all 0 < d′ < d, Ap,N+3, x+ d′ |=i ϕ1.

We get that Ap,N+3, x |=i ϕ1 U<p ϕ2. �

Lemma 5. For every ϕ ∈ MTLp,N ,

(Ap,N+3, 0) |=p ϕ ⇐⇒ (Bp,N+3, 0) |=p ϕ

Proof. We can suppose that ϕ is of the form ϕ1 U=kp ϕ2 or ϕ1 U(kp,(k+1)p) ϕ2

with k ∈ N as every formula can be rewritten as a boolean combination of atomic
propositions and such formulae.

We first give some notations: if i is a position in Ap,N+3, we note ı̌ the
position in Bp,N+3 which corresponds to the same date (as there is one b more
in Ap,N+3, i and ı̌ may differ by 1), and similarly, if j is a position in Bp,N+3, we
note ̂ the position in Ap,N+3 which corresponds to the same date. Note that ̂
is always correctly defined, whereas ı̌ is not defined at date 2 − 5p

4(N+3) because

there is no action at this date in Bp,N+3. If i (resp. j) is a position in Ap,N+3

(resp. Bp,N+3), we note τ
Ap,N+3

i (resp. τ
Bp,N+3

j) the date corresponding to this
position.

It is easy to treat formulae of the type ϕ1 U=kp ϕ2, as no action occurs both
in Ap,N+3 and Bp,N+3 at time kp. Thus, for every k ∈ N, Ap,N+3, 0 6|=p ϕ and
Bp,N+3, 0 6|=p ϕ.

We now focus on formulae of the form ϕ = ϕ1 U(kp,(k+1)p) ϕ2, and we distin-
guishing three cases:

On the Expressiveness of TPTL and MTL 25

– Case (k + 1)p ≤ 2 − p. As no action occurs neither in Ap,N+3, nor in
Bp,N+3, we get that Ap,N+3, 0 6|=p ϕ and Bp,N+3, 0 6|=p ϕ; this implies that
Ap,N+3, 0 |=p ϕ ⇐⇒ Bp,N+3, 0 |=p ϕ.

– Case kp ≥ 2. We assume that (Ap,N+3, 0) |=p ϕ. There exists a position

i in Ap,N+3 such that τ
Ap,N+3

i ∈ (kp, (k + 1)p), (Ap,N+3, i) |=p ϕ2 and
∀ 0 < i′ < i, (Ap,N+3, i

′) |=p ϕ1. We take j = ı̌, and applying the first
point of Lemma 2, we get that (Bp,N+3, j) |=p ϕ2. We now show that ∀0 <
j′ < j, (Bp,N+3, j

′) |=p ϕ1. Take such a j′. If j′ = 1, by hypothesis we have

(Ap,N+3, 1) |= ϕ1 and as τ
Ap,N+3

1 = 2 − p + p
2(N+3) , Lemma 3 gives us that

(Bp,N+3, 1) |=p ϕ1. Let 2 ≤ j′ < j, then 2 ≤ ̂′ < i so (Ap,N+3, ̂
′ − 1) |=p ϕ1

which, using the second point of Lemma 2, implies that (Bp,N+3, j
′) |=p ϕ1.

Thus we get that (Bp,N+3, 0) |=p ϕ.

Assume that (Bp,N+3, 0) |=p ϕ. There exists a position j such that τ
Bp,N+3

j ∈
(kp, (k + 1)p), (Bp,N+3, j) |=p ϕ2 and ∀ 0 < j′ < j, (Bp,N+3, j

′) |=p ϕ1. We
take i = ̂. By Lemma 2 first point, (Ap,N+3, i) |=p ϕ2. We now show that

∀0 < i′ < i, (Ap,N+3, i
′) |=p ϕ1. Take such a i′. Let 1 ≤ i′ < i, if τ

Ap,N+3

i′ ≥
2 − p

N+3 , we have that (Bp,N+3, ı̌
′) |=p ϕ1 and by Lemma 2 first point, this

implies that (Ap,N+3, i
′) |=p ϕ1. If τ

Ap,N+3

i′ < 2 − p
N+3 , let j′ be such that

τ
Bp,N+3

j′ = τ
Ap,N+3

i′ + p
N+3 , we have that j′ < j so (Bp,N+3, j

′) |=p ϕ1, which,
by Lemma 2 second point, implies (Ap,N+3, i

′) |=p ϕ1. We thus get that
(Ap,N+3, 0) |=p ϕ.

– Case kp = 2− p (i.e. ϕ = ϕ1 U(2−p,2) ϕ2). We assume that (Ap,N+3, 0) |=p

ϕ. There exists a position i in Ap,N+3 such that τ
Ap,N+3

i ∈ (2 − p, 2),

(Ap,N+3, i) |=p ϕ2 and ∀0 < i′ < i, (Ap,N+3, i
′) |=p ϕ1. Either τ

Ap,N+3

i <

2 − p
N+3 , in which case we take j such that τ

Bp,N+3

j = τ
Ap,N+3

i + p
N+3 .

Lemma 2 second point implies that (Bp,N+3, j) |=p ϕ2. By Lemma 2 second
point, we get ∀0 < i′ < i, (Ap,N+3, i

′) |=p ϕ1 implies that ∀2 ≤ j′ < j,
(Bp,N+3, j

′) |=p ϕ1. The case j′ = 1 is obtained from (Ap,N+3, 1) |=p ϕ1

via Lemma 3. On the other hand, if τ
Ap,N+3

i ≥ 2 − p
N+3 , we take j = ı̌.

We have (Ap,N+3, i) |=p ϕ2, and by Lemma 2 first point, this raises that

(Bp,N+3, j) |=p ϕ2. The rest of the proof for τ
Ap,N+3

i ≥ 2− p
N+3 is identical

to the case τ
Ap,N+3

i < 2− p
N+3 .

Suppose that (Bp,N+3, 0) |=p ϕ. There exists a position j of Bp,N+3 such that

τ
Bp,N+3

j ∈ (2− p, 2), (Bp,N+3, j) |=p ϕ2 and ∀0 < j′ < j, (Bp,N+3, j
′) |=p ϕ1.

If j = 1, we take i = 1, Lemma 3 implies that (Ap,N+3, 1) |=p ϕ2. If j > 1,

τ
Bp,N+3

j > 2 − p + p
N+3 and we take i such that τ

Ap,N+3

i = τ
Bp,N+3

j − p
N+3 .

Lemma 2 second point raises (Ap,N+3, i) |=p ϕ2, and this same lemma gives
that ∀1 ≤ j′ < j, (Ap,N+3, j

′) |=p ϕ1. Thus (Ap,N+3, 0) |=p ϕ. �

26 Patricia Bouyer, Fabrice Chevalier and Nicolas Markey

B Proofs of Section 4

We show that the solutions of the system Sϕ are exactly the models satisfying ϕ,
i.e. that κ, t, α[x 7→ t] |= ϕ⇔ κ, t, α[x 7→ t] ⊢ Sϕ.

κ, t, α[x 7→ t] |= ϕ

⇔ ∃ v(y) ≥ t. κ, v(y) |=
l1∧

k=1

ak

∀ 1 ≤ k ≤ l2. v(y)− α[x 7→ t](xik) ∼k ck
∀ 1 ≤ k ≤ l3. κ, v(y), α[x 7→ t] |= xjk .F ψk

⇔ ∃ v(y) ≥ t. κ, v(y) |=
l1∧

k=1

ak

∀ 1 ≤ k ≤ l2. v(y)− α[x 7→ t](xik) ∼k ck
∀ 1 ≤ k ≤ l3. ∃ vk : Yk → [v(y),+∞).

κ, vk, α[x 7→ t, xjk 7→ v(y)] ⊢ Sxjk
.F ψjk

by IH

⇔ ∃ v(y) ≥ t. κ, v(y) |=
l1∧

k=1

ak

∀ 1 ≤ k ≤ l2. v(y)− α[x 7→ t](xik) ∼k ck
∃vk : Yk ∪ {y} → [t,+∞) s.t. vk(y) = v(y) and

κ, vk, α[x 7→ t, xjk 7→ v(y)] ⊢ Sxjk
.F ψjk

[xjk ← y]
because xjk is replaced by y and valuation vk associates to y v(y)
which is the value of xjk previously assigned by the context

⇔ ∃ v : Y → [t,+∞) (extending each vk) s.t. κ, v(y) |=
l1∧

k=1

ak

v(y)− α[x 7→ t](x) ≥ 0
∀ 1 ≤ k ≤ l2. v(y)− α[x 7→ t](xik) ∼k ck
∀ 1 ≤ k ≤ l3. κ, v, α[x 7→ t, xjk 7→ v(y)] ⊢ Sxjk

.F ψjk
[xjk ← y]

⇔ ∃ v : Y → [t,+∞). κ, v(y) |=
l1∧

k=1

ak

v(y)− α[x 7→ t](x) ≥ 0
∀ 1 ≤ k ≤ l2. v(y)− α[x 7→ t](xik) ∼k ck
∀ 1 ≤ k ≤ l3. κ, v, α[x 7→ t] ⊢ Sxjk

.F ψjk
[xjk ← y]

because xjk does not appear anymore in Sxjk
.F ψjk

[xjk ← y]

⇔ κ, t, α[x 7→ t] |= Sϕ

In fact, in the implications from bottom to top, one is harder to prove, namely
∃ vk : Yk ∪ {y} → [t,+∞) =⇒ ∃ vk : Yk → [v(y),+∞), because, a priori, vk
maps Yk to [t,+∞[. To show that, if y′ ∈ Yk, then vk(y

′) ≥ v(y), we will use this
straightforward lemma:

Lemma 6. Let ϕ = x.F (
∧l1
k=1 ak∧(

∧l2
k=1 xik ∼k ck)∧

∧l3
k=1 xjk .ϕjk). Let Sϕ(Y)

be the system constructed from ϕ (and y be the variable associated to x). Let κ,
v, α be such that κ, v, α[x 7→ t] ⊢ Sϕ. Then ∀ y′ ∈ Y. v(y′) ≥ v(y).

