
On the Expressiveness and Complexity of ATL†

François Laroussinie, Nicolas Markey, and Ghassan Oreiby?

LSV, CNRS & ENS Cachan, France
e-mail: {fl,markey,oreiby}@lsv.ens-cachan.fr

Abstract. ATL is a temporal logic geared towards the specification and
verification of properties in multi-agents systems. It allows to reason on
the existence of strategies for coalitions of agents in order to enforce a
given property. We prove that the standard definition of ATL (built on
modalities “Next”, “Always” and “Until”) has to be completed in order
to express the duals of its modalities: it is necessary to add the modality
“Release”. We then precisely characterize the complexity of ATL model-
checking when the number of agents is not fixed. We prove that it is ∆P

2-
and ∆P

3-complete, depending on the underlying multi-agent model (ATS
and CGS resp.). We also prove that ATL+ model-checking is ∆P

3-complete
over both models, even with a fixed number of agents.

1 Introduction

Model checking. Temporal logics were proposed for the specification of reactive
systems almost thirty years ago [16]. They have been widely studied and suc-
cessfully used in many situations, especially for model checking —the automatic
verification that a finite-state model of a system satisfies a temporal logic spec-
ification. Two flavors of temporal logics have mainly been studied: linear-time
temporal logics, e.g. LTL [16], which expresses properties on the possible execu-
tions of the model; and branching-time temporal logics, such as CTL [7, 17], which
can express requirements on states (which may have several possible futures) of
the model.

Alternating-time temporal logic. Over the last ten years, a new flavor of temporal
logics has been defined: alternating-time temporal logics, e.g. ATL [2, 3]. ATL is
a fundamental logic for verifying properties in synchronous multi-agent systems,
in which several agents can concurrently influence the behavior of the system.
This is particularly interesting for modeling control problems. In that setting, it
is not only interesting to know if something can arrive or will arrive, as can be
expressed in CTL or LTL, but rather if some agent(s) can control the evolution
of the system in order to enforce a given property.

The logic ATL can precisely express this kind of properties, and can for
instance state that “there is a strategy for a coalition A of agents in order to

† Work partially supported by ACI “Sécurité & Informatique” CORTOS, a program
of the French Ministry of Research.

? This author is supported by a PhD grant from Région Ile-de-France.

eventually reach an accepting state, whatever the other agents do”. ATL is an
extension of CTL, its formulae are built on atomic propositions and boolean
combinators, and (following the seminal papers [2, 3]) on modalities 〈〈A〉〉Xϕ
(coalition A has a strategy to immediately enter a state satisfying ϕ), 〈〈A〉〉Gϕ
(coalition A can force the system to always satisfy ϕ) and 〈〈A〉〉ϕUψ (coalition A
has a strategy to enforce ϕUψ).

Multi-agent models. While linear- and branching-time temporal logics are inter-
preted on Kripke structure, alternating-time temporal logics are interpreted on
models that incorporate the notion of multiple agents. Two kinds of synchronous
multi-agent models have been proposed for ATL in the literature. First Alternat-
ing Transition Systems (ATSs)[2] have been defined: in any location of an ATS,
each agent chooses one move, i.e., a subset of locations (the list of possible moves
is defined explicitly in the model) in which he would like the execution to go
to. When all the agents have made their choice, the intersection of their choices
is required to contain one single location, in which the execution enters. In the
second family of models, called Concurrent Game Structures (CGSs) [3], each
of the n agents has a finite number of possible moves (numbered with integers),
and, in each location, an n-ary transition function indicates the state to which
the execution goes.

Our contributions. While in LTL and CTL, the dual of “Until” modality can be
expressed as a disjunction of “Always” and “Until”, we prove that it is not the
case in ATL. In other words, ATL, as defined in [2, 3], is not as expressive as one
could expect (while it is known that adding the dual of “Until” does not increase
the complexity of the verification problems [5, 9]).

We also precisely characterize the complexity of the model checking problem.
The original works about ATL provide model-checking algorithms in time O(m ·
l), where m is the number of transitions in the model, and l is the size of
the formula [2, 3], thus in PTIME. However, contrary to Kripke structures, the
number of transitions in a CGS or in an ATS is not quadratic in the number
of states [3], and might even be exponential in the number of agents. PTIME-
completeness thus only holds for ATS when the number of agents is bounded,
and it is shown in [11, 12] that the problem is strictly1 harder otherwise, namely
NP-hard on ATS and ΣP

2 -hard on CGSs where the transition function is encoded
as a boolean function. We prove that it is in fact ∆P

2 -complete and ∆P
3 -complete,

resp., correcting wrong algorithms in [11, 12] (the problem lies in the way the
algorithms handle negations). We also show that ATL+ is ∆P

3 -complete on both
ATSs and CGSs, even when the number of agents is fixed, extending a result
of [18]. Finally we study translations between ATS and CGS.

Related works. In [2, 3] ATL has been proposed and defined over ATS and CGS.
In [10] expressiveness issues are considered for ATL∗ and ATL. Complexity of

1 We adopt the classical hypothesis that the polynomial-time hierarchy does not col-
lapse, and that PTIME 6= NP. We refer to [15] for the definitions about complexity
classes, especially about oracle Turing machines and the polynomial-time hierarchy.

satisfiability is addressed in [9, 19]. Complexity results about model checking
(for ATL, ATL+, ATL∗) can be found in [3, 18]. Regarding control and game
theory, many papers have focused on this wide area; we refer to [20] for a survey,
and to its numerous references for a complete overview.

Plan of the paper. Section 2 contains the formal definitions that are used in the
sequel. Section 3 explains our expressiveness result, and Section 4 deals with the
model-checking algorithms. Due to lack of space, some proofs are omitted in this
article, but can be found in [13].

2 Definitions

2.1 Concurrent Game Structures and Alternating Transition
Systems

Definition 1. A Concurrent Game Structure (CGS for short) C is a 6-tuple
(Agt, Loc,AP, Lab,Mov,Edg) s.t:

– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– Loc and AP are two finite sets of locations and atomic propositions, resp.;
– Lab : Loc → 2AP is a function labeling each location by the set of atomic

propositions that hold for that location;
– Mov : Loc × Agt → P(N) r {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc × Nk → Loc, where k = |Agt|, is a (partial) function defining the

transition table. With each location and each set of moves of the agents, it
associates the resulting location.

The intended behaviour is as follows [3]: in a given location `, each player Ai

chooses one possible move mAi
in Mov(`, Ai) and the successor location is given

by Edg(`,mA1 , ...,mAk
). We write Next(`) for the set of all possible successor

locations from `, and Next(`, Aj ,m) for the restriction of Next(`) to locations
reachable from ` when player Aj makes the move m.

In the original works about ATL [2], the logic was interpreted on ATSs, which
are transition systems slightly different from CGSs:

Definition 2. An Alternating Transition System (ATS for short) A is a 5-tuple
(Agt, Loc,AP, Lab,Mov) where:

– Agt, Loc, AP and Lab have the same meaning as in CGSs;
– Mov : Loc×Agt→ P(P(Loc)) associate with each location ` and each agent a

the set of possible moves, each move being a subset of Loc. For each location `,
it is required that, for any Qi ∈ Mov(`, Ai),

⋂
i≤kQi be a singleton.

The intuition is as follows: in a location `, once all the agents have cho-
sen their moves (i.e., a subset of locations), the execution goes to the (only)
state that belongs to all the sets chosen by the players. Again Next(`) (resp.

Next(`, Aj ,m)) denotes the set of all possible successor locations (resp. the set
of possible successor locations when player Aj chooses the move m).

We prove in Section 4.2 that both models have the same expressiveness
(w.r.t. alternating bisimilarity [4]).

2.2 Strategy, outcomes of a strategy

Let S be a CGS or an ATS. A computation of S is an infinite sequence ρ =
`0`1 · · · of locations such that for any i, `i+1 ∈ Next(`i). We can use the stan-
dard notions of suffix and prefix for these computations; ρ[i] denotes the i-th
location `i. A strategy for a player Ai ∈ Agt is a function fAi

that maps any
finite prefix of a computation to a possible move for Ai

2. A strategy is state-based
(or memoryless) if it only depends on the current state (i.e., fAi

(`0 · · · `m) =
fAi(`m)).

A strategy induces a set of computations from ` —called the outcomes of fAi

from ` and denoted3 OutS(`, fAi)— that player Ai can enforce: `0`1`2 · · · ∈
OutS(`, fAi

) iff ` = `0 and for any i we have `i+1 ∈ Next(`i, Ai, fAi
(`0 · · · `i)).

Let A ⊆ Agt be a coalition. A strategy for A is a tuple FA containing one
strategy for every player in A: FA = {fAi

|Ai ∈ A}. The outcomes of FA from a
location ` contains the computations enforced by the strategies in FA: `0`1 · · · ∈
OutS(`, FA) s.t. ` = `0 and for any i, `i+1 ∈

⋂
Ai∈A Next(`i, Ai, fAi(`0 · · · `i)).

The set of strategies for A is denoted3 StratS(A). Finally OutS(`, ∅) represents
the set of all computations from `.

2.3 The logic ATL and some extensions

Again, we follow the definitions of [3]:

Definition 3. The syntax of ATL is defined by the following grammar:

ATL 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | Gϕs | ϕs Uψs.

where p ranges over the set AP and A over the subsets of Agt.

In addition, we use standard abbreviations like ⊥, F , etc. ATL formulae are in-
terpreted over states of a game structure S. The semantics of the main modalities
is defined as follows3:

` |=S 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(`, FA). ρ |=S ϕp,

ρ |=S Xϕs iff ρ[1] |=S ϕs,

ρ |=S Gϕs iff ∀i. ρ[i] |=S ϕs,

ρ |=S ϕs Uψs iff ∃i. ρ[i] |=S ψs and ∀0 ≤ j < i. ρ[j] |=S ϕs.

2 I.e., fAi(`0 · · · `m) ∈ Mov(`m, Ai).
3 We might omit to mention S when it is clear from the context.

It is well-known that, for the logic ATL, it is sufficient to restrict to state-based
strategies (i.e., 〈〈A〉〉ϕp is satisfied iff there is a state-based strategy all of whose
outcomes satisfy ϕp) [3, 18].

Note that 〈〈∅〉〉ϕp corresponds to the CTL formula Aϕp (i.e., universal quan-
tification over all computations issued from the current state), while 〈〈Agt〉〉ϕp

corresponds to existential quantification Eϕp. Note, however, that ¬ 〈〈A〉〉ϕp

is generally not equivalent to 〈〈Agt r A〉〉 ¬ϕp [3, 9]. Fig. 1 displays a (graph-
ical representation of a) 2-player CGS for which, in `0, both ¬ 〈〈A1〉〉X p and
¬ 〈〈A2〉〉 ¬X p hold. In such a representation, a transition is labeled with 〈m1.m2〉
when it correspond to move m1 of player A1 and to move m2 of player A2. Fig. 2
represents an (alternating-bisimilar) ATS with the same properties.

`0

p
`1

¬p
`′1

¬p
`′2

p
`2

〈1.1〉

〈1.2〉〈2.1〉

〈2.2〉

Fig. 1. A CGS that is not determined.

Loc = {`0, `1, `2, `′1, `′2}

Mov(`0, A1) = {{`1, `′1}, {`2, `′2}}
Mov(`0, A2) = {{`1, `′2}, {`2, `′1}}

with

{
Lab(`1) = Lab(`2) = {p}
Lab(`′1) = Lab(`′2) = ∅

Fig. 2. An ATS that is not determined.

Duality is a fundamental concept in modal and temporal logics: for instance,
the dual of modality U, often denoted by R and read release, is defined by

ϕs Rψs
def≡ ¬((¬ϕs) U (¬ψs)). Dual modalities allow, for instance, to put nega-

tions inner inside the formula, which is often an important property when ma-
nipulating formulas. In LTL, modality R can be expressed using only U and G:

ϕRψ ≡ Gψ ∨ ψU (ϕ ∧ ψ). (1)

In the same way, it is well known that CTL can be defined using only modalities
EX, EG and EU, and that we have

EϕRψ ≡ EGψ ∨ EψU (ϕ ∧ ψ) AϕRψ ≡ ¬E(¬ϕ) U (¬ψ).

We prove in the sequel that modality R cannot be expressed in ATL, as
defined in Definition 3. We thus define the following two extensions of ATL:

Definition 4. We define ATLR and ATL+ with the following syntax:

ATLR 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | ϕs Uψs | ϕs Rψs,

ATL+ 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp, ψp ::= ¬ϕp | ϕp ∨ ψp | Xϕs | ϕs Uψs | ϕs Rψs.

where p ranges over the set AP and A over the subsets of Agt.

Given a formula ϕ in one of the logics we have defined, the size of ϕ, denoted
by |ϕ|, is the size of the tree representing that formula. The DAG-size of ϕ is
the size of the directed acyclic graph representing that formula (i.e., sharing
common subformulas).

3 〈〈A〉〉 (aR b) cannot be expressed in ATL

This section is devoted to the expressiveness of ATL. We prove:

Theorem 5. There is no ATL formula equivalent to Φ = 〈〈A〉〉 (aR b).

The proof of Theorem 5 is based on techniques similar to those used for
proving expressiveness results for temporal logics like CTL or ECTL [8]: we build
two families of models (si)i∈N and (s′i)i∈N s.t. (1) si 6|= Φ, (2) s′i |= Φ for any i,
and (3) si and s′i satisfy the same ATL formula of size less than i. Theorem 5 is a
direct consequence of the existence of such families of models. In order to simplify
the presentation, the theorem is proved for formula4 Φ = 〈〈A〉〉 (bR (a ∨ b)).

The models are described by one single inductive CGS5 C, involving only
two players. It is depicted on Fig. 3. A label 〈α.β〉 on a transition indicates that

a
ai

a
si−1

a
ai−1

a
s1

a
a1

bbi bb1

a
si

a
s′i

a
s′i−1

a
s′1

¬a,¬b
s0〈3.1〉 〈3.1〉 〈3.1〉

〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈1.1〉 〈1.1〉

〈1.1〉

〈4.1〉

〈1.1〉

〈4.1〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

Fig. 3. The CGS C, with states si and s′i on the left

this transition corresponds to move α of player A1 and to move β of player A2.
In that CGS, states si and s′i only differ in that player A1 has a fourth possible
move in s′i. This ensures that, from state s′i (for any i), player A1 has a strategy
(namely, he should always play 4) for enforcing aW b. But this is not the case
from state si: by induction on i, one can prove si 6|= 〈〈A1〉〉 aW b. The base case
is trivial. Now assume the property holds for i: from si+1, any strategy for A1

starts with a move in {1, 2, 3} and for any of these choices, player A2 can choose
a move (2, 1, and 2, resp.) that enforces the next state to be si where by i.h.,
A1 has no strategy for aW b.

4 This formula can also be written 〈〈A〉〉 aW b, where W is the “weak until” modality.
5 Given the translation from CGS to ATS (see Sec. 4.2), the result also holds for ATSs.

We now prove that si and s′i satisfy the same “small” formulae. First, we
have the following equivalences:

Lemma 6. For any i > 0, for any ψ ∈ ATL with |ψ| ≤ i:

bi |= ψ iff bi+1 |= ψ si |= ψ iff si+1 |= ψ s′i |= ψ iff s′i+1 |= ψ

Lemma 7. ∀i > 0, ∀ψ ∈ ATL with |ψ| ≤ i: si |= ψ iff s′i |= ψ.

Proof. The proof proceeds by induction on i, and on the structure of the for-
mula ψ. The case i = 1 is trivial, since s1 and s′1 carry the same atomic proposi-
tions. For the induction step, dealing with CTL modalities (〈〈∅〉〉 and 〈〈A1, A2〉〉)
is also straightforward, then we just consider 〈〈A1〉〉 and 〈〈A2〉〉 modalities.

First we consider 〈〈A1〉〉 modalities. It is well-known that we can restrict to
state-based strategies in this setting. If player A1 has a strategy in si to enforce
something, then he can follow the same strategy from s′i. Conversely, if player A1

has a strategy in s′i to enforce some property, two cases may arise: either the
strategy consists in playing move 1, 2 or 3, and it can be mimicked from si. Or
the strategy consists in playing move 4 and we distinguish three cases:

– ψ = 〈〈A1〉〉Xψ1: that move 4 is a winning strategy entails that s′i, ai and bi
must satisfy ψ1. Then si (by i.h. on the formula) and si−1 (by Lemma 6)
both satisfy ψ1. Playing move 1 (or 3) in si ensures that the next state will
satisfy ψ1.

– ψ = 〈〈A1〉〉Gψ1: by playing move 4, the game could end up in si−1 (via bi),
and in ai and s′i. Thus si−1 |= ψ, and in particular ψ1. By i.h., si |= ψ1,
and playing move 1 (or 3) in si, and then mimicking the original strategy
(from s′i), enforces Gψ1.

– ψ = 〈〈A1〉〉ψ1 Uψ2: a strategy starting with move 4 implies s′i |= ψ2 (the
game could stay in s′i for ever). Then si |= ψ2 by i.h., and the result follows.

We now turn to 〈〈A2〉〉 modalities: clearly if 〈〈A2〉〉ψ1 holds in s′i, it also
holds in si. Conversely, if player A2 has a (state-based) strategy to enforce some
property in si: If it consists in playing either 1 or 3, then the same strategy also
works in s′i. Now if the strategy starts with move 2, then playing move 3 in s′i
has the same effect, and thus enforces the same property. �

Remark 1. ATL and ATLR have the same distinguishing power as the fragment
of ATL involving only the 〈〈 · 〉〉X modality (see proof of Theorem 6 in [4]).
This means that we cannot exhibit two models M and M ′ s.t. (1) M |= Φ,
(2) M ′ 6|= Φ, and (3) M and M ′ satisfy the same ATL formula.

Though ATL+ would not contain the “release” modality in its syntax, it can
express it, and is thus strictly more expressive than ATL. However, as for CTL
and CTL+, it is possible to translate ATL+ into ATLR [10]. Of course, such a
translation induces at least an exponential blow-up in the size of the formulae
since it is already the case when translating CTL+ into CTL [21, 1]. Finally note
that the standard model-checking algorithm for ATL easily extends to ATLR (and
that Mocha [5] handles ATLR formulae). In the same way, the axiomatization
and satisfiability results of [9] can be extended to ATLR (as mentioned in the
conclusion of [9]).

Turn-based games. In [3], a restriction of CGS —the turn-based considered.
In any location of these models (named TB-CGS hereafter), only one player has
several moves (the other players have only one possible choice). Such models have
the property of determinedness (if the objectives are Borel-definable, which is
the case for ATL+): given a set of players A, either there is a strategy for A to win
some objective Φ, or there is a strategy for other players (Agt\A) to enforce ¬Φ.
In such systems, modality R can be expressed as follows: 〈〈A〉〉ϕRψ ≡TB-CGS

¬ 〈〈Agt\A〉〉 (¬ϕ) U (¬ψ).

4 Complexity of ATL model-checking

In this section, we establish the precise complexity of ATL model-checking. All
the complexity results below are stated for ATL but they are also true for ATLR.

Model-checking issues have been addressed in the seminal papers about ATL,
on both ATSs [2] and CGSs [3]. The time complexity is shown to be in O(m · l),
where m is the size of the transition table and l is the size of the formula. The
authors then claim that the model-checking problem is in PTIME (and obviously,
PTIME-complete). However, it is well-known (and already explained in [2, 3])
that the size m of the transition table may be exponential in the number of
agents. Thus, when the transition table is not given explicitly (as is the case for
ATS), the algorithm requires in fact exponential time.

Before proving that this problem is indeed not in PTIME, we define the model
of implicit CGSs, with a succinct representation of the transition table [11].
Besides the theoretical aspect, it may be quite useful in practice since it allows
to not explicitly describe the full transition table.

4.1 Explicit and implicit CGSs

We distinguish between two classes of CGSs:

Definition 8. • An implicit CGS is a CGS where, in each location `, the transi-
tion function is defined by a finite sequence ((ϕ0, `0), ..., (ϕn, `n)), where `i ∈ Loc
is a location, and ϕi is a boolean combination of propositions Aj = c that evaluate
to true iff agent Ai chooses move c.

The transition table is then defined as follows: Edg(`,mA1
, ...,mAk

) = `j iff
j is the lowest index s.t. ϕj evaluates to true when players A1 to Ak choose
moves mA1 to mAk

. We require that the last boolean formula ϕi be >, so that
no agent can enforce a deadlock.
• An explicit CGS is a CGS where the transition table is defined explicitly.

The size |C| of a CGS C is defined as |Loc|+ |Edg|. For explicit CGSs, |Edg| is
the size of the transition table. For implicit CGSs, |Edg| is the sum

∑
|ϕ| used

for the definition of Edg.
The size of an ATS is |Loc|+ |Mov| where |Mov| is the sum of the number of

locations in each possible move of each agent in each location.

4.2 Expressiveness of CGSs and ATSs

We prove in this section that CGSs and ATSs are closely related: they can model
the same concurrent games. In order to make this statement formal, we use the
following definition, which extends bisimulation to strategies of coalitions:

Definition 9 ([4]). Let A and B be two models of concurrent games (either
ATSs or CGSs) over the same set Agt of agents. Let R ⊆ LocA × LocB be a
(non-empty) relation between states of A and states of B. That relation is an
alternating bisimulation when, for any (`, `′) ∈ R, the following conditions hold:

– LabA(`) = LabB(`′);
– for any coalition A ⊆ Agt, we have

∀m : A→ MovA(`, A). ∃m′ : A→ MovB(`′, A).

∀q′ ∈ Next(`′, A,m′). ∃q ∈ Next(`, A,m). (q, q′) ∈ R.

– symmetrically, for any coalition A ⊆ Agt, we have

∀m′ : A→ MovB(`′, A). ∃m : A→ MovA(`, A).

∀q ∈ Next(`, A,m). ∃q′ ∈ Next(`′, A,m′). (q, q′) ∈ R.

where Next(`, A,m) is the set of locations that are reachable from ` when each
player Ai ∈ A plays m(Ai).

Two models are said to be alternating-bisimilar if there exists an alternating
bisimulation involving all of their locations.

It turns out that ATSs and CGSs (both implicit and explicit ones) have the
same expressive power w.r.t. this equivalence:

Theorem 10. 1. Any explicit CGS can be translated into an alternating-bisimilar
implicit one in linear time; 2. Any implicit CGS can be translated into an
alternating-bisimilar explicit one in exponential time; 3. Any explicit CGS can
be translated into an alternating-bisimilar ATS in cubic time; 4. Any ATS can
be translated into an alternating-bisimilar explicit CGS in exponential time;
5. Any implicit CGS can be translated into an alternating-bisimilar ATS in expo-
nential time; 6. Any ATS can be translated into an alternating-bisimilar implicit
CGS in quadratic time;

Figure 4 summarizes the above results. From our complexity results (and the
assumption that the polynomial-time hierarchy does not collapse), the costs of
the above translations is optimal.

4.3 Model checking ATL on implicit CGSs.

Basically, the algorithm for model-checking ATL [2, 3] is similar to that for CTL:
it consists in recursively computing fixpoints, e.g. based on the following equiv-
alence:

〈〈A〉〉 pU q ≡ µZ.(q ∨ (p ∧ 〈〈A〉〉XZ))

ATS

explicit CGS implicit CGS

ex
pon

en
tia

l

cu
bic

quadratic

exponential
linear

exponential

Fig. 4. Costs of translations between the three models

The difference with CTL is that we have to compute the pre-image of a set of
states for some coalition.

It has been remarked in [11] that computing the pre-images is not in PTIME
anymore when considering implicit CGSs: the algorithm has to non-deterministi-
cally guess the moves of players in A in each location, and for each pre-image, to
solve the resulting SATqueries derived from those choices and from the transition
table. As a consequence, model-checking ATL on implicit CGSs is ΣP

2 -hard [11].
However (see below), the ΣP

2 -hardness proof can very easily be adapted to prove
ΠP

2 -hardness. It follows that the ΣP
2 algorithm proposed in [11] cannot be correct.

The flaw is in the way it handles negation: games played on CGSs (and ATSs) are
generally not determined, and the fact that a player has no strategy to enforce ϕ
does not imply that the other players have a strategy to enforce ¬ϕ. It rather
means that the other players have a co-strategy to enforce ¬ϕ (see [9] for precise
explanations about co-strategies).

Still, the ΣP
2 -algorithm is correct for formulas whose main operator is not a

negation. As a consequence:

Proposition 11. Model checking ATL on implicit CGSs is in ∆P
3 .

Since the algorithm consists in labeling the locations with the subformulae it
satisfies, the above result holds even if we consider the DAG-size of the formula.

Before proving optimality, we briefly recall the ΣP
2 -hardness proof of [11]. It

relies on the following ΣP
2 -complete problem:

EQSAT2:

Input: two families of variables X = {x1, ..., xn} and Y = {y1, ..., yn}, a
boolean formula ϕ on the set of variables X ∪ Y .

Output: True iff ∃X. ∀Y. ϕ.

This problem can be encoded in an ATL model-checking problem on an im-
plicit CGS: the CGS has three states q1, q> and q⊥, and 2n agents A1, ..., An,
B1, ..., Bn, each having two possible choices in q1 and only one choice in q>
and q⊥. The transitions out of q> and q⊥ are self loops. The transitions from q1

are given by: δ(q1) = ((ϕ[xj ← (Aj ?
= 1), yj ← (Bj ?

= 1)], q>)(>, q⊥)).

Then clearly, the coalition A1, ..., An has a strategy for reaching q>, i.e.,
q1 |= 〈〈A1, ..., An〉〉X q>, iff there exists a valuation for variables in X s.t. ϕ is
true whatever B-agents choose for Y .

Now, this encoding can easily be adapted to the dual (thus ΠP
2 -complete)

problem AQSAT2, in which, with the same input, the output is the value of
∀X. ∃Y. ϕ. It suffices to consider the same implicit CGS, and the formula
¬ 〈〈A1, ..., An〉〉X¬q>. It states that there is no strategy for players A1 to An

to avoid q>: whatever their choice, players B1 to Bn can enforce ϕ.
Following the same idea, we prove the following result:

Proposition 12. Model checking ATL on implicit CGSs is ∆P
3 -hard.

Proof. We consider the following ∆P
3 -complete problem[14, 18].

SNSAT2:

Input: m families of variables Xi = {x1i , ..., xni }, m families of variables Yi =
{y1i , ..., yni }, m variables zi, m boolean formulae ϕi, with ϕi involving
variables in Xi ∪ Yi ∪ {z1, ..., zi−1}.

Output: The value of zm, defined by
z1

def
= ∃X1. ∀Y1. ϕ1(X1, Y1)

z2
def
= ∃X2. ∀Y2. ϕ2(z1, X2, Y2)

. . .

zm
def
= ∃Xm. ∀Ym. ϕm(z1, ..., zm−1, Xm, Ym)

We pick an instance I of this problem, and reduce it to an instance of the ATL
model-checking problem. Note that such an instance uniquely defines the values
of variables zi. We write vI : {z1, ..., zm} → {>,⊥} for this valuation. Also, when
vI(zi) = >, there exists a witnessing valuation for variables in Xi. We extend vI
to {z1, ..., zm} ∪

⋃
iXi, with vI(xji) being a witnessing valuation if vI(zi) = >.

We now define an implicit CGS C as follows: it contains mn agents Aj
i (one

for each xji), mn agents Bj
i (one for each yji), m agents Ci (one for each zi), and

one extra agent D. The structure is made of m states qi, m states qi, m states si,
and two states q> and q⊥. There are three atomic propositions: s> and s⊥, that
label the states q> and q⊥ resp., and an atomic proposition s labeling states si.
The other states carry no label.

Except for D, the agents represent booleans, and thus always have two possi-
ble choices (0 and 1). Agent D always has m choices (0 to m−1). The transition
relation is defined as follows: for each i,

δ(qi) = ((>, si));
δ(si) = ((>, qi));
δ(q>) = ((>, q>));

δ(q⊥) = ((>, q⊥));

δ(qi) =



((D
?
= 0) ∧ ϕi[x

j
i ← (Aj

i
?
= 1),

yji ← (Bj
i

?
= 1), zk ← (Ck

?
= 1)], q>)

((D
?
= 0), q⊥)

((D
?
= k) ∧ (Ck

?
= 1), qk) for each k < i

((D
?
= k) ∧ (Ck

?
= 0), qk) for each k < i

(>, q>)



Intuitively, from state qi, the boolean agents choose a valuation for the variable
they represent, and agent D can either choose to check if the valuation really
witnesses ϕi (by choosing move 0), or “challenge” player Ck, with move k < i.

The ATL formula is built recursively by ψ0 = > and, writing AC for the coali-

tion {A1
1, ..., A

n
m, C1, ..., Cm}: ψk+1

def
= 〈〈AC〉〉 (¬s) U (q> ∨ EX (s ∧ EX¬ψk)).

Let fI(A) be the state-based strategy for agent A ∈ AC that consists in play-
ing according to the valuation vI (i.e. move 0 if the variable associated with A
evaluates to 0 in vI , and move 1 otherwise). The following lemma completes the
proof of Proposition 12:

Lemma 13. For any i ≤ m and k ≥ i, the following three statements are
equivalent: (a) C, qi |= ψk; (b) the strategies fI witness the fact that C, qi |= ψk;
(c) variable zi evaluates to > in vI . �

Finally, Lemma 13 and Proposition 11, this implies:

Theorem 14. Model checking ATL on implicit CGSs is ∆P
3 -complete.

4.4 Model checking ATL on ATSs.

Also for ATSs, the PTIME upper bound holds only when the number of agents
is fixed. As in the previous section, the NP algorithm proposed in [11] for ATL
model-checking on ATSs does not handle negation correctly. Again, the algo-
rithm involves the fixpoint computation with pre-images, and the pre-images
are now computed in NP [11]. This yields a ∆P

2 algorithm for full ATL.

Proposition 15. Model checking ATL over ATSs is in ∆P
2 .

The NP-hardness proof of [11] can be adapted in order to give a direct re-
duction of 3SAT, and then extended to SNSAT:

Proposition 16. Model checking ATL on ATSs is ∆P
2 -hard.

Proof. Let us first recall the definition of the SNSAT problem [14]:

SNSAT:

Input: p families of variables Xr = {x1r, ..., xmr }, p variables zr, p boolean
formulae ϕr in 3-CNF, with ϕr involving variables in Xr ∪ {z1, ..., zr−1}.

Output: The value of zp, defined by

z1
def
= ∃X1. ϕ1(X1)

z2
def
= ∃X2. ϕ2(z1, X2)

z3
def
= ∃X3. ϕ3(z1, , z2, X3)

. . .

zp
def
= ∃Xp. ϕp(z1, ..., zp−1, Xp)

Let I be an instance of SNSAT, where we assume that each ϕr is made of n
clauses S1

r to Sn
r , with Sj

r = αj,1
r sj,1r ∨αj,2

r sj,2r ∨αj,3
r sj,3r . Again, such an instance

uniquely defines a valuation vI for variables z1 to zr, that can be extended to
the whole set of variables by choosing a witnessing valuation for x1r to xnr when
zr evaluates to true.

We now describe the ATS A: it contains (8n + 3)p states: p states qr and p
states qr, p states sr, and for each formula ϕr, for each clause Sj

r of ϕr, eight
states qj,0r , ..., qj,7r , as in the previous reduction.

States sr are labeled with the atomic proposition s, and states qj,kr that do
not correspond to clause Sj

r are labeled with α.
There is one player Aj

r for each variable xjr, one player Cr for each zr, plus
one extra player D. As regards transitions, there are self-loops on each state qj,kr ,
single transitions from each qr to the corresponding sr, and from each sr to the
corresponding qr. From state qr,

– player Aj
r will choose the value of variable xjr, by selecting one of the following

two sets of states:

{qg,kr | ∀l ≤ 3. sg,lr 6= xjr or αg,l
r = 0} ∪ {qt, qt | t < r} if xjr = >

{qg,kr | ∀l ≤ 3. sg,lr 6= xjr or αg,l
r = 1} ∪ {qt, qt | t < r} if xjr = ⊥

Both choices also allow to go to one of the states qt or qt. In qr, players Aj
t

with t 6= r have one single choice, which is the whole set of states.
– player Ct also chooses for the value of the variable it represents. As for

players Aj
r, this choice will be expressed by choosing between two sets of

states corresponding to clauses that are not made true. But as in the proof
of Prop. 12, players Ct will also offer the possibility to “verify” their choice,
by going either to state qt or qt. Formally, this yields two sets of states:

{qg,kr | ∀l ≤ 3. sg,lr 6= zt or αg,l
r = 0} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = >

{qg,kr | ∀l ≤ 3. sg,lr 6= zt or αg,l
r = 1} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = ⊥

– Last, player D chooses either to challenge a player Ct, with t < r, by choos-
ing the set {qt, qt}, or to check that a clause Sj

r is fulfilled, by choosing
{qj,0r , ..., qj,7r }.

Let us first prove that any choices of all the players yields exactly one state.
It is obvious except for states qr. For a state qr, let us first restrict to the choices
of all the players Aj

r and Cr, then:

– if we only consider states q1,0r to qn,7r , the same argument as in the previous
proof ensures that precisely on state per clause is chosen,

– if we consider states qt and qt, the choices of players Bt ensure that exactly
one state has been chosen in each pair {qt, qt}, for each t < r.

Clearly, the choice of player D will select exactly one of the remaining states.

Now, we build the ATL formula. It is a recursive formula (very similar to the
one used in the proof of Prop. 12), defined by ψ0 = > and (again writing AC for
the set of players {A1

1, ..., A
m
p , C1, ..., Cp}):

ψr+1
def
= 〈〈AC〉〉 (¬s) U (α ∨ EX (s ∧ EX¬ψr)).

Then, writing fI for the state-based strategy associated to vI :

Lemma 17. For any r ≤ p and t ≥ r, the following statements are equivalent:
(a) qr |= ψt; (b) the strategies fI witness the fact that qr |= ψt; (c) variable zr
evaluates to true in vI . �

Theorem 18. Model checking ATL on ATSs is ∆P
2 -complete.

4.5 Model checking ATL+

�6

The complexity of model checking ATL+ over ATSs has been settled ∆P
3 -complete

in [18]. But ∆P
3 -hardness proof of [18] is in LOGSPACE only w.r.t. the DAG-size of

the formula. We prove that model checking ATL+ is in fact ∆P
3 -complete (with

the standard definition of the size of a formula) for our three kinds of game
structures.

Theorem 19. Model checking ATL+ is ∆P
3 -complete on ATSs as well as on

explicit CGSs and implicit CGSs.

5 Conclusion

In this paper, we considered the basic questions of expressiveness and complexity
of ATL. We showed that ATL, as originaly defined in [2, 3], is not as expressive
as it could be expected, and we argue that the modality “Release” should be
added in its definition [12].

We also precisely characterized the complexity of ATL and ATL+ model-
checking, on both ATSs and CGSs, when the number of agents is not fixed.
These results complete the previously known results about these formalisms and
it is interesting to see that their complexity classes (∆P

2 or ∆P
3) are unusual in

the model-checking area.
As future works, we plan to focus on the extensions EATL (extending ATL

with a modality 〈〈 · 〉〉
∞
F expressing a Büchi-like winning condition, and for which

state-based strategies are still sufficient) and EATL+ (the obvious association of
both extensions, but for which state-based strategies are not sufficient anymore).

Acknowledgement. We thank Wojtek Jamroga for pointing out that formulas
in SNSAT2 cannot be restricted to CNF [6].

References

1. M. Adler and N. Immerman. An n! lower bound on formula size. In Proceedings of
the 16th Annual Symposium on Logic in Computer Science (LICS’01), p. 197–206.
IEEE CSP, 2001.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proc. 38th Annual Symp. Foundations of Computer Science (FOCS’97), p. 100–
109. IEEE CSP, 1997.

6 Erratum (added 2017/07/04): Theorem 19 is wrong (and so are the correspond-
ing claims in [18]). While ATL+ can indeed be translated into ATL, it is not the
case that it admits state-based strategies, which is the key of the algorithm. Model
checking ATL+ is actually PSPACE-complete, as shown in [Wang, Schewe, Huang.
An Extension of ATL with Strategy Interaction. ACM ToPLaS 37(3:9), 2015].

3. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J.
ACM, 49(5):672–713, 2002.

4. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In Proc. 9th Intl Conf. Concurrency Theory (CONCUR’98), vol. 1466
of LNCS, p. 163–178. Springer, 1998.

5. R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. Mocha: Modularity in model checking. In Proc. 10th Intl Conf. Com-
puter Aided Verification (CAV’98), vol. 1427 of LNCS, p. 521–525. Springer, 1998.

6. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified
boolean formulae. Journal of Automated Reasoning, 28(2):101–142, 2002.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronous skeletons
using branching-time temporal logic. In Proc. 3rd Workshop Logics of Programs
(LOP’81), vol. 131 of LNCS, p. 52–71. Springer, 1981.

8. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, vol. B, chapter 16, p. 995–1072. Elsevier, 1990.

9. V. Goranko and G. van Drimmelen. Complete axiomatization and decidability of
alternating-time temporal logic. Theoretical Computer Science, 353(1-3):93–117,
Mar. 2006.

10. A. Harding, M. Ryan, and P.-Y. Schobbens. Approximating ATL∗ in ATL. In
Revised Papers 3rd Intl Workshop Verification, Model Checking, and Abstract In-
terpretation (VMCAI’02), vol. 2294 of LNCS, p. 289–301. Springer, 2002.

11. W. Jamroga and J. Dix. Do agents make model checking explode (computa-
tionally)? In Proc. 4th Intl Centr. and East. Europ. Conf. Multi-Agent Systems
(CEEMAS’05), vol. 3690 of LNCS. Springer, 2005.

12. W. Jamroga and J. Dix. Model checking abilities of agents: A closer look. Tech-
nical Report IfI-06-02, Institut für Informatik, Technische Universität Clausthal,
Germany, 2006.

13. F. Laroussinie, N. Markey, and G. Oreiby. Expressiveness and complexity of ATL.
Technical Report LSV-06-03, Lab. Spécification & Vérification, ENS Cachan,
France, 2006.

14. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL+ and FCTL
is hard. In Proc. 4th Intl Conf. Foundations of Software Science and Computation
Structure (FoSSaCS’01), vol. 2030 of LNCS, p. 318–331. Springer, 2001.

15. Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
16. A. Pnueli. The temporal logic of programs. In Proc. 18th Ann. Symp. Foundations

of Computer Science (FOCS’77), p. 46–57. IEEE Comp. Soc. Press, 1977.
17. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Proc. 5th Intl Symp. on Programming (SOP’82), vol. 137 of LNCS, p.
337–351. Springer, 1982.

18. P.-Y. Schobbens. Alternating-time logic with imperfect recall. In Proc. 1st Work-
shop Logic and Communication in Multi-Agent Systems (LCMAS’03), vol. 85 of
ENTCS. Elsevier, 2004.

19. D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. ATL satisfiability is indeed
EXPTIME-complete. Journal of Logic and Computation, 2006. To appear.

20. I. Walukiewicz. A landscape with games in the background. In Proc. 19th Ann.
Symp. Logic in Computer Science (LICS’04), p. 356–366. IEEE CSP, 2004.

21. Th. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th
Conf. Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’99), vol. 1738 of LNCS, p. 110–121. Springer, 1999.

