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Abstract. Network congestion games are a simple model for reasoning
about routing problems in a network. They are a very popular topic in
algorithmic game theory, and a huge amount of results about existence
and (in)efficiency of equilibrium strategy profiles in those games have
been obtained over the last 20 years.
In particular, the price of anarchy has been defined as an important notion
for measuring the inefficiency of Nash equilibria. Generic bounds have
been obtained for the price of anarchy over various classes of networks,
but little attention has been put on the effective computation of this value
for a given network. This talk presents recent results on this problem in
different settings.

1 Atomic network congestion games

Congestion games have been introduced by Rosenthal in 1973 [28,29] as a model
for reasoning about traffic-routing or resource-sharing problems [27,36]. Network
congestion games [22,30] are played by n players on a weighted graphG = ⟨V,E, l⟩,
where l labels the edges of G with non-decreasing functions (called latency
functions): each player has to select a route in this graph from their source state
to their target state; for each edge they use, they have to pay l(k), where k is
the total number of players using the same edge. These games are called atomic
as opposed to non-atomic ones, where each player can route arbitrarily-small
parts of their load along different paths. In the sequel, we focus on the symmetric
setting, where all players have the same source- and target vertices.

Example 1. Figure 1 represents an atomic network congestion game: it is made
of a graph, with a state s0 as the source state of the four players (represented
by the four tokens in that state), and s1 as their target state. Edges s0 → l and
r → s1 are labelled with the identity function k 7→ k, meaning that the cost
of using each of these edges is equal to the number of players using it; in this
example, the cost of the other edges is a constant.

Figure 2 displays a round of this game, where one player takes the path
πl : s0 → l → s1, and the other three take πr : s0 → r → s1; the cost for the
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Fig. 1. An example of
a congestion game with
four players.
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Fig. 2. One player going
to s1 via l, and three play-
ers via r.
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Fig. 3. One player going
via l, one via r, and two
using the transverse edge.

former player is 6, while it is 8 for the other three. Figure 3 shows another profile
of strategies, with one player taking πl, one player taking πr, and the remaining
two using πlr : s0 → l → r → s1. In that case, edges s0 → l and r → s1 are used
by three players, hence they have a cost of 3; the first two players thus have to
pay 8, while the cost for the other two is 7. ◁

In symmetric atomic network congestion games, all agents are indistinguish-
able. A strategy profile can thus be represented as a vector p = (pπ)π∈Paths, where
Paths is the set of all paths from source to target, and pπ is the number of players
selecting path π in that profile. For a strategy profile p = (pπ)π∈Paths and a path ρ,
we write p+ ρ to denote the strategy profile obtained from p by incrementing pρ;
p − ρ is defined similarly, assuming that ρ occurs in p. The flow of a strategy
profile p is the vector flow(p) = (qe)e∈E such that for each edge e, qe is the number
of players using edge e in the profile p. The cost a following path ρ in a strategy
profile p is then defined as costp(ρ) =

∑
e∈ρ l(qe). The social cost of a strategy

profile is then defined as follows: cost(p) =
∑

ρ∈Paths pρ ·costp(ρ) =
∑

e∈E qe · l(qe).

In congestion games, two kinds of behaviours of the players are of particular
interest:

– the social optima, which minimise the total cost of the whole set of players:
formally, p is a social optimum if cost(p) is less than or equal to cost(p′) for
any profile p′;

– the Nash equilibria, which correspond to selfish behaviours, each player aiming
at minimising their individual cost given the strategies of the other players:
formally, p is a Nash equilibrium if for any ρ occurring in p and any ρ′,
it holds costp(ρ) ≤ costp+ρ′−ρ(ρ

′).

Social optima represent collaborative behaviours that would be played if the
players had to share the total cost, while Nash equilibria correspond to selfish
behaviours.



Example 1 (contd). Consider again the network congestion game of Fig. 1. It is
easy to check that the social optimum is achieved when two players take πl and
the other two take πr: the total cost is 28.

Finding Nash equilibria is more difficult. First notice that the social optimum
obtained above is not a Nash equilibrium: if one of the players taking πl decided
to take πlr, their cost would be 6 instead of 7. (Notice that this does not improve
the social optimum since the two players taking πr would see their cost increase).

The strategy profile of Fig. 3 is a Nash equilibrium: it can be checked that
no players can lower their cost by switching to another path; the total cost
(also called social cost) of this Nash equilibrium is 30. Notice that another Nash
equilibrium exists in this game: when all the players take πlr, each of them pays
a cost of 9, and switching to one of the other two paths would give the same cost;
the social cost of this Nash equilibrium is 36. ◁

In his seminal papers [28,29], Rosenthal shows that congestion games always
admit Nash equilibria, by exhibiting a potential function, which decreases when
any player individually switches to a better strategy. As shown in Example 1,
Nash equilibria are in general not unique, and they may have different social
costs. Koutsoupias and Papadimitriou defined the price of anarchy as the ratio
between the social cost of the worst Nash equilibrium and the social optimum [23]:
it measures how bad selfish behaviours can be compared to an optimal collabora-
tive solution. Symmetrically, with a more optimistic point of view, the price of
stability is the ratio between the best Nash equilibrium and the social optimum,
and measures the minimal cost of moving from a collaborative solution to a
selfish one [2].

An impressive amount of results have been obtained about (network) conges-
tion games during the last 25 years:

– numerous variations on the model have been studied: atomic vs. non-atomic
players [32], weighted players [16] with splittable or unsplittable flows [31],
sequential or simultaneous choices [26], ... Several restrictions on the graphs
have been used to obtain certain results, such as series-parallel graphs [15,19]
or graphs with only parallel links [23,25]. Mixed-strategy Nash equilibria
have also been been considered, see e.g. [10,25].

– the complexity of computing some Nash equilibrium has been studied. Since
Nash equilibria always exist and are made of one path per player, the problem
is in TFNP; it is actually in FPTIME if all players have the same source and
target states, and PLS-complete otherwise [14]. The existence of a Nash
equilibrium whose social cost lies below (resp. above) a given threshold
(which is the decision problem associated to the computation of a best
(resp. worst) Nash equilibrium) is NP-complete [34], even for series-parallel
graphs. We call this problem constrainted Nash-equilibrium problem in the
sequel;

– in some cases, the price of anarchy can be proven to be bounded, independently
of the graph: this is the case for instance in atomic network congestion
games with linear latency functions, where the price of anarchy can be at



most 5/2 [6,10]; under the series-parallel restriction, the price of anarchy is
bounded by 2 [19].

2 Computing the prices of anarchy and stability

In contrast to the topics listed above, the problem of computing the prices of
anarchy and stability of a given network has received little attention [11,12].
We address this problem by developing techniques to compute best and worst
Nash equilibria and social optima for atomic network congestion games in three
different settings: first, for series-parallel networks with linear latency functions,
we compute a representation of Nash equilibria and social (local) optima for
any number of players; second, in a more dynamic (sometimes called sequential)
setting where the players can adapt their route along the way, for piecewise-affine
latency functions, we develop an exponential-space algorithm for solving the
constrained Nash-equilibrium problem; third, we extend these results to timed
network games.

2.1 Series-parallel networks with linear latency functions

Using the notations above, we see strategy profiles as |Paths|-dimensional vec-
tors (pπ)π∈Paths, and their associated flows as |E|-dimensional vectors (qe)e∈E .

The flow of the social optima are the flows (qe)e∈E such that
∑

e∈E qe · l(qe)
is minimal over all flows. As we assume that l is linear, we get a quadratic
expression to minimize, which is intractable. Instead, we focus on social local
optima, which are only optimal among the profiles obtained by changing a single
strategy. We prove that a flow (qe)e∈E is locally optimal if, and only if, for all
paths ρ and ρ′ such that qe > 0 for all e ∈ ρ, it holds

for all ρ, ρ′, if qe > 0 for all e ∈ ρ, then
∑

e∈ρ\ρ′

l(2qe − 1) ≤
∑

e∈ρ′\ρ

l(2qe + 1).

Similarly, flows of Nash equilibria p characterized as vectors (qe)e∈E satisfying

for all ρ, ρ′, if ρ ∈ p, then
∑

e∈ρ\ρ′

l(qe) ≤
∑

e∈ρ′\ρ

l(qe + 1).

It follows:

Theorem 2 ([8,33]). For any atomic network congestion game G with linear
latency functions, the sets SLO(G) of all social local optima, and NE(G) of all
Nash equilibria, as well as the sets of corresponding flows, are semi-linear [17].

When restricting to series-parallel graphs (which are graphs obtained from the
trivial single-edge graph by series- and parallel compositions) [35]), we can prove
that both sets of flows expand in a unique direction δ: in other terms, they can
be written as B ∪

⋃
i∈Ik≥0 bi + k · δ, for finite sets B and I.
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Fig. 4. Evolution of prices of anarchy and stability as a function of the number of
players

One consequence of this is that, in our setting, the prices of anarchy and
stability converges to 1 when the number of players tends to infinity. It also
allows us to compute finite representations of the sets of all social local optima
and Nash equilibria, which in turn can be used to compute the prices of anarchy
and stability. Figure 4 displays an example of such a computation on a 4-path
example for up to 30 players.

2.2 Dynamic network congestion games

Dynamic network congestion games are a refined version of network congestion
games with two main changes: first, the number of players using a given edge is
now measured synchronously, considering that the load of an edge depends on
time [20,3]; second, the players do not choose simple paths but adaptive (pure)
strategies, that depend on the other players’ past moves: this provides a way of
reacting to strategy deviations during the course of the game [26,5,13].

Example 1 (contd). Consider again the network congestion game of Example 1,
and in particular the strategy profile of Figure 3: the edge r → s1 is used
by strategies πr and πlr, but considering that the players move synchronously,
this edge is traversed at the second step in πr and at the third step in πlr; there
is no congestion effect between the single player following path πr and the two
players following πlr; in that case, all three of them will pay a cost of 6.

Strategies may now depend on what the other players have been playing
(but the players are still anonymous). Considering again the example of Fig. 3,
the players can now decide to go to l, and depending on the number of players
in l and in r, choose to go directly to s1 or take the edge l → r. ◁

We call blind strategies the special case of strategies that we used in the
previous section, which follow a single path independently of the other players’
moves. We prove:



Theorem 3 ([7,33]). Any dynamic network congestion game admits a (blind)
Nash equilibrium.

This is proven in two steps: using a potential function inspired from that of [28,29],
we prove that dynamic network congestion games admit blind Nash equilibria
(considering only blind deviations); we then prove that blind Nash equilibria are
also plain Nash equilibria.

Actually, there exist networks in which there are more Nash equilibria in
the dynamic setting than in the classical one. Figure 5 displays an example of a
network congestion game in which, for three players, there is a Nash equilibrium
with social cost 36, while all blind Nash equilibria have cost at least 37 [7,33].
It follows that the price of anarchy is in general higher (and the price of stability
is lower) in the dynamic setting than when restricting to blind strategies.
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Fig. 5. A network congestion game in which blind Nash equilibria are sub-optimal

Since Nash equilibria always exist, the prices of anarchy and stability are
always defined. They can be computed by solving the constrained social-optimum
(resp. Nash equilibrium) problem, which asks whether some strategy profile (resp.
Nash equilibrium) has social cost satisfying a given linear inequality.

Theorem 4 ([7,33]). The constrained social-optimum problem can be solved
in polynomial space. The constrained Nash-equilibrium problem can be solved in
exponential space. The prices of anarchy and stability of a given atomic network
congestion game can be computed in exponential space.

Notice that such complexity results cannot be achieved by just building the explicit
game on the graph of configurations, since this graph would have size |V |n (with n
given in binary).

In this dynamic setting, it is usually more relevant to consider subgame-perfect
equilibria, which rule out non-credible threats. It is open whether subgame perfect
always exist in dynamic network congestion games. Adapting techniques developed
in [9], we get:

Theorem 5 ([7,33]). The constrained subgame-perfect-equilibrium problem can
be solved in double-exponential time.



3 Timed network games

Several works have proposed to add a real-time dimension to network congestion
games. In some of those extensions, congestion affects time (instead of cost),
with the aim of minimizing the total time to reach the target state [21,20,24].
For the case where congestion affects the cost, the class of timed network games
is introduced in [3,4]: following the semantics of timed automata [1], in a timed
network game the players can decide to take a transition, or to spend time in
the state they are visiting. Transitions are immediate and have no cost, but
their availability depends on time; states are decorated with latency functions
indicating the cost for spending one time unit in that state, as a function of the
load of that state.

Example 6. Figure 6 represents a timed network game: vertices are labelled with
their latency functions, and edges are decorated with intervals indicating the
time at which they can be traversed.

src
x 7→ 5x

s1
x 7→ x

s2
x 7→ 3x

tgt

x 7→ 1

s3
x 7→ 10x+ 6

s4
x 7→ x

s5
x 7→ 3x

[2, 3]
[4]

[5]

[1, 2] [2, 3]

[2, 3]
[4]

[5]

[4]

[4]

Fig. 6. Example of a timed network game

An example of a (blind) strategy π1 in that timed network game consists in
letting 1.3 time units elapse in src, then go to state s3, and go to tgt at time 2.
Another example π2 could propose to stay in src until time 4, then go to s5, and
reach tgt at time 5.

If two players follow those strategies π1 and π2, the first one will have a total
cost of 24.2 (namely, (5× 2)× 1.3 + (10× 1 + 6)× 0.7) when entering tgt, while
the second one will have a total cost of 29.5 (in details, (5× 2)× 1.3 + (5× 1)×
2.7 + (3× 1)× 1). ◁

In this framework, boundary blind strategies, which are blind strategies that
always take transitions at one of the boundaries of their timing constraints,
have been identified as an important subclass of strategies: any timed network
game has a boundary social optimum, and a boundary Nash equilibrium (among
blind strategies). However, best and worst blind Nash equilibria need not be
boundary [3].



Focusing on the computation of best and worst Nash equilibria, the results of
the previous section can be extended in discrete time, for non-blind strategies, as
follows:

Theorem 7 ([18]). In discrete-time timed network games, the constrained
social-optimum problem can be solved in polynomial space, and the constrained
Nash-equilibrium problem can be solved in exponential space. The prices of anar-
chy and stability of a given timed network game can be computed in exponential
space.
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