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Abstract. We study two-player timed games where the objectives of the two
players are not opposite. We focus on the standard notion of Nash equilibrium and
propose a series of transformations that builds two finite turn-based games out
of a timed game, with a precise correspondence between Nash equilibria in the
original and in final games. This provides us with an algorithm to compute Nash
equilibria in two-player timed games for large classes of properties.

1 Introduction

Timed games. Game theory (especially games played on graphs) has been used in
computer science as a powerful framework for modelling interactions in embedded
systems [15, 12]. Over the last fifteen years, games have been extended with the ability
to depend on timing informations, taking advantage of the large development of timed
automata [1]. Adding timing constraints allows for a more faithful representation of
reactive systems, while preserving decidability of several important properties, such as
the existence of a winning strategy for one of the agents to achieve her goal, whatever
the other agents do [3]. Efficient algorithms exist and have been implemented, e.g. in the
tool Uppaal-Tiga [4].

Zero sum vs. non-zero sum games. In this purely antagonist view, games can be seen as
two-player games, where one agent plays against another one. Moreover, the objectives
of those two agents are opposite: the aim of the second player is simply to prevent the
first player from winning her own objective. More generally, a (positive or negative)
payoff can be associated with each outcome of the game, which can be seen as the
amount the second player will have to pay to the first player. Those games are said to be
zero-sum.

In many cases, however, games can be non-zero-sum: the objectives of the two
players are then no more complementary, and the aim of one player is no more to
prevent the other player from winning. Such games appear e.g. in various problems
in telecommunications, where the agents try to send data on a network [11]. Focusing
only on surely-winning strategies in this setting may then be too narrow: surely-winning
strategies must be winning against any behaviour of the other player, and do not consider
the fact that the other player also tries to achieve her own objective.
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ICT-STREP-214755) and GASICS (ESF-EUROCORES LogiCCC).



Nash equilibria. In the non-zero-sum game setting, it is then more interesting to look
for equilibria. One of the most-famous and most-studied notion of equilibrium is that
proposed by Nash in 1950 [13]: a Nash equilibrium is a behaviour of the players in
which they act rationally, in the sense that no player can get a better payoff if she, alone,
modifies her strategy [13]. Notice that a Nash equilibrium needs not exist in general, and
may not be optimal, in the sense that several equilibria can coexist, and may have very
different payoffs.
Our contribution. We extend the standard notion of Nash equilibria to timed games,
where non-determinism naturally arises and has to be taken into account. We propose
a whole chain of transformations that builds, given a two-player timed game, two turn-
based finite games which, in some sense that we will make precise, preserve Nash
equilibria. The first transformation consists in building a finite concurrent game with
non-determinism based on the classical region abstraction; the second transformation
decouples this concurrent game into two concurrent games, one per player: in each game,
the preference relation of one of the players is simply dropped, but we have to consider
“joint” equilibria. The last two transformations work on each of the two copies of the
concurrent game: the first one solves the non-determinism by giving an advantage to
the associated player, and the last one makes use of this advantage to build a turn-based
game equivalent to the original concurrent game. This chain of transformations is valid
for the whole class of two-player timed games, and Nash equilibria are preserved for a
large class of objectives, for instance !-regular objectives1. These transformations allow
to recover some known results about zero-sum games, but also to get new decidability
results for Nash equilibria in two-player timed games.
Related work. Nash equilibria (and other related solution concepts such as subgame-
perfect equilibria, secure equilibria, ...) have recently been studied in the setting of
(untimed) games played on a graph [7–9, 14, 16–19]. None of them, however, focuses on
timed games. In the setting of concurrent games, mixed strategies (i.e., strategies involv-
ing probabilistic choices) are arguably more relevant than pure (i.e., non-randomized)
strategies. However, adding probabilities to timed strategies involves several important
technical issues (even in zero-sum non-probabilistic timed games), and we defer the
study of mixed-strategy Nash equilibria in two-player timed games to future works.

For lack of space, proofs are omitted and can be found in the technical appendix.

2 Preliminaries

2.1 Timed games

A valuation over a finite set of clocks Cl is a mapping v : Cl→ ℝ+. If v is a valuation
and t ∈ ℝ+, then v + t is the valuation that assigns to each x ∈ Cl the value v(x)+t. If v
is a valuation and Y ⊆ Cl, then [Y ← 0]v is the valuation that assigns 0 to each y ∈ Y
and v(x) to each x ∈ Cl∖Y . A clock constraint over Cl is a formula built on the grammar:
ℭ(Cl) ∋ g ::= x ∼ c ∣ g ∧ g, where x ranges over Cl, ∼ ∈ {<,≤,=,≥, >}, and c is
an integer. The semantics of clock constraints over valuations is natural, and we omit it.

1 In the general case, the undecidability results on (zero-sum) priced timed games entail undecid-
ability of the existence of Nash equilibria.
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Definition 1. A timed automaton is a tuple ⟨Loc,Cl, Inv,Trans⟩ such that:

– Loc is a finite set of locations;
– Cl is a finite set of clocks;
– Inv : Loc→ ℭ(Cl) assigns an invariant to each location;
– Trans ⊆ Loc× ℭ(Cl)× 2Cl × Loc is the set of transitions.

We assume the reader is familiar with timed automata [1], and in particular with states
(pairs (ℓ, v) ∈ Loc × ℝX+ such that v ∣= Inv(ℓ)), runs (seen as infinite sequences of
states for our purpose), etc. We now define the notion of two-player timed games. The
two players will be called player 1 and player 2. Our definition follows that of [10].

Definition 2. A (two-player) timed game is a tuple G = ⟨Loc,Cl, Inv,Trans,Owner,
(≼1,≼2)⟩ where:

– ⟨Loc,Cl, Inv,Trans⟩ is a timed automaton;
– Owner : Trans→ {1, 2} assigns a player to each transition;
– for each i ∈ {1, 2}, ≼i ⊆

(
Loc× ℝCl

+

)! × (Loc× ℝCl
+

)!
is a quasi-order on runs

of the timed automaton, called the preference relation for player i.

A timed game is played as follows: from each state of the underlying timed automaton
(starting from an initial state s0 = (ℓ,0), where 0 maps each clock to zero), each player
chooses a nonnegative real number d and a transition �, with the intended meaning that
she wants to delay for d time units and then fire transition �. There are several (natural)
restrictions on these choices:

– spending d time units in ℓ must be allowed2 i.e., v + d ∣= Inv(ℓ);
– � = (ℓ, g, z, ℓ′) belongs to the current player (given by function Owner);
– the transition is firable after d time units (i.e., v + d ∣= g), and the invariant is

satisfied when entering ℓ′ (i.e., [z ← 0](v + d) ∣= Inv(ℓ′)).

When there is no such possible choice for a player (for instance if there is no transition
from ℓ belonging to that player), she chooses a special move, denoted by ⊥.

From a state (ℓ, v) and given a choice (m1,m2) for the two players, with mi ∈
(ℝ+×Trans)∪{⊥}, an index i0 such that di0 = min{di ∣ mi = (di, �i) and i ∈ {1, 2}}
is selected (non-deterministically if both delays are identical), and the corresponding
transition �i0 = (ℓ, g, z, ℓ′) is applied, leading to a new state (ℓ′, [z ← 0](v + di0)).
To ensure well-definedness of the above semantics we assume in the sequel that timed
games are non-blocking, that is, for any reachable state (ℓ, v), at least one player has an
allowed transition (this avoids that both players play the special action ⊥).

The outcome of such a game when players have fixed their various choices is a run
of the underlying timed automaton, that is an element of

(
Loc× ℝCl

+

)!
, and possible

outcomes are compared by each player using their preference relations. In the examples,
we will define the preference relation of a player by assigning a value (called a payoff )
to each possible outcome of the game, and the higher the payoff, the better the run in the
preference relation.

2 Formally, this should be written v + d′ ∣= Inv(ℓ) for all 0 ≤ d′ ≤ d, but this is equivalent to
having only v ∣= Inv(ℓ) and v + d ∣= Inv(ℓ) since invariants are convex.
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This semantics can naturally be formalized in terms of an infinite-state non-deter-
ministic concurrent game and strategies, that we will detail in the next section.

Example 1. We give an example of a timed game, that
we will use as a running example: consider the timed
game G on the right. When relevant the name of a transi-
tion is printed on the corresponding edge. Owners of the
transitions are specified as follows: player 1 plays with
plain edges, whereas player 2 plays with dotted edges.
On the right of these locations we indicate payoffs for
the two players (if a play ends up in ℓ1, player 1 gets
payoff 1, whereas player 2 gets payoff 0). Hence player 1
will prefer runs ending in ℓ1 or ℓ3 than runs ending in ℓ2.

ℓ0

(x≤1)

ℓ1 (1,0)

ℓ2 (0,1)

ℓ3 (1,1)

0<x<1 a
x:=0

0<x≤1 b

x:=0

x=1 c
x:=0

x:=0

x:=0

x:=0

2.2 Concurrent games

In this section we define two-player concurrent games, which we then use to encode the
formal semantics of timed games. A transition system is a 2-tuple S = ⟨States,Edg⟩
where States is a (possibly uncountable) set of states, and Edg ⊆ States × States
is the set of transitions. A path � in S is a non-empty sequence (si)0≤i<n (where n ∈
ℕ∪ {+∞}) of states of S such that (si, si+1) ∈ Edg for all i < n− 1. The length of �,
denoted by ∣�∣ is n− 1. The set of finite paths (also called histories in the sequel) of S is
denoted by3 HistS , the set of infinite paths (also called plays) of S is denoted by PlayS ,
and PathS = HistS ∪ PlayS is the set of paths of S. Given a path � = (si)0≤i<n and
an integer j ≤ ∣�∣, the j-th prefix of �, denoted by �≤j , is the finite path (si)0≤i<j+1. If
� = (si)0≤i<n is a history, we write last(�) = s∣�∣.

We extend the definition of concurrent games given e.g. in [2] with non-determinism:

Definition 3. A (two-player non-deterministic) concurrent game is a tuple G = ⟨States,
Edg,Act,Mov,Tab, (≼1,≼2)⟩ in which:

– ⟨States,Edg⟩ is a transition system;
– Act is a (possibly uncountable) set of actions;
– Mov : States× {1, 2} → 2Act ∖ {∅} is a mapping indicating the actions available

to each player in a given state;
– Tab : States×Act2 → 2Edg∖{∅} associates to each state and each pair of actions

the set of resulting edges. It is required that if (s′, s′′) ∈ Tab(s, (m1,m2)), then
s′ = s.

– for each i ∈ {1, 2}, ≼i ⊆ States!×States! is a quasi-order called the preference
relation for player i.

A deterministic concurrent game is a concurrent game where Tab(s, (m1,m2)) is a sin-
gleton for every s ∈ States and (m1,m2) ∈ Mov(s, 1)×Mov(s, 2). A turn-based game
is a concurrent game for which there exists a mapping Owner : States→ {1, 2} such
that, for every state s ∈ States, the set Mov(s, i) is a singleton unless Owner(s) = i.

3 For this and the following definitions, we explicitly mention the underlying transition system as
a subscript. In the sequel, we may omit this subscript when the transition system is clear from
the context.
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In a concurrent game, from some state s, each player i selects one action mi among
its set Mov(s, i) of allowed actions (the resulting pair (m1,m2) is called a move). This
results in a set of edges Tab(s, (m1,m2)), one of which is applied and gives the next
state of the game. In the sequel, we abusively write HistG , PlayG and PathG for the
corresponding set of paths in the underlying transition system of G. We also write
HistG(s), PlayG(s) and PathG(s) for the respective subsets of paths starting in state s.

Definition 4. Let G be a concurrent game, and i ∈ {1, 2}. A strategy for player i is
a mapping �i : HistG → Act such that �i(�) ∈ Mov(last(�), i) for all � ∈ HistG .
A strategy profile is a pair (�1, �2) where �i is a player-i strategy. We write StratiG for
the set of strategies of player i in G, and ProfG for the set of strategy profiles in G.

Notice that we only consider non-randomized (pure) strategies in this paper.
Let G be a concurrent game, i ∈ {1, 2}, and �i be a player i-strategy. A path � =

(sj)0≤j≤∣�∣ is compatible with the strategy �i if, for all k ≤ ∣�∣ − 1, there exists
a pair of actions (m1,m2) ∈ Act2 such that mj ∈ Mov(sk, j) for all j ∈ {1, 2},
mi = �i(�≤k), and (sk, sk+1) ∈ Tab(sk, (m1,m2)). A path � is compatible with
a strategy profile (�1, �2) whenever it is compatible with both strategies �1 and �2.
We write OutG,s(�i) (resp. OutG,s(�1, �2)) for the set of paths from s (also called
outcomes) in G that are compatible with strategy �i (resp. strategy profile (�1, �2)).
Notice that, in the case of deterministic concurrent games, a strategy profile has a single
infinite outcome. This might not be the case for non-deterministic concurrent games.

Given a move (m1,m2) and a new action m′ for player i, we write (m1,m2)[i 7→m′]
for the move (n1, n2) with ni = m′ and n3−i = m3−i. This notation is extended to
strategies in a natural way.

In the context of non-zero-sum games, several notions of equilibria have been defined.
We present a refinement of Nash equilibria towards non-deterministic concurrent games.

Definition 5. Let G be a concurrent game, and s be a state of G. A pseudo Nash
equilibrium in G from s is a tuple ((�1, �2), �) where (�1, �2) ∈ ProfG , and � ∈
Out(G,s)(�1, �2) is such that for all i ∈ {1, 2} and all �′i ∈ StratiG , it holds:

∀�′ ∈ Out(G,s)((�1, �2)[i 7→�′i]). �
′ ≼i �.

Such an outcome � is called a best play for the strategy profile (�1, �2).

In the case of deterministic games, � is uniquely determined by (�1, �2), and pseudo
Nash equilibria coincide with Nash equilibria as defined in [13]: they are strategy profiles
where no player has an incentive to unilaterally deviate from her strategy.

In the case of non-deterministic games, a strategy profile for an equilibrium may
give rise to several outcomes. The choice of playing the best play � is then made
cooperatively by both players: once both strategies are fixed, it is the interest of both
players to cooperate and play “optimally”.

2.3 Back to timed games

Two comments are in order here: (i) non-determinism in timed games could be dropped
by giving priority to one of the players, in case both of them play the same delay. Our
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algorithm could of course be adapted in this case; (ii) even if the timed game were
deterministic, our transformation to region games involves some extra non-determinism.
As will be seen in the sequel, the above notion of pseudo Nash equilibria is the notion
we need for our construction to preserve equilibria.

It is easy to see the semantics of a timed game as the semantics of an infinite-state
concurrent game (see Appendix A). Using that point-of-view, timed games inherit the
notions of history, play, path, strategy, profile, outcome and pseudo Nash equilibrium.
We illustrate some of these notions on the running example.

Example 1 (Cont’d). This game starts in configuration (ℓ0, 0) (clock x is set to 0). A
strategy profile is then determined by an initial choice for the first transition. If one of
the players choose some delay smaller than 1, she will have payoff 1 but the other player
will have payoff 0, hence the other player will be able to preempt this choice and choose
a smaller delay that will improve her own payoff. Hence there will be no such pseudo
Nash equilibrium. There is a single pseudo Nash equilibrium, where player 1 chooses
(1, c) (delay for 1 t.u. and take transition c) and player 2 chooses (1, b). The best play
for that strategy profile is the run taking transition c.

In this paper we will be interested in the computation of pseudo Nash equilibria
in timed games. To do so we propose a sequence of transformations that will preserve
equilibria (in some sense), yielding the construction of two turn-based finite games in
which the initial problem will be reduced to the computation of twin Nash equilibria. All
these transformations are presented in the next section. These transformations will also
give a new point-of-view on timed games, which we will use in Section 4.2 to recover
some decidability results. Many more results are expected.

3 From timed games to turn-based finite games

In this section we propose a chain of transformations of the timed game G into two
turn-based finite games, and reduce the computation of pseudo Nash equilibria in G
to the computation of ‘twin’ Nash equilibria in the two turn-based games. Notice that
we will have to impose restrictions on the preference relations: indeed, price-optimal
reachability is undecidable in two-player priced timed games, and these quantitative
objectives can be encoded as a payoff function, see [6] for details.

3.1 From timed games to concurrent games...

We assume the reader is familiar with the region automaton abstraction for timed
automata [1]. Let G = ⟨Loc,Cl, Inv,Trans,Owner, (≼1,≼2)⟩ be a timed game. Let ℜ
be the set of regions for the timed automaton underlying G, and �ℜ be the projection
over the regions ℜ (for configurations, runs, etc.) We define the region game ℛ =
⟨States,Edg,Act,Mov,Tab, (≼ℛ1 ,≼ℛ2 )⟩ as follows:

– States = {(ℓ, r) ∈ Loc×ℜ ∣ r ∣= Inv(ℓ)};
– Edg = {((ℓ, r), (ℓ′, r′)) ∣ (ℓ, r)→ (ℓ′, r′) in the region automaton of G};
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– Act = {⊥} ∪ {(r, �) ∣ r ∈ ℜ and � ∈ Trans};
– Mov : States× {1, 2} → 2Act ∖ {∅} such that:

Mov((ℓ, r), i) = {(r′, �) ∣ r′ ∈ Succ(r), r′ ∣= Inv(ℓ), � = (ℓ, g, Y, ℓ′) is s.t.
r′ ∣= g and [Y ← 0]r′ ∣= Inv(ℓ′) and Owner(�) = i}

if this set is non-empty, and Mov((ℓ, r), i) = {⊥} otherwise.
– Tab : States× Act2 → 2Edg ∖ {∅} such that for every (ℓ, r) ∈ States and every
(m1,m2) ∈ Mov((ℓ, r), 1) × Mov((ℓ, r), 2), if we write r′ for min{rj ∣ j ∈
{1, 2} and mj = (rj , �j)},4 then we have:

Tab((ℓ, r), (m1,m2)) = {((ℓ, r), (ℓj , [Yj ← 0]rj)) ∣ j ∈ {1, 2} and
mj = (rj , �j) with rj = r′, (ℓ, gj , Yj , ℓi) = �j and rj ∣= gj}

– The preference relation ≼ℛi for player i is defined by saying that  ≼ℛi ′ iff there
exists � and �′ such that �ℜ(�) = , �ℜ(�′) = ′ and � ≼i �′.

Note that the gameℛ is non-deterministic, even if the original timed game is not. Indeed,
non-determinism appears when players want to play delays leading to the same region.
The (relative) order of the choices for the delays chosen by the two players cannot be
distinguished by the region abstraction.

Definition 6. A preference relation ≼i is said to be region-uniform when for all plays �
and �′, if the sequence of regions seen in both paths are the same, then they are equivalent,
i.e. � ≼i �′ and �′ ≼i �.

Proposition 7. Let G be a timed game, and assume that the two preference relations of
G are region-uniform. Letℛ be its associated region game. Then there is a pseudo Nash
equilibrium in G from (ℓ0,0) with best play � iff there is a pseudo Nash equilibrium in
ℛ from (ℓ0, [0]ℜ) with best play �ℜ(�). Furthermore, this equivalence is constructive.

Example 1 (Cont’d). We illustrate the construction and the previous notions on the
running example. We write r0 (resp. r1, r2) for the region x = 0 (resp. 0 < x < 1,
x = 1). The region gameℛ is as depicted on Fig. 1. In this region game, there are two
non-deterministic transitions. First when the two players choose to wait until region r2,
in which case the game can turn to either ℓ2 or to ℓ3. Then when both players choose to
move within the region r1 (there is an uncertainty on whether player 1 or player 2 was
faster), and depending on who was faster, the game will move to either ℓ1 or ℓ2. The
first non-determinism is inherent to the game (and could be removed by construction
assuming one player is more powerful, see Subsection 2.3 for explanations), whereas the
second non-determinism is (somehow) artificial and comes from the region abstraction.

In G, there is a single pseudo Nash equilibrium, where both players wait until x = 1
(region r2), and propose to move respectively to ℓ3 (resp. ℓ2). The best play is then
(ℓ0, 0)(ℓ3, 0)

∗. This corresponds to the unique pseudo Nash equilibrium that we find in
the region game.

4 This is well-defined because both rj’s are time-successors of r.
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ℓ0,r0

ℓ1,r0 (1,0)

ℓ2,r0 (0,1)

ℓ3,r0 (1,1)

(r1,a),(r2,b)

(r1,a),(r1,b)

(r2,c),(r1,b)

(r2,c),(r2,b)

The transition table from (ℓ0, r0)
(i.e., Tab((ℓ0, r0), (m1,m2))):

m2 = (r1, b) m2 = (r2, b)

m1 = (r1, a) (ℓ1, r0),(ℓ2, r0) (ℓ1, r0)

m1 = (r2, c) (ℓ2, r0) (ℓ2, r0),(ℓ3, r0)

Fig. 1. The region game from our original automaton.

3.2 ... next to two twin concurrent games...

Given a concurrent non-deterministic finite game ℛ = ⟨States,Edg,Act,Mov,Tab,
(≼ℛ1 ,≼

ℛ
2 )⟩, we construct two concurrent games ℛ1 and ℛ2 where we simply forget

the preferences of one player. Formally for i ∈ {1, 2}, we define the game ℛi =
⟨States,Edg,Act,Mov,Tab, (≼i1,≼i2)⟩, where ≼ii is the quasi-order ≼i, and ≼i3−i is
the trivial quasi-order where all runs are equivalent.

Definition 8. A twin pseudo Nash equilibrium for the two gamesℛ1 andℛ2 is a tuple
((�ℛ1

1 , �ℛ1
2 ), (�ℛ2

1 , �ℛ2
2 ), �) such that ((�ℛ1

1 , �ℛ1
2 ), �) is a pseudo Nash equilibrium in

the game ℛ1 and ((�ℛ2
1 , �ℛ2

2 ), �) is a pseudo Nash equilibrium in the game ℛ2. We
furthermore say that � is a best play for the twin pseudo equilibrium.

We relate pseudo Nash equilibria inℛ with twin pseudo Nash equilibria inℛ1 andℛ2.
Note that we require best plays be the same, but not strategies.

Proposition 9. Let ℛ be the region game associated with some timed game G. Then
there is a pseudo Nash equilibrium in ℛ from s with best play  if and only if there is
a twin pseudo equilibrium for the corresponding games ℛ1 and ℛ2 from s with best
play . Furthermore this equivalence is constructive.

3.3 ... next to concurrent deterministic games...

We transform each gameℛi into a concurrent deterministic game Ci. Game Ci will give
priority to player i, in that it will be the role of player i to solve non-determinism. The
game Ci = ⟨States,Edg,Act′,Movi,Tabi, (≼i1,≼i2)⟩ is defined as follows:

– Act′ = Act ∪ ((Act ∖ {⊥})× {∙, ∘});
– Movi : States× {1, 2} → 2Act′ ∖ {∅} such that:

Movi(s, i) =

{
{⊥} if Mov(s, i) = {⊥}
Mov(s, i)× {∙, ∘} otherwise

Movi(s, 3− i) = Mov(s, 3− i)
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– Given (m1,m2) ∈ Mov(s, 1) × Mov(s, 2) we have that Tab(s, (m1,m2)) has at
least one element, and at most two elements.5

∙ In case it has only one element, then setting m′3−i = m3−i and picking m′i ∈
{(mi, ∙), (mi, ∘)}, we define: Tabi(s, (m′1,m′2)) = Tab(s, (m1,m2));
∙ In case it has two elements, say (s, s∙) and (s, s∘), one of them comes from a

transition of player i in G and the other comes from a transition of player 3− i
in G. Hence w.l.o.g. we can assume that (s, s∙) belongs to player i. We now
define m′3−i = m3−i and for any m′i ∈ {(mi, ∙), (mi, ∘)}, we define:

Tabi(s, (m′1,m
′
2)) =

{
{(s, s∙)} if m′i = (mi, ∙)
{(s, s∘)} if m′i = (mi, ∘)

By construction, the two games C1 and C2 are deterministic, and they share the same
structure. Only decisions on how to solve non-determinism are made by different players.
Our aim will be to compute equilibria in these two similar games.

Proposition 10. Assume Ci (with i ∈ {1, 2}) is the deterministic concurrent game
defined from the concurrent gameℛi. Then there is a pseudo Nash equilibrium inℛi
from s with best play  iff there is a Nash equilibrium in Ci from s with best play .6

Furthermore this equivalence is constructive.

Game C1

ℓ0,r0

ℓ1,r0 (1,0)

ℓ2,r0 (0,0)

ℓ3,r0 (1,0)

((r1,a),★),(r2,b)

((r1,a),∙),(r1,b)

((r1,a),∘),(r1,b)

((r2,c),★),(r1,b)

((r2,c),∘),(r2,b)

((r2,c),∙),(r2,b)

Game C2

ℓ0,r0

ℓ1,r0 (0,0)

ℓ2,r0 (0,1)

ℓ3,r0 (0,1)

(r1,a),((r2,b),★)

(r1,a),((r1,b),∘)

(r1,a),((r1,b),∙)

(r2,c),((r1,b),★)

(r2,c),((r2,b),∙)

(r2,c),((r2,b),∘)

Fig. 2. Two concurrent games C1 and C2 from our original automaton.

Example 1 (Cont’d). We build on the previous example, and give the two games C1
and C2 in Fig. 2. An action (m, ★) denotes either (m, ∙) or (m, ∘). There are several
Nash equilibria in game C1: one where the first player chooses ((r2, c), ∙) and the second
player chooses (r2, b), which leads to (ℓ3, r0) with payoff (1, 0); and one where both
players play a pair of actions leading to (ℓ1, r0), in which case the payoff is also (1, 0).

5 This is because the game G is non-blocking, and in this game, each player proposes her choice
for a transition, and one of these two transitions will be chosen.

6 Remember that Ci’s andℛi’s share the same structure and have the same runs.
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Similarly there are several Nash equilibria in game C2: one where the second player
chooses ((r2, b), ∘) and the first player chooses (r2, c), which leads to (ℓ3, r0) with
payoff (0, 1); the second one where both players play a pair of actions leading to (ℓ2, r0),
in which case the payoff is also (0, 1).

There is a single twin equilibrium in C1 and C2, namely the one leading to state
(ℓ3, r0), which coincides with those equilibria already found in G andℛ.

3.4 ... and finally to two turn-based games

In the (deterministic) concurrent game Ci, the advantage is given to player i, who has the
ability to solve non-determinism. We can give a slightly different interpretation to that
mechanism, which takes into account an interpretation of the new actions. Indeed, actions
have a timed interpretation in the original timed game, and can be ordered w.r.t. their
delay. Taking advantage of this order on actions, we build a turn-based game Ti.

Let Ci = ⟨States, s0,Edg,Act′,Movi,Tabi, (≼i1,≼i2)⟩ be the games obtained from
the previous construction. Let s ∈ States. We naturally order the set Movi(s, 1) ∪
Movi(s, 2) with a relation <s so that:

(i) if ⊥ ∈ Movi(s, 1) ∪Movi(s, 2) then ⊥ is maximal w.r.t. <s;
(ii) for every m ∈ Movi(s, j), there exists s′ ∈ States such that for every m′ ∈

Movi(s, 3− j), m <s m
′ implies Tabi(s, (m,m′)) = {(s, s′)}.

This is possible due to the definition of game Ci: when (r, �3−i) is allowed to player 3− i
from s, and ((r, �i), ∙) and ((r, �i), ∘) are allowed to player i from s, then the three
actions are totally ordered by <s as follows:7 ((r, �i), ∙) <s (r, �3−i) <s ((r, �i), ∘).
Intuitively an action with marker ∙ means that player i can play her own transition faster
than player 3− i can play her own transition, but also that she can decide to play more
slowly (role of action with marker ∘).

We can also define an equivalence relation =s compatible with this order, by saying
m =s m

′ ⇔ m,m′ ∈ Movi(s, 1) ∪Movi(s, 2), m ≮s m′ and m′ ≮s m. It is worth
noticing that m =s m

′ implies that they belong to the same player. This can be the case
if two transitions are available to a player from the same region, and also if a player
can only play action ⊥. We will write [m]s for the equivalence class associated to m.
We next say that [m]s belongs to player j whenever all actions in [m]s belong to player j.

Example 1 (Cont’d). Consider games C1 and C2 depicted in Fig. 2. In game C1, the order
on actions (written simply as <) from (ℓ0, r0) is given by:

((r1, a), ∙) < (r1, b) < ((r1, a), ∘)< ((r2, c), ∙)< (r2, b) < ((r2, c), ∘); ; ; ; ;

(ℓ1, r0) (ℓ2, r0) (ℓ1, r0) (ℓ3, r0) (ℓ2, r0)

Below each action we write the target state when this action is played, provided an
action smaller (for the order <) is not played by the other player. There is no target with
action ((r2, c), ∘) because it is always preempted by some ‘faster’ action (no ⊥ action is
available in our example).

In game C2, the order on actions (also written <) from (ℓ0, r0) is given by:
7 This is due to the fact that we have assumed edge (s, s∙) belong to player i, see the construction

of game Ci.
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((r1, b), ∙) < (r1, a) < ((r1, b), ∘)< ((r2, b), ∙)< (r2, c) < ((r2, b), ∘); ; ; ; ;

(ℓ2, r0) (ℓ1, r0) (ℓ2, r0) (ℓ2, r0) (ℓ3, r0)

We will take advantage of this order on actions to build turn-based games that will in
some sense be equivalent with the previous concurrent (deterministic) games. The idea
will be to take the smallest action(s) in the order, and ask the corresponding player
whether or not she wants to play that action; if yes, we proceed with this action in the
game, otherwise we do the same with the second action in the order until one of the
players plays her action; The meaning in the context of timed games is actually also
the following: we see that if the two players want to play in the same region, then in
game Ci the advantage of player i is that we first ask her whether she wishes to play
her action (role of action labelled with ∙), then if not, the other player will be asked to
decide whether she wants to play her own action, and finally, if not, we ask a last time
player i whether she wants to play her action (now she has the additional knowledge that
the other player didn’t choose her own action).

Formally we define the turn-based game Ti as follows: Ti = ⟨Statesi,Edgi,Act′ ∪
{del},Mov′i,Tab′i, (≼′

i
1,≼

′i
2)⟩ where:

– Statesi = {(s, [m]s) ∣ s ∈ States and m ∈ (Movi(s, 1) ∪Movi(s, 2)) ∖ {⊥}};
– The set Edgi is defined as follows:

Edgi = {((s, [m]s), (s, [m
′]s)) ∣ m′ ∕= ⊥ is next after m w.r.t. <s}

∪ {((s, [m]s), (s
′, [m′]s′)) ∣ {(s, s′)} = Tabi(s, (m,m′′))

for every m <s m
′′ and m′ is minimal w.r.t. <s′ from s′};

– The set of available actions is defined as follows:
∙ if [m]s belongs to player j, then we use the new action del (for delay):

Mov′i((s, [m]s), j) =

⎧⎨⎩Movi(s, j) ∩ [m]s if m is maximal w.r.t.
<s in Movi(s, j)

(Movi(s, j) ∩ [m]s) ∪ {del} otherwise
∙ if [m]s belongs to player 3− j, then Mov′i((s, [m]s), j) = {⊥}.

– The transition table is defined as follows:
∙ if [m]s belongs to player 1:⎧⎨⎩

Tab′i((s, [m]s), (m,⊥)) = {((s, [m]s), (s
′, [m′]s)) ∣ {(s, s′)} = Tabi(s, (m,m′′))

for every m <s m
′′ and m′ is minimal w.r.t. <s′ from s′}

Tab′i((s, [m]s), (del,⊥)) = {((s, [m]s), (s, [m
′]s)) ∣ m′ is next after m w.r.t. <s}

∙ the second case ([m]s belongs to player 2) is similar, just swap m or del with ⊥.
– In order to define the preference relations we first define a projection from plays in

the turn-based game Ti onto plays in the concurrent game Ci. Pick a run � in Ti, and
define its projection  i(�) in Ci as follows: if

� = (s1,m
1
1)(s1,m

2
1)...(s1,m

k1
1 )(s2,m

1
2)...(s2,m

k2
2 )...(sp,m

1
p)...(sp,m

kp
p )...

with m1
i minimal w.r.t. <si for every 1 ≤ i, then  (�) = s1s2 . . . sp . . . . The

preference relations are then defined according to this projection:
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�≼′ij�
′ ⇔  i(�) ≼ij  i(�

′)

Note that the game Ti is turn-based8 and that a state (s, [m]s) belongs to player j
such that m ∈ Movi(s, j) (as already mentioned this is independent of the choice of
m in [m]s). The structure of the turn-based games T1 and T2 are now slightly different
from that of the previous concurrent deterministic games C1 and C2.

Proposition 11. Let Ci (with i ∈ {1, 2}) be the previous deterministic concurrent game,
and let Ti be the associated turn-based game. There is a Nash equilibrium in Ci from s
with best play  i(�) iff there is a Nash equilibrium in Ti from (s, [m]s) with best play �,
where m is a minimal action w.r.t. <s. Furthermore this equivalence is constructive.

Example 1 (Cont’d). We build on our running example, and compute the corresponding
games T1 and T2. They are displayed on Fig. 3. Plain states and plain edges belong to

Game T1

(ℓ0,r0),((r1,a),∙)

(ℓ0,r0),(r1,b)

(ℓ0,r0),((r1,a),∘)

(ℓ0,r0),((r2,c),∙)

(ℓ0,r0),(r2,b)

(ℓ0,r0),((r2,c),∘)

(ℓ1,r0) (1,0)

(ℓ2,r0) (0,0)

(ℓ3,r0) (1,0)

((r1,a),∙),⊥

del,⊥

⊥,(r1 ,b)
⊥,del

((
r1
,a
),
∘)
,⊥

del,⊥

((r2 ,c),∙),⊥
del,⊥

(r
2
,b
),
⊥

Game T2

(ℓ0,r0),((r1,b),∙)

(ℓ0,r0),(r1,a)

(ℓ0,r0),((r1,b),∘)

(ℓ0,r0),((r2,b),∙)

(ℓ0,r0),(r2,c)

(ℓ0,r0),((r2,b),∘)

(ℓ1,r0) (0,0)

(ℓ2,r0) (0,1)

(ℓ3,r0) (0,1)

⊥
,((r

1 ,b),∙)

⊥,del
(r1

,a)
,⊥

del,⊥

⊥,((r1,b),∘)

⊥,del ⊥,(
(r2

,b)
,∙)

⊥,del

(r2,c),⊥

Fig. 3. Final turn-based games from our original timed game

player 1 whereas dotted states and dotted edges belong to player 2. We do recognize
here the various Nash equilibria that we described in the concurrent deterministic games,
and only one is “common” to both games, namely the one leading to (ℓ3, r0).

3.5 Summary of the construction

The following theorem summarizes our construction:

8 By construction, in any state (s, [m]s), one of Mov′i((s, [m]s), j) with j ∈ {1, 2} equals {⊥}.
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Theorem 12. Let G be a timed game with region-uniform preference relations. Assume
T1 and T2 are the two turn-based (deterministic) games constructed in this section.
Then, there is a pseudo Nash equilibrium in G from (ℓ0,0) with best play � iff there
are two Nash equilibria in T1 and T2 from ((ℓ0,0), [m](ℓ0,0)) with best plays �1 and �2
respectively, where m is a minimal action w.r.t. <(ℓ0,0), such that  1(�1) =  2(�2) =
�ℜ(�). Furthermore this equivalence is constructive.

Remark 1. The three-player game on the right has
several Nash equilibria, for instance player 1 (plain
arrows) chooses her transition at time 0.6, player 2
(dotted arrows) chooses her transition at time 0.7,
and player 3 (dashed arrows) chooses her transition
at time 0.8. If we build the region abstraction, each
player will have a single possible move (play her
transition in the region 0 < x < 1), and the game
will proceed by selecting non-deterministically one of them. There would be several
ways to extend the method developed in this paper to three players: have a copy of the
game for each player, assuming she plays against a coalition of the other players, or
have a copy of the game for each priority order given to the players. It is not hard to be
convinced that none of these choices will be correct on this example.

ℓ0

(x≤1)

ℓ1 (0,0,1)

ℓ2 (0,0,1)

ℓ3 (1,1,0)

0<x<1 a

0<x<1 b

0<x<1 c

4 Decidability results

4.1 Some general decidability results

We first need a representation for the preference relations (which must be region-uniform)
of both players. Let G = ⟨Loc,Cl, Inv,Trans,Owner, (≼1,≼2)⟩ be a two-player timed
game. We assume the preference relation for player i is given by a (possibly infinite)
sequence of linear-time objectives (
ij)j≥1 where it is better for a run to satisfy 
ij
than 
ik as soon as k > j (w.l.o.g. we assume that 
ij+1 implies ¬
il for all l ≤ j).
In other terms, the aim of player i is to minimize the index j for which the play belongs
to 
ij . These objectives include !-regular or LTL-definable objectives, and also more
quantitative objectives (for instance, given a distinguished goal state Goali ∈ Loc for
player i, by defining 
ij to be the set of traces visiting Goali in less than j steps.

We first need to (be able to) transfer objectives (and preference relations) to the two
turn-based games T1 and T2: a linear-time objective 
 in G is said to be transferable
to game Ti whenever we can construct an objective 
̂ such that for every run � in Ti,
� ∣= 
̂ iff for all � with �ℜ(�) =  i(�), � ∣= 
. It is said transferable whenever it
is transferable to both T1 and T2. For example, notice that (sequences of) stutter-free
region-uniform objectives are transferable.

Nash equilibria in game Ti will be rather easy to characterize since player 3− i will
never be enclined to deviate from her strategy (all runs are equivalent for her preference
relation). We assume all objectives
ij are transferable, and we writeW 3−i

i (j) for the set
of winning states in game Ti for player 3− i with the objective

⋀
1≤k<j

(
¬
̂ik

)
. Those

sets are computable for many classes of objectives. Then:
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Theorem 13. Let G be a timed game with preference relations given as transferable,
region-uniform, prefix-independent sequences (
ij)j of objectives. There is a pseudo
Nash equilibrium in G with payoff (
j1, 


k
2 ) iff there are two runs �1 in T1 and �2 in T2

s.t.9 (i) �1 ∣=
(
GW 2

1 (j)
)
∧ 
̂1

j , (ii) �2 ∣=
(
GW 1

2 (k)
)
∧ 
̂2

k , and (iii)  1(�1) =  2(�2).

Notice that this allows to handle !-regular (and LTL-definable) objectives by consid-
ering the product of the game with a suitable (deterministic) automaton.

The sequence of states (W 3−i
i (j))j≥1 in game Ti is non-increasing and hence

stationary (because Ti is finite-state). Hence there exist indices ℎ0 = 1 < ℎ1 < ℎ2 <
⋅ ⋅ ⋅ < ℎl such that the function j 7→ W 3−i

i (j) is constant on all intervals [ℎp, ℎp+1)
and on [ℎl,+∞). Those indices can be computed together with the corresponding sets
of winning states. Then the only possible equilibria in Ti are those such that there is a
run satisfying 
̂ij that stays furthermore within the set W 3−i

i (ℎp) if ℎp ≤ j < ℎp+1,
or within W 3−i

i (ℎl) if j ≥ ℎl. This can be done for instance if each player is given a
goal state Goali, and 
ij is “reach Goali in j steps”. In that case, W 3−i

i (ℎl) is the set of
states from which player 3− i can avoid Goali. Hence we can compute Nash equilibria
in two-player timed games where each player tries to minimize the number of steps to
the goal state. This allows to recover part of the results of [7] for two-player games.

4.2 Zero-sum games

Our chain of transformations also yields a new point-of-view on classical two-player
timed games with zero-sum objectives. In that case the preference relation of player 1 is
characterized by the sequence (
,¬
) whereas that of player 2 is characterized by the
sequence (¬
,
). In that case we say that the objective of player 1 is 
.

Theorem 14. Let G be a zero-sum timed game where player 1’s objective is 
, and is
assumed to be transferable. Then player 1 has a winning strategy in G from (ℓ,0) iff
player 1 has a winning strategy in game T2 from (ℓ, [0]) for the objective 
̂.

5 Conclusion

We have proposed a series of transformations of two-player timed games into two turn-
based finite games. These transformations reduce the computation of Nash equilibria in
timed games for a large class of objectives (the so-called region-uniform objectives) to
the computation of “twin” equilibria for related objectives in the two turn-based finite
games. We give an example on how this can be used to compute Nash equilibria in timed
games. In turn our transformations give a nice and new point-of-view on zero-sum timed
games, which can then be interpreted as a turn-based finite game.

Our method does not extend to n players. In [5], we have developed a completely
new approach that allows to compute Nash equilibria in timed games with an arbitrary
number of players but only for reachability objectives. We plan to continue working on
the computation of Nash equilibria in timed games with an arbitrary number of players.

9 G is the LTL modality for “always”.
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Another interesting research direction is the computation of other kinds of equilibria
in timed games (secure equilibria, subgame-perfect equilibria, etc). We believe that the
transformations that we have made in this paper are correct also for these other notions,
and that we can for instance reduce the computation of subgame-perfect equilibria to the
computation of subgame-perfect equilibria in the two turn-based finite games. A major
difference is that Theorem 13 has to be refined. Tree automata could be the adequate
tool for this problem [16].
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A Semantics of timed games

With a timed game G = ⟨Loc,Cl, Inv,Trans,Owner, (≼i)i=1,2⟩, we associate the
infinite concurrent game G′ = ⟨States,Edg,Act,Mov,Tab, (≼i)i=1,2⟩ such that

– the set of states is the set of configurations of the timed game: States = {(ℓ, v) ∣
ℓ ∈ Loc, v : Cl→ ℝ+ such that v ∣= Inv(ℓ)};

– s0 = (ℓ0,0) is the initial state;
– transitions give rise to set of edges Edg as follows: for each d ∈ ℝ+ and each
� = (ℓ, g, z, ℓ′) in Trans, for each (ℓ, v) ∈ States such that v + d ∣= Inv(ℓ) ∧ g,
there is an edge ((ℓ, v), (ℓ′, [z ← 0](v + d)));

– the set of actions is Act = {(d, �) ∣ d ∈ ℝ+, � ∈ Trans} ∪ {⊥};
– an action (d, �) is allowed to player i in state (ℓ, v) iff the following three conditions

hold:
∙ (ℓ, v + d) ∈ States;
∙ � = (ℓ, g, z, ℓ′) is such that Owner(�) = i;
∙ v + d ∣= g and [z ← 0](v + d) ∣= Inv(ℓ′).

Then Mov((ℓ, v), i) is the set of actions allowed to player i when this set is non
empty, and it is {⊥} otherwise;

– finally, given a state (ℓ, v) and moves (m1,m2) allowed from this state, Tab((ℓ, v), (m1,m2))
is the set{

((ℓ, v), (ℓ′, v′))
∣∣∣ ∃i.

di = min{dj ∣ j ∈ {1, 2} s.t. mj = (dj , �j)} and

�i = (ℓ, gi, zi, ℓ
′) and v′ = [zi ← 0](v + di)

}
.

Remark 2. In the following proofs, we write Tab for the transition table of the (infinite-
state) concurrent game which gives the semantic of the timed game G.

B Proof of Section 3.1

In this appendix we prove the correctness of the region gameℛ w.r.t. timed game G:

Proposition 7. Let G be a timed game, and assume that the two preference relations of
G are region-uniform. Letℛ be its associated region game. Then there is a pseudo Nash
equilibrium in G from (ℓ0,0) with best play � iff there is a pseudo Nash equilibrium in
ℛ from (ℓ0, [0]ℜ) with best play �ℜ(�). Furthermore, this equivalence is constructive.

To that aim, we define transformers of strategies in both directions and prove that
they preserve pseudo Nash equilibria.

We first extend the function Owner to each edge in G and inℛ in a natural way: if
� = (ℓ, g, Y, ℓ′) ∈ Trans and Owner(�) = j, then for every edge e = ((ℓ, v), (ℓ′, v′))
(resp. e = ((ℓ, r), (ℓ′, r′))) in G (resp.ℛ), we set Owner(e) = j.10

We define two partial functions f1, f2 : ℝCl
+ ×ℜ→ ℝ+ such that for every v ∈ ℝX+

and r ∈ ℜ, it holds v + fi(v, r) ∈ r for all i and f1(v, r) < f2(v, r) in case this is
possible, otherwise f1(v, r) = f2(v, r).
10 This is possible due to the assumption on G that there is at most one transition between two

locations in G.
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From timed game G to region gamesℛ. In this section, we prove that a pseudo Nash
equilibrium in G gives rise to a pseudo Nash equilibrium inℛ.

Pick a play � in G, and first define a reciprocal function to �R: for every history
 of ℛ, �−1R () is a history ℎ in G such that �R(ℎ) = ; furthermore, if  is a prefix
of �R(�), then we require ℎ to be a prefix of �. Notice that we have �R(�−1R ()) = 
but it may be the case that �−1R (�R(ℎ)) ∕= ℎ, unless ℎ is a prefix of �. Note also that this
choice depends on �, but we omit any indication of � in our notation.

If �i is a player-i strategy in G, we define the player-i strategy ��(�i) inℛ as follows:
for every history  inℛ,

– if �i(�−1R ()) = ⊥, then set ��(�i)() = ⊥;
– if �i(�−1R ()) = (d, �), then set ��(�i)() = (r, �), where r is the region corre-

sponding to valuation v + d if v is the clock valuation at the end of �−1R ().

Lemma 15. Let (�1, �2) be a strategy profile in game G. Then

�R(OutG(�1, �2)) ⊆ Outℛ(��(�1), ��(�2))

Proof. Let � ∈ OutG(�1, �2), we want to prove that the projection �R(�) is in the set
Outℛ(��(�1), ��(�2)). To that aim we prove that �R(�) follows the rules of the strategy
profile (��(�1), ��(�2)).

We have that11 e = (�=p, �=p+1) ∈ Tab(�=p, (m1,m2)) with mi = �i(�≤p),
which is equal to ⊥ or to some (di, �i). Let j = Owner(e). We have that dj = min{di ∣
mi ∕= ⊥}, and if, for every player i, we write ri for the region reached after delaying di
time units at the end of �≤p, we have that rj ≤ r3−j .

We have already noticed that �−1R (�R(�)≤p) = �≤p because it is a prefix of �.
Hence, for every player i, �i(�−1R (�R(�)≤p)) = �i(�≤p) = mi. Then, applying the
definition of ��(�i), we get that:

m′i
def
= ��(�i)(�R(�)≤p) =

{
(ri, �i) if mi ∕= ⊥
⊥ if mi = ⊥

The region rj is minimal among the regions proposed by the two players. We deduce
that

(�R(�)=p, �R(�)=p+1) ∈ Tab(�R(�)=p, (m′1,m
′
2))

⊓⊔

Lemma 16. If �i is a strategy of player i, then

Outℛ(��(�i)) ⊆ �R(OutG(�i))

Proof. For a play  in ℛ, and a history ℎ in G such that �R(ℎ) = ≤p, define v the
valuation of the clocks at the end of ℎ, and define di such that �i(�≤p) = (di, �i) and ri
the region corresponding to valuation v+ di. (=p, =p+1) ∈ Tab(=p, �(�i)(≤p)) so
there is mj = (rj , �j) or ⊥ such that (=p, =p+1) ∈ Tab(=p, ((ri, �i),mj))

11 We write �=p for the p-th state of �.
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– If mj = ⊥, then (ℎ=p, s) ∈ TabG(ℎ=p, ((di, �i),⊥)) with �R(s) = =p+1.
– Else
∙ assume that ri ∕= rj . Then (ℎ=p, s) ∈ TabG(ℎ=p, ((di, �i), (f1(v, rj), �j)))

with �R(s) = =p+1.
∙ assume that ri = rj . Then (ℎ=p, s) ∈ TabG(ℎ=p, ((di, �i), (di, �j))) with
�R(s) = =p+1.

In all cases (ℎ=p, s) ∈ TabG(ℎ=p, (di, �i)) with �R(s) = =p+1. There is a run � in
OutG(�i) such that �R(�) =  which is sufficient to get the result. ⊓⊔

The following lemma will imply one direction of Proposition 7:

Lemma 17. If ((�1, �2), �) is a pseudo Nash equilibrium in the timed game G, then
((��(�1), ��(�2)), �R(�)) is a pseudo Nash equilibrium inℛ.

Proof. Assume that ((�1, �2), �) is a pseudo Nash equilibrium in game G. Thanks to
Lemma 15, we know that �R(�) is a possible outcome of the profile (��(�1), ��(�2)).
We prove that ((��(�1), ��(�2)), �R(�)) is a pseudo Nash equilibrium in gameℛ.

Towards a contradiction assume that there is some player i which can improve
her strategy. Then there exists some outcome  ∈ Outℛ(��(�3−i)) with  ≻i �R(�).
Now due to Lemma 16 it is the case that  ∈ �R(OutG(�3−i)). There exists some
�′ ∈ OutG(�3−i) such that �R(�′) = . The preferences are invariant by region (and by
projection �R), which implies that �′ ≻i �. This contradicts the fact that (�1, �2, �) is a
pseudo Nash equilibrium.

Hence ((��(�1), ��(�2)), �R(�)) is a pseudo Nash equilibrium inℛ. ⊓⊔

From region gamesℛ to timed game G. Let  be a play inℛ. If �i is a player-i strategy
inℛ, we define the player-i strategy �−1 (�i) in G as follows: for every history ℎ in G,
letting (ℓ, v) be the last configuration of ℎ, we define:

– if �i(�R(ℎ)) = ⊥, then �−1 (�i)(ℎ) = ⊥;
– if �i(�R(ℎ)) = (r, �),
∙ if �R(ℎ) = ≤j is a prefix of , e = (=j , =j+1) and Owner(e) ∕= i, we set
�−1 (�i)(ℎ) = (f2(v, r), �);

∙ otherwise we set �−1 (�i)(ℎ) = (f1(v, r), �).

Lemma 18. Let (�1, �2) be a strategy profile in gameℛ.

If  ∈ Outℛ(�1, �2) then  ∈ �R(OutG(�−1 (�1), �
−1
 (�2)))

Proof. By hypothesis we have that e = (=p, =p+1) ∈ Tab(=p, (�1(≤p), �2(≤p))).
Let i = Owner(e). Then it is the case that �i(≤p) = (ri, �i) for some appropriate ri
and �i, and that �3−i(≤p) = (r3−i, �3−i) with �3−i > �i or �3−i(≤p) = ⊥.

By definition of �−1 , if v is the last valuation in ℎ, we have that �−1 (�i)(ℎ) =
(f1(v, ri), �i), and either �−1 (�3−i)(ℎ) = (fk(v, r3−i), �3−i) for some k ∈ {1; 2}, or
�−1 (�3−i)(ℎ) = ⊥. In all cases the transition �i is one that is selected. So there is a
transition e in TabG(�−1 (�1)(ℎ), �

−1
 (�1)(ℎ)) such that �R(e) = �i. This is enough to

get the result. ⊓⊔
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Lemma 19. Let �i be a player-i strategy in gameℛ. Then,

�R(OutG(�−1 (�i)) ⊆ Outℛ(�i)

Proof. Take � ∈ OutG(�−1 (�i)). mi = �i(�R(�≤p)) = (ri, �i) or ⊥, we have that
�−1 (�i)(�≤p) = (di, �i) or ⊥ where v + di ∈ ri if v is the clock valuation at the
end of �≤p. There is m3−i = (d3−i, �3−i) such that v + d3−i satisfies the constraints
on �3−i or in the case where �i(�R(�≤p)) ∕= ⊥ it is possible that there is no allowed
action for player 3− i, in which case m3−i = ⊥. Either di ≤ d3−i (or m3−i = ⊥) and
�=p+1 = (li, [zi ← 0](v+ di)) where �i = (l, gi, zi, li), or di ≥ d3−i (or mi = ⊥) and
�=p+1 = (l3−i, [z3−i ← 0](v+d3−i)) where �3−i = (l, g3−i, z3−i, l3−i). We will write
r3−i the region corresponding to the valuation v + d3−i, we have that (r3−i, �3−i) ∈
Mov3−i(�R(�=p)). There are three cases :

– If di < d3−i or m3−i = ⊥, then ri ≤ r3−i and ((l, r), (li, [zi ← 0]ri)) ∈
Tab((l, r), ((ri, �i),m3−i)).

– If d3−i < di or mi = ⊥, then r3−i ≤ ri and ((l, r), (l3−i, [z3−i ← 0]r3−i)) ∈
Tab((l, r), (mi, (r3−i, �3−i))).

– Else dj = di, rj = ri and both transitions belongs to Tab((l, r), ((ri, �i), (rj , �j))).

In all the cases we get that �R(�=p, �=p+1) ∈ Tab(�R(�=p), (mi,m3−i)). ⊓⊔

We are now ready to prove this next lemma, which will imply the second implication
of Proposition 7.

Lemma 20. If ((�1, �2), ) is a pseudo Nash equilibrium inℛ, then ((�−1 (�1), �
−1
 (�2)),

�−1R ()) is a pseudo Nash equilibrium in G.

Proof. Assume that (�1, �2, ) is a pseudo Nash equilibrium in ℛ. Assume however
that (�−1 (�1), �

−1
 (�2)) is not a pseudo Nash equilibrium in G. This means that for

every play � in OutG(�−1 (�1), �
−1
 (�2)), there is i ∈ {1, 2} such that there is �i a

strategy for i in G and some �′ ∈ OutG(�−1 (�3−i), �i) with �′ ≻i �.
We have that  ∈ �R(OutG(�−1 (�1), �

−1
 (�2)) (due to Lemma 18). Assume how-

ever that (�−1 (�1), �
−1
 (�2), �

−1
R ()) is not a pseudo-Nash equilibrium in G. This

means that there is i ∈ {1, 2} and some �′ ∈ OutG(�−1 (�3−i)) with �′ ≻i �−1R ().
Now applying Lemma 19, it is the case that �R(�′) ∈ Outℛ(�3−i). As the preference
relation is invariant by region, we get that �R(�′) ≻i �R(�). This contradicts the fact
that (�1, �2, ) is a pseudo-Nash equilibrium inℛ.

Thus, (�−1 (�1), �
−1
 (�2), �

−1
R ()) is a pseudo Nash equilibrium in G. ⊓⊔

C Proof of Section 3.2

In this section, we prove the correspondence bitween pseudo Nash equilibria inℛ and
twin pseudo Nash equilibria inℛ1 andℛ2:

Proposition 9. Let ℛ be the region game associated with some timed game G. Then
there is a pseudo Nash equilibrium in ℛ from s with best play  if and only if there is
a twin pseudo equilibrium for the corresponding games ℛ1 and ℛ2 from s with best
play . Furthermore this equivalence is constructive.
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To establish this result, we first prove the following property on gameℛ:

Property (★): If (s, s′) ∈ Tab(s, (m1,m2)) ∩ Tab(s, (m′1,m′2)), then there exists
(m′′1 ,m

′′
2) ∈ Mov(s, 1)×Mov(s, 2) such that:⎧⎨⎩(s, s′) ∈ Tab(s, (m′′1 ,m′′2))

Tab(s,m′′1) ⊆ Tab(s,m′1)
Tab(s,m′′2) ⊆ Tab(s,m2)

where Tab(s,mj) = {(s, s′) ∣ ∃m3−j ∈ Mov(s, 3−j). (s, s′) ∈ Tab(s, (mj ,m3−j))}.
This property expresses that if two different moves lead to the same state, we can

choose one that is more restrictive in terms of possible outcomes. In timed game, this
corresponds to choose the shortest delay.

Lemma 21. The region game constructed in subsection 3.1 satisfies Property (★).

Proof. First notice that there is a partial order on the set of actions Act defined by:
(r, �) ≤ (r′, �′) is r = r′ or r′ is a time successor of r, and (r, �) ≤ ⊥ (we will also
say that (r, �) < (r′, �′) if (r, �) ≤ (r′, �′) and r ∕= r′). We will write t((l, r), (r1, �1))
for the transition ((l, r), (l′, r′)) where �1 = (l, g1, Y1, l

′), r1 is a region succussor of
r satisfying the constraint g1 and r′ = [Y1 ← 0]r1. We can notice that if mi,m

′
i ∈

Mov(s, i) is such that mi ≤ m′i, then Tab(s,mi) ⊆ Tab(s,m′i) ∪ t(s,mi).
Now assume that there is (s, s′) ∈ Tab(s, (m1,m2))∩Tab(s, (m′1,m′2)). If r1 ≤ r′1

and t(s,m1) = (s, s′) then take m′′1 = m1, otherwise take m′′1 = m′1. This insure that
Tab(s,m′′1) ⊆ Tab(s,m′1). We do the same for m′′2 , . With this choice we have that
the minimum of the actions among {m ∈ {m1,m2,m

′
1,m

′
2} ∣ t(s,m) = (s, s′)} get

selected, therefore we have that (s, s′) ∈ Tab(s,m′′1 ,m′′2). ⊓⊔

For each (s, s′,m1,m2,m
′
1,m

′
2), we fix a pair (m′′1 ,m

′′
2) satisfying the conditions

of Property (★), which we denote by �((s, s′), (m1,m2), (m
′
1,m

′
2)).

First, it is obvious that if ((�1, �2), ) is a pseudo Nash equilibrium inℛ then it is
also a pseudo Nash equilibrium inℛ1 andℛ2, thus a twin equilibrium.

Assume now that we have a twin equilibrium ((�ℛ1
1 , �ℛ1

2 ), (�ℛ2
1 , �ℛ2

2 ), ). We
construct the strategy profile (�1, �2) as follows :

– if ℎ is a prefix of  then

(�1(ℎ), �2(ℎ)) = �(last(ℎ), =∣ℎ∣+1, �
ℛ1
1 (ℎ), �ℛ1

2 (ℎ), �ℛ2
1 (ℎ), �ℛ2

2 (ℎ))

This is correctly defined because (=∣ℎ∣, =∣ℎ+1∣) is in the intersection of Tab(s, (�ℛ1
1 (ℎ), �ℛ1

2 (ℎ)))

and Tab(s, (�ℛ2
1 (ℎ), �ℛ2

2 (ℎ))).
– otherwise �1(ℎ) = �ℛ2

1 (ℎ) and �2(ℎ) = �ℛ1
2 (ℎ)

Lemma 22.  ∈ Outℛ(�1, �2).

Proof. Let k be a natural integer, (k, k+1) belongs to Tab(=k, (�ℛ1
1 (≤k), �

ℛ1
2 (≤k)))

and to Tab(=k, (�ℛ2
1 (≤k), �

ℛ2
2 (≤k))). So, obviously

(=k, =k+1) ∈ Tab(=k, �(=k, =k+1, �
ℛ1
1 (≤k), �

ℛ1
2 (≤k), �

ℛ2
1 (≤k), �

ℛ2
2 (≤k))).

This proves that  ∈ Outℛ(�1, �2). ⊓⊔
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Lemma 23. Outℛ(�1) ⊆ Outℛ2
(�ℛ2

1 )

Proof. On the path  this is true because  is a possible outcome of �ℛ2
1 , and outside

this is obvious by the definition of �1. ⊓⊔

Assume ((�ℛ2
1 , �ℛ2

2 ), ) is a pseudo Nash equilibrium in the gameℛ2. By Lemma 22
 is a possible outcome of the profile (�1, �2). From Lemma 23 and the fact that
∀′ ∈ Outℛ2(�

ℛ2
1 ). ′ ≼2 , we can deduce that ∀′ ∈ Outℛ(�1). 

′ ≼2 . Thus
player 2 can not improve her strategy. Symmetrically for player 1.

This shows that if ((�ℛ1
1 , �ℛ1

2 ), (�ℛ2
1 , �ℛ2

2 ), ) is a twin equilibrium then ((�1, �2), )
is a pseudo Nash equilibrium in the gameℛ.

D Proof of Section 3.3

In this appendix we prove the correctness of the deterministic concurrent game Ci w.r.t.
gameℛi.

Proposition 10. Assume Ci (with i ∈ {1, 2}) is the deterministic concurrent game
defined from the concurrent gameℛi. Then there is a pseudo Nash equilibrium inℛi
from s with best play  iff there is a Nash equilibrium in Ci from s with best play .
Furthermore this equivalence is constructive.

We prove this result for C1 w.r.t. gameℛ1, the other case being symmetric.
We first give a transformation of the strategies in games Ci to strategies in the original

game ℛi. Formally, we define the projection �ℛ : Act′ → Act by �ℛ(m) = m, and
�ℛ(m, ★) = m where ★ ∈ {∙, ∘}, and extend it to strategies in a straightforward way: if
� is a strategy, the strategy �ℛ(�) is defined by �ℛ(�)() = �ℛ(�()) for every history .

We now give a transformation in the other direction. We let  be a play inℛ1. Given
two strategies �1 and �2 (for both players) in gameℛ1, we define the strategies �C(�j)
as follows:

– for a prefix ≤p of :

�C(�j)(≤p) =

{
(mj , ★j) if j = 1
mj if j = 2

where Tab1(=p, ((m1, ★1),m2)) = {(=p, =p+1)}.
– for a history ′ which is not a prefix of :

�C(�j)(
′) =

{
(�j(

′), ∙)12 if j = 1
�j(

′) if j = 2

Lemma 24. – For every strategy � in gameℛ1, �ℛ ∘ �C(�) = �.
– Furthermore, for every player-2 strategy �2 in gameℛ1, �C(�2) = �2. In particular,

the strategy �C(�2) is independent on .

12 This choice is arbitrary, and we could have chosen ∘ instead of ∙.
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– For every player-2 strategy �2 in game C1, �ℛ(�2) = �2.

Proof. The two first points are obvious by definition of �ℛ and �C , and the last one is a
consequence of the two first points. ⊓⊔

Lemma 25. If  ∈ OutC1(�1, �2) then

 ∈ Outℛ1
(�ℛ(�1), �

ℛ(�2))

Proof. Let  be an outcome in OutC1(�1, �2), assume that �1(≤p) = (m1, ★1) and
that �2(≤p) = m2. It means that Tab1(=p, ((m1, ★1),m2) = {(=p, =p+1)}. In
particular, (=p, =p+1) ∈ Tab(=p, (m1,m2)), which is precisely what we were meant
at proving, because �ℛ(�j)(≤p) = mj (for j ∈ {1, 2}). ⊓⊔

Lemma 26. If  ∈ Outℛ1(�1, �2) then

 ∈ OutC1(�
C
(�1), �

C
(�2))

Proof. Examine the definition of �C : �C(�1)(≤p) = (m1, ★1) and �C(�2(≤p) = m2,
where Tab1(=p, ((m1, ★1),m2) = {(=p, =p+1)}. Therefore  ∈ OutC1(�C(�1), �

C
(�2)).
⊓⊔

Lemma 27. Outℛ1
(�ℛ(�2)) ⊆ OutC1(�2).

Proof. Using Lemma 26 Outℛ1(�
ℛ(�2)) ⊆ OutC1(�C(�ℛ(�2))). And as �C and �ℛ are

just the identity function for player 2 strategies, OutC1(�C(�ℛ(�2))) = OutC1(�2). ⊓⊔

Lemma 28. If  ∈ Outℛ1(�1, �2) then

OutC1(�
C
(�2)) ⊆ Outℛ1

(�2)

Proof. Using Lemma 25 with the strategy �C(�2), OutC1(�C(�2)) ⊆ Outℛ1(�
ℛ(�C(�2))).

And as �ℛ ∘ �C(�) = �, Outℛ1
(�ℛ(�C(�2))) = Outℛ1

(�2). ⊓⊔

Assume that ((�1, �2), ) is a pseudo Nash equilibrium in the game ℛ1, then
 ∈ OutC1(�C(�1), �

C
(�2)) because of Lemma 26 and player 1 can not improve her

strategy because of Lemma 28. Therefore ((�C(�1), �
C
(�2)), ) is a Nash equilibrium

in game C1. The proof in the other direction is the same using Lemma 25 and Lemma 27.

E Proof of Section 3.4

In this appendix we prove the correctness of the transformation into two turn-based
games:

Proposition 11. Let Ci (with i ∈ {1, 2}) be the previous deterministic concurrent game,
and let Ti be the associated turn-based game. There is a Nash equilibrium in Ci from s
with best play  i(�) iff there is a Nash equilibrium in Ti from (s, [m]s) with best play �,
where m is a minimal action w.r.t. <s. Furthermore this equivalence is constructive.

As for the two previous transformations we define transformations from strategies in
game Ci to and from strategies in game Ti.
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From concurrent to turn-based games. Let �j be a player-j strategy in game Ci. We
consider a history � such that

� = (s1,m
1
1)(s1,m

2
1) . . . (s1,m

k1
1 )(s2,m

1
2) . . . (s2,m

k2
2 ) . . . (sp,m

1
p) . . . (sp,m

k
p)

Note that by construction of the transition table Tab′i, for every 1 ≤ ℎ ≤ p, m1
ℎ is

minimal w.r.t. <sℎ and the sequence (mkℎ)1≤k≤kℎ is increasing (w.r.t. <sℎ): mk+1
ℎ is

next after mkℎ w.r.t. <sℎ . Then define

�(�j)(�) =

⎧⎨⎩
⊥ if mkp ∩Movi(sp, j) = ∅
del if mkp <sp [�j( (�))]sp
�j( (�)) if �j( (�)) ∈ mkp
m if mkp >sp [�j( (�))]sp with m ∈ mkp chosen arbitrarly

Lemma 29. Assume (�j)j=1,2 are player-j strategies in game Ci. Then

 (OutTi(�(�1), �(�2))) = OutCi(�1, �2).

Proof. Let � be the outcome of the strategy profile (�(�1), �(�2)). We consider a
position q in the history where the next state will be made of a minimal action :
(�=q, �=q+1) = ((sp,m

kp
p ), (sp+1,m

1
p+1)). We have that �(�j)(�≤q′) = del or ⊥

for all q′ among the kp last positions of �≤q. This imply that mkp ≤ �j( (�≤q))

for j ∈ {1, 2}. We also have that for one j ∈ {1, 2}, �(�j)(�≤q) = mj ∈ m
kp
p ,

by definition of � it has to be equal to �j( (�≤q)). By definition of Tab′i, sp+1 is
such that (sp, sp+1) ∈ Tab′i(s, (mj ,m

′′)) for all m′′ >sp mj , which is the case for
m′′ = �3−j( (�≤q)). Therefore, (sp, sp+1) ∈ Tabi(sp, (�1(s≤p), �2(s≤p))). As the
games are deterministic, a strategy profile only allow one outcome, we can conclude
with the equality  (OutTi(�(�1), �(�2))) = OutCi(�1, �2). ⊓⊔
Lemma 30. Assume �j is a player-j strategy in game Ci. Then

 (OutTi(�(�j))) ⊆ OutCi(�j).

Proof. Once again we considere a position before a state with a minimal action :
(�=q, �=q+1) = ((sp,m

kp
p ), (sp+1,m

1
p+1)). We know that we are in one of this three

cases :

– �j( (�≤q)) = ⊥ and m
kp
p ⊆ Mov(sp, 3− j).

– �j( (�≤q)) = mj ∈ m
kp
p and their exists an action m′ ∈ Mov(sp, 3− j) such that

m′ >s mj .
– �j( (�≤q)) >s m

kp
p and m

kp
p ⊆ Mov(sp, 3− j).

In all these cases (sp, sp+1) ∈ Tab(sp, �j(s≤p)), therefore we can conclude that  (�) ∈
OutCi(�j). ⊓⊔
Proposition 31. If (�1, �2) is a Nash equilibrium in game Ci, then (�(�1), �(�2)) is a
Nash equilibrium in game Ti.
Proof. Write � for the play such that {�} = OutTi(�(�1), �(�2)). Then applying
Lemma 29 we have that { −1(�)} = OutCi(�1, �2). No player can improve her strat-
egy because of Lemma 30. We thus get the expected result: (�(�1), �(�2)) is a Nash
equilibrium in game Ti as soon as (�1, �2) is a Nash equilibrium in Ci. ⊓⊔
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From turn-based to concurrent games. Let � be a player-j strategy in game Ti, and fix
a play � in game Ti. We will write

� = (s1,m
1
1)(s1,m

2
1) . . . (s1,m

k1
1 )(s2,m

1
2) . . . (s2,m

k2
2 ) . . . (sp,m

1
p) . . . (sp,m

kp
p ) . . .

We define the player-j strategy �−1� (�) in game Ci as follows. Pick a history  in Ci. We
distinguish between two cases:

– either  is a prefix of  (�), in which case we take p such that  = s1s2 . . . sp and
define �−1� (�)() to be the minimum (with respect to the order <sp ) of the set{

�((s1,m
1
1) . . . (sp,m

1
p) . . . (sp, [m]sp)) ∣ m ∈ Movi(sp, j)

}
∖ {del}

– or  is not a prefix of (�), in which case we take a history �′ = (s′1,m
′1
1) . . . (s

′
p,m

′1
p)

in OutTi(�), such that  (�′) = , then define �−1� (�)() as the minimum of{
�((s′1,m

′1
1) . . . (s

′
p,m

′1
p) . . . (s

′
p, [m]s′p)) ∣ m ∈ Movi(s′p, j)

}
∖ {del}

Lemma 32. Assume �j are player-j strategies in game Ti. If OutTi(�1, �2) = {�},
then OutCi(�−1� (�1), �

−1
� (�2)) = { (�)}.

Proof. We prove this result by showing that the transition ( (�)=p,  (�)=p+1) belongs
to Tabi( (�)=p, �−1� (�1)( (�)≤p), �

−1
� (�2)( (�)≤p)). We write:

� = �init ⋅ ( (�)=p,m1
p) . . . ( (�)=p,m

kp
p )( (�)=p+1),m

1
p+1) . . .

With these notations, we have that there is j ∈ {1, 2} such that:{
�j(�init ⋅ ( (�)=p,m1

p) . . . ( (�)=p,m
ℎ
p)) ∈ {⊥, del} if ℎ < kp

�j(�init ⋅ ( (�)=p,m1
p) . . . ( (�)=p,m

kp
p )) = mj

And we also have that Tab′i(( (�)=p,m
kp
p ), (mj ,⊥)) = {( (�)=p+1,m

1
p+1)}, and{

�3−j(�init ⋅ ( (�)=p,m1
p) . . . ( (�)=p,m

ℎ
p)) ∈ {⊥, del} if ℎ < kp

�3−j(�init ⋅ ( (�)=p,m1
p) . . . ( (�)≤p,m

kp
p )) = ⊥

Hence we get that{
�−1� (�j)( (�)≤p) = mj ∈ m

kp
p

�−1� (�3−j)( (�)≤p) = ⊥ or m with m > −1(�)=p
m
kp
p

Thus Tabi( (�)=p, �−1� (�j)( (�)≤p), �
−1
� (�3−j)( (�)≤p)) contains the transition

( (�)=p,  (�)=p+1). This is enough to show that  (�) ∈ OutCi(�−1� (�1), �
−1
� (�2)).

⊓⊔

Lemma 33. If �j is a strategy in game Ti and � a play in Ti, then OutCi(�−1� (�j)) ⊆
 (OutTi(�j)).
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Proof. We prove this result by induction on the length of the finite outcomes of �.
Assume we have proven the results for the outcomes of length no more than p in
OutfCi(�

−1
� (�j)). Assume that  ⋅ s ∈ OutfCi(�

−1
� (�j)) has length p + 1 (hence  ∈

OutfCi(�
−1
� (�j)) has length p).

Assume that �−1� (�)() = m then there exists a move m′ in Movi(last(), 3− j)
such that Tabi(last(), (m,m′)) = {(last(), s)}. We also have that there is a path
�′ ∈ Outfi (�j) such that  (�′) =  and �−1� (�)() is the minimum of the set{
�(�′ ⋅ (last(�′),m′2last(�′)) . . . (last(�′), [m]last(�′))) ∣ m ∈ Movi(last(�′), j)

}
∖{del}

Assume thatm < m′, then for all classes mksp <sp [m]sp we have �(�′ . . . (sp,mksp)) ∈
{⊥, del}. We also have that{

((sp,m
k
sp), (sp,m

k
sp)) ∈ Tab′i((sp,mksp), (del,⊥))

((sp, [m]sp), (s,m
1
s)) ∈ Tab′i((sp, [m]sp), (m,⊥))

Therefore there is an history �′′ ∈ OutfTi(�) such that  (�′′) =  ⋅ s.
If m > m′, then ((sp, [m

′]sp), (s,m
1
s)) ∈ Tab′i((sp, [m′]sp), (⊥,m′)) and we can

show the same result. ⊓⊔

Proposition 34. Let (�1, �2) be a Nash equilibrium in game Ti, and write � for the
unique outcome in OutTi(�1, �2). Then (�−1� (�1), �

−1
� (�2)) is a Nash equilibrium in

game Ci.

Proof. Write  for {} = OutCi(�−1� (�1), �
−1
� (�2)). Applying Lemma 32, we have

that  =  −1(�).
Towards a contradiction assume that (�−1� (�1), �

−1
� (�2)) is not a Nash equilibrium

in game Ci. W.l.o.g. we assume that �2 is a player-2 strategy in game Ci such that writing
′ for the unique outcome in OutCi(�−1� (�1), �2), we have that  <2 

′. In particular,
applying Lemma 33, we have that ′ ∈  −1(OutTi(�1)). There exists �′ ∈ OutTi(�1)
with  −1(�′) = ′. In particular,  =2 � <2 �

′ =2 
′, which contradicts the fact that

(�1, �2) is a Nash equilibrium in game Ti.
Thus, (�−1� (�1), �

−1
� (�2)) is a Nash equilibrium in game Ci as soon as (�1, �2) is a

Nash equilibrium in game Ti. ⊓⊔

F Proofs of Section 4.1

Lemma 35. Assume all the objectives are !-regular and prefix-independent. A run �i
is the outcome of a Nash equilibrium in Ti with payoff 
̂ij iff �i satisfies the formula13(
GW 3−i

i (j)
)
∧ 
̂ij .

Proof. Let (�1, �2) be a Nash equilibrium in Ti with payoff 
̂ij for player i. It means
that for every player-i strategy �′i, the single outcome �′i ∈ OutTi(�′i, �3−i) satis-
fies

⋀
1≤k<j(¬
̂ik); that is, every outcome �′i ∈ OutTi(�3−i) satisfies

⋀
1≤k<j(¬
̂ik).

13 In this formula, G is the LTL modality meaning “always”.
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Hence �3−i is a winning strategy for player 3− i with objective
⋀

1≤k<j(¬
̂ik). Now,

as all objectives 
ik’s are prefix-independent, so are the objectives 
̂ik’s, and hence any
outcome �′i ∈ OutTi(�3−i) satisfies GW 3−i

i (j). Letting �i be the unique outcome in
OutTi(�1, �2), we finally get that �i satisfies

(
GW 3−i

i (j)
)
∧ 
̂ij .

Conversely assume that a run �i satisfies the formula
(
GW 3−i

i (j)
)
∧ 
̂ij . Then it

means that from every state s along �i, player 3− i has a winning strategy, say �s3−i, to
enforce

⋀
1≤k<j(¬
̂ik). Then build a Nash equilibrium with outcome �i as follows:

– if ℎ is a finite prefix of �i ending a state belonging to player k, then define �k(ℎ) as
the next transition along ℎ;

– otherwise, if ℎ = ℎ′ ⋅ ℎ′′ is such that ℎ′ is the longest common prefix of ℎ and �i,
write s as the last state of ℎ′.
∙ If ℎ (or equivalently ℎ′′) ends in a state of player 3− i, then define �3−i(ℎ) as
�s3−i(ℎ

′′);
∙ If ℎ ends in a state of player i, then define �i(ℎ) as any possible continuation of
ℎ (the choice will not matter).

With that definition, it is not hard to be convinced that (�1, �2) is a Nash equilibrium
with unique outcome �i. Furthermore, if player i deviates from this outcome, then
player 3− i will play in such a way that player i will not satisfy any of the conditions
(
̂ik)1≤k<j . ⊓⊔

Note that thanks to a product construction, we can handle more general properties
such as LTL-defined properties, and in particular bounded reachability.

As a direct consequence of Lemma 35 and Theorem 12, we get:

Theorem 13. Let G be a timed game with preference relations given as transferable,
region-uniform, prefix-independent sequences (
ij)j of objectives. There is a pseudo
Nash equilibrium in G with payoff (
j1, 


k
2 ) iff there are two runs �1 in T1 and �2 in T2

s.t.14 (i) �1 ∣=
(
GW 2

1 (j)
)
∧
̂1

j , (ii) �2 ∣=
(
GW 1

2 (k)
)
∧
̂2

k , and (iii)  1(�1) =  2(�2).

G Proofs of Section 4.2

Theorem 14. Let G be a zero-sum timed game where player 1’s objective is 
, and is
assumed to be transferable. Then player 1 has a winning strategy in G from (ℓ,0) iff
player 1 has a winning strategy in game T2 from (ℓ, [0]) for the objective 
̂.

Proof. Assume �1 is a player 1 winning strategy in G for the objective 
. Take any
strategy �2 for player 2. We will argue that for any � ∈ Out(�1, �2), ((�1, �2), �) is
a pseudo Nash equilibrium in G (with payoff (1,−1)). Indeed, player 1 has maximal
payoff in that case, and player 2 has minimal payoff but cannot improve because �1 is
winning for player 1. Then, this means that there is a Nash equilibrium with payoff (0, 0)
in game T2, which means precisely that player 1 has a strategy so that whatever is the

14 G is the LTL modality for “always”.
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strategy of player 2, player 2 loses (hence does not satisfy her objective, which is ¬
̂).
Hence player 1 has a winning strategy for the objective 
̂ in game T2.

Conversely, if player 1 has a winning strategy for the objective 
̂ in game T2, then it
can be transferred to a winning strategy in game G. ⊓⊔
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