
Noname manuscript No.
(will be inserted by the editor)

Control strategies
for off-line testing of timed systems

Léo Henry · Thierry Jéron ·
Nicolas Markey

Received: date / Accepted: date

Abstract Partial observability and controllability are two well-known issues in
test-case synthesis for reactive systems. We address the problem of partial control
in the synthesis of test cases from timed-automata specifications We extend
a previous approach to this problem from the untimed to the timed setting.
This extension requires a deep reworking of the models, game interpretation and
test-synthesis algorithms. We exhibit strategies of a game that try to minimize both
cooperations of the system and distance to the satisfaction of a test purpose or to
the next cooperation , and prove they are winning under some fairness assumptions.
This entails that when turning those strategies into test cases, we get properties
such as soundness and exhaustiveness of the test synthesis method. We finally
propose a symbolic algorithm to compute those strategies.

Keywords Timed system, Game theory, Controllability, Conformance testing

1 Introduction

1.1 Testing real-time systems

Real-time reactive systems are open systems interacting with their environment
and subject to timing constraints. Such systems are encountered in many contexts,
in particular in critical applications such as transportation, control of manufac-
turing systems, etc. Their correctness is then of prime importance, but is also
very challenging due to multiple factors: combination of discrete and continuous
behaviours, concurrency aspects in distributed systems, partial observability and
limited controllability over open systems.

To assess the correctness of such systems, testing remains the most-used val-
idation technique, with variations depending on the design phase. Conformance
testing is one of those variations, consisting in checking whether a real system, also
called implementations under test, correctly implements its specification, which
serves as a reference. One of the most challenging activities of conformance testing

Irisa, INRIA & CNRS & Univ. Rennes (France)
University College London (Léo Henry)

2 Léo Henry et al.

Black box
automated sorting

Controls

Fig. 1 An airport conveyor belt1.

is the design of test cases that, when executed on the real system, would produce
meaningful verdicts about the conformance of the system at hand with respect
to its specification. Those implementations are often considered as black boxes,
thereby offering only partial observability to the tester, for various reasons (e.g. be-
cause sensors cannot observe all actions, or because the system is composed of
communicating components whose communications cannot be all observed, or
because of intellectual property of peer software). Controllability of the system
during the test execution is another well-known issue when the system makes its
own choices upon which the tester has a limited control. The tester may then need
to rely on the system to reach some targeted behaviors. This is illustrated by the
following example.

Example 1. Consider the simple airport conveyor-belt described in Fig. 1. This toy
example will serve to illustrate the controllability problem we consider and our
approach. Its timed automaton model is given later in Fig. 5. Pieces of luggage
arrive on the conveyor belt, and after some time they reach an automated sorting
area, where the system may dispose of a luggage without any control from the
operator. If it is not removed, the piece of luggage reaches an operator, who can
choose to route it towards one of the two planes. If the operator fails to decide, after
some time the piece of luggage loops on the belt and restarts the whole process.

When testing such a system from the operator’s point of view, the tester would
have no control over the sorting of the luggage by the automated-sorting system.

A possible test case could aim at verifying the requirement that the conveyor
speed is as expected (i.e., that time constraints are met during the system execution).
During the execution of a test case for such a property, the automated-sorting
device may choose to systematically dispose of pieces of luggage, which would not
allow to measure the time they take to reach the operator. In such a situation,

1 Briefcase icon, commercial airplane icon and person icon by Delapouite under CC BY 3.0
from https://game-icons.net/.

https://game-icons.net/

Control strategies for off-line testing of timed systems 3

cooperation from the system is therefore eventually required in order to reach a
conclusive verdict.

1.2 Testing with formal methods

Formal models and methods are good candidates to help test-case synthesis, both
in terms of productivity gain and increased confidence in their verdict [Tre96].
Observability and controllability problems are central issues to overcome in this
task. Controllability is the main focus of the present work, even though observability
is considered.

The models we will use are variations of Timed Automata (TA) [AD94] which
form a class of models tailored to the formal description of timed reactive systems.
Syntactically, timed automata are finite-state automata equipped with real-valued
clocks, which can be used to constrain their behaviours by imposing conditions on
the delays between different transitions. TAs are popular in particular in formal
verification because of the good balance they offer between their expressiveness
and their algorithmic properties.

In the setting of formal testing, it is adequate to refine the model of timed
automata by explicitly distinguishing inputs, which are controllable by the tester,
and outputs, which are not. This gives rise to the model of TAIOs (Timed
Automata with Inputs and Outputs) [KT04,KT09]. In the present paper, TAIOs
will be used for most testing artifacts, namely specifications, implementations, and
test cases. Notice that our approach does not strongly depend on this TAIO model
and other variants of the TA model equipped with inputs and outputs already used
in the context of testing could have been used, such as TIOA [SVD01,KLSV03],
or TIOTS [LMN04], as soon as they do not preclude non-controllability, i.e., allow
the choice between several outputs in response to an input. Since completeness of
testing is hopeless in practice2, it is helpful and classical to rely on test purposes,
that focus on some specific behaviours that need to be tested (because they are
suspected to exhibit errors, or simply because they describe basic functionalities or
requirements whose correction is essential). These may also be derived from coverage
criteria . We specify test purposes using Open TAIOs (or OTAIOs) [BJSK12], an
extension of TAIOs whose behaviours depend on external clocks (namely those
of the specification). OTAIOs are powerful models and simpler ones could have
been chosen to select behaviors. Formal testing also requires to formally define
conformance as a relation between models of specifications and their correct
implementations. In the timed setting, the classical tioco relation [KT09] states
that, after an observable timed trace of the specification (a sequence of inputs,
outputs and delays between them), the outputs and delays of the implementation
should be possible in the specification.

This testing framework is sketched in Fig. 2. The general problem we address is
the synthesis of test cases, from a specification and a test purpose, that direct the
implementation towards the behaviours targeted by test purposes, with the intention
that verdicts issued during the executions of the test cases on the implementation
are consistent with the actual conformance between the implementation and the

2 “Program testing can be used to show the presence of bugs, but never to show their absence!”
(Edsger W. Dijkstra)

4 Léo Henry et al.

Implementation
I (unknown TAIO)

Test purpose
T P (OTAIO)

Specification
S (TAIO)

conforms to ?
tioco

Test case
TC (TAIO with verdicts)

test synthesis

controls

observes

Fig. 2 The testing framework.

specification. In our case, the behaviours are identified as reachability objectives on
the test purposes, which will translate into reachability games between the tester
and the system during the execution of test cases. This formal framework will be
described more precisely later on.

1.3 Test-case synthesis from timed automata

Test-case synthesis from TAs has been extensively studied over the last 20 years
(see [COG98,CKL98,SVD01,ENDK02,NS03,BB04,LMN04,KT09], to cite a few).
In off-line testing, the test cases are first computed and stored, and later executed
on the implementation. They should thus anticipate all specified outputs after an
observed trace. One of the difficulties then comes from partial observation. In the
untimed framework, this is circumvented by determinizing the specification, which
allows to obtain a unique execution to correspond to a given trace. Unfortunately,
this is not always feasible for TAIO specifications, since determinization is not
possible in general for TAs [AD94,Tri04,Fin06]. Possible solutions can be to turn
to on-line testing, where a subset construction is made on-the-fly on the current
execution trace [KT04,LMN04], or to restrict to determinizable sub-classes of
TAs (see e.g. [NS03]). Some advances in off-line test synthesis were obtained
in [BJSK12] by the use of an approximate determinization procedure using a
game-based approach [BSJK15] that preserves tioco conformance, and is known
to be exact for known sub-classes of TAs, namely Event-Recording TAs [AFH94],
strongly non-Zeno TAs [AMPS98a], TAs with integer resets [SPKM08]. We will
build on this work regarding observability issues and will recall or adapt the main
aspects of this framework in Section 3.

1.4 Controllability of a system under test as a game

The problem of testing is often informally presented as a game between the tester
and the system under test (see e.g. [Yan04]).

Control strategies for off-line testing of timed systems 5

Cooperating Winning Target

Target unreachable

Fig. 3 Hierarchy of the winning and cooperating sets in [DLLN08a].

In the context of timed testing, a game-based approach has been studied
in [DLLN08b,DLLN09], where test cases are synthesized as winning strategies of
a reachability game. A winning strategy is, in this case, a strategy managing to
reach a set of target states against any possible strategy of the system.

The work in [DLLN08b] is restricted to deterministic models, while [DLLN09]
uses observation predicates to cope with partial observation, but those predicates
assume the observability of clocks which is not reasonable from our perspective.
In both cases test case synthesis is abandoned when no winning strategy can be
found for the tester. Yet, in practice many test cases correspond to games with no
winning strategies.

Example 2. Consider again the conveyor-belt example of Example 1. When testing
the speed of the conveyor belt, one needs a piece of luggage to go to the operator
and continue past this position, which corresponds in the automaton in Fig. 5
to the uncontrollable action !past. For this, the piece of luggage has to go to the
Sort location and not be removed by the system (which corresponds to the !waste
uncontrollable action) in order to reach the Boarding location, which corresponds
to the operator. As one can see, a system always playing !waste as soon as possible
could prevent any piece of luggage from ever reaching the operator. Hence it is not
possible to construct a winning strategy to test the !past action as it can never be
played.

This issue is mitigated in [DLLN08a] with the use of cooperative strategies, which
rely on the cooperation of the system under test to win the game. These strategies
can distinguish between winning states, where they can win despite the system’s
best effort, and cooperating states, where they need to rely on the system to win.
The winning and cooperating states form two nested sets, as pictured in Fig. 3.
This approach is somewhat limited by the strength of the tester in the cooperating
states: the system under test is supposed to always act exactly as desired by the
tester at all times while in cooperating states. This extremely strong requirement
is hard to justify in practice during testing for a large number of applications.

A more in-depth approach to the controllability problem is the one of [Ram98]
in the untimed setting, unfortunately a scarcely-known work. Test selection is
modelled as a game where the tester tries to satisfy a test purpose while detecting
non-conformance, but faces control losses, i.e., states where the system proposes
uncontrollable but correct outputs that move it away from its objective. This
allows for more precision than the cooperative approach, as each reliance on the
implementation is now isolated and counted separately, and interleaved with the
classical adversarial game setup. The computed strategies could quantify on the
number of control losses. Interestingly, this allows to minimize both the reliance on
the system decisions and the distance to the next control loss.

6 Léo Henry et al.

. . . Adversarial
Control
loss

Winning Target

Fig. 4 Interleaving control and control losses to maximize control.

1.5 Contributions

As explained above and illustrated by Example 2, in most cases, focusing on winning
strategies in order to build test cases for partially-controllable systems is hopeless.
In this paper we address this problem by proposing a game-based approach to
formal conformance testing of timed systems that goes beyond the limitations
of winning strategies. Our approach accounts for the necessity for the tester to
rely on the help of the implementation, and aims at minimizing such cooperation.
This idea is illustrated in Fig. 4, with each control loss being interleaved with the
usual adversarial game approach. On top of minimizing the need for cooperation
in the general setting, we propose a notion of fairness under which the strategies
we construct are winning.

The present paper extends the results presented in [HJM18]. It adapts the game
approach proposed in [Ram98] to the timed context using the framework developed
in [BJSK12]. Precisely, we develop rank lowering strategies inspired by [Ram98]
on top of the testing framework of [BJSK12]. The latter work culminated in the
construction of a game between the tester and the system under test. This game
represents all observable behaviours of the specification targeted by the test purpose.
Yet, it did not construct the strategies of the tester to solve the game, i.e., the
choice of inputs and delays that could control as much as possible the system
through those behaviours. This paper constructs them as rank-lowering strategies.

Our strategies do not handle inconclusive states (i.e., states that are not co-
reachable from the test purpose target). We leverage this issue at the model level
by introducing restart transitions that formalise ”shutting the system off and on
again” and ensure that there is always an execution leading to a test purpose target
from any configuration of the models.

1.6 Related works

A number of the first papers on test-generation for timed automata(e.g. [LMN04,
KT09,BJSK12]) did not tackle the issue of ensuring a conclusive verdict during the
test case executions, focusing more on the generation of the said test cases. Later
papers (e.g. [DLLN08a,DLLN09]) added this dimension, using game formalisms to
reason about the test case executions.

Compared to [Ram98], the model of TAIO is much more complex than finite
transition systems, the test purposes are also much more powerful than simple
sub-sequences of the specification considered in that work, thus even if the approach
is similar, the game has to be completely revised. Furthermore, we present some
fairness assumptions that identify a reasonable restriction of the implementation

Control strategies for off-line testing of timed systems 7

behaviours, under which our strategies are winning. Recently another approach
to strategies beyond winning states close to our own has recently been proposed
also for untimed models [vdB20]. Even though differently expressed with a 3-player
game (the additional one is a sort of scheduler), it is very similar to [Ram98], taking
control losses into account (as ”jokers” in so-called joker games) while minimizing
them, and computing ranks using distance and number of control losses. Apart
from the model, another difference with our own work and with [Ram98] is that
they do not consider uncontrollable cycles, relying on the scheduler to win.

Other than the papers on which we build the testing framework ([BJSK12,
BSJK15]) the works most related to ours is the aforementioned approach to
test of timed automata using games[DLLN08a]. Partial observation is also
addressed in [DLLN09] with a variant of the TA model where observations are
described by observation predicates, composed of a set of locations together with
clock constraints. Test cases are then synthesized as winning strategies, if they
exist, in a game between the specification and its environment that tries to guide
the system to satisfy the test purpose. Our model is a bit different to the one
of [DLLN09], since we do not rely on observation predicates which require the
observability of clock values, but partial observation comes from internal actions
and non-determinism. While our approach handles non-deterministic specifications
and test purposes (thanks to the determinization game presented in [BSJK15]),
at some point in this work we do require exact determinization to make sure to
avoid inconclusive verdicts with the combined help of restart actions. We will
however explain what happens when relaxing these assumptions. In comparison,
[DLLN09] avoids determinizing TAs, relying on the determinization of a finite state
model, thanks to a projection on a finite set of observable predicates. Cooperative
strategies of [DLLN08a] have similarities with our fairness assumptions, but their
models are assumed deterministic, and their strategies can not count the number
of control losses that will be faced, as they simply acquire complete control in their
cooperative phase. However their strategies can handle inconclusive verdicts. In
a continuation of the present work described in Léo Henry’s PhD thesis [Hen21],
rank-lowering strategies are also extended to handle inconclusive states, under the
name safety-first rank-lowering strategies.

Controllability is a major concern in testing, with multiple levels, meanings. In
the context of testing from Finite State Machines or Mealy machines, one often
assumes that automata are controllable in the sense that they are both deterministic
and the inputs uniquely determine the outputs. This is also the case for the timed
I/O automata of [SVD01]. We do not make these assumptions for timed automata
since we want to consider the case where the response of the system to inputs
is unpredictable. In the context of distributed testing (see e.g. [HMN16]) some
controllability problems arise when a tester cannot anticipate when to send some
input that should follow a given output, because this output occurred at a distant
interface. This is different from the problem we consider here.

Our work has links with the control of discrete event systems à la Ramadge
and Wonham [RW89] and controller synthesis, e.g. for timed automata [AMPS98c].
In the control of discrete event systems, given a reachability property, one wants
to generate the most permissive controller, i.e., the sub-behaviour where reacha-
bility is ensured. Is it obtained by recursively eliminating states from which some
uncontrollable actions lead to states where reachability is violated, or lead to elimi-
nated states. This controller does not always exist. The controller synthesis is even

8 Léo Henry et al.

stronger, because one wants to generate a winning strategy, i.e., the reachability
should be effective with a strategy that allows the player to reach the goal whatever
the system does. Interpreting outputs as uncontrollable actions, test generation
is weaker, since one has to accept to lose and go to inconclusive verdicts where
reachability is violated. In our work we first assume that inconclusive verdicts do
not exist by the existence of restart actions. Seeing test cases as strategies for
reachability properties, we will accept to lose (or rely on the system cooperation to
win), but we try minimize those situations along strategies.

1.7 Paper organization

Compared to the previous version [HJM18] of this work, we include the full proofs
of our statements, and a forward symbolic algorithm to perform the test-case
synthesis, inspired from the work on UPPAAL [CDF+05].

The paper is organized as follows. Section 2 introduces basic models: TAs,
TAIOs and their open counterparts OTAs, OTAIOs. Section 3 is dedicated to the
testing framework with hypothesis on models of testing artifacts, the conformance
relation and the construction of the objective-centered tester that denotes both
non-conformant traces and the goal to reach according to a test purpose. Section 4
constitutes the core of the paper and the main contribution. After introducing
timed game automata (TGA), the test-synthesis problem is interpreted as a timed
game on the objective-centered tester. Rank-lowering strategies are proposed as
candidate test cases, and a fairness assumption is introduced to make such strategies
win. Then properties of test cases with respect to conformance are proved. Finally
Section 5 presents the algorithms used to compute a machine-compatible symbolic
representation of a strategy and some interesting properties of these algorithms.

2 Timed automata and extensions

In this section, we introduce our models for timed systems, along with some useful
notions and operations.

2.1 Timed automata with inputs and outputs

Timed automata (TAs) [AD94] are one of the most widely-used classes of models for
reasoning about computer systems subject to real-time constraints. Timed automata
are finite-state automata augmented with real-valued variables (called clocks) to
constrain the occurrence of transitions along executions. In order to adapt these
models to the testing framework, we consider TAs with inputs and outputs (TAIOs),
in which the alphabet of actions is split between input, output and internal
actions (the latter being used to model partial observability). We also use a
variation of TAs (and TAIOs) called open TAs (and open TAIOs) [BJSK12],
in which a distinguished subset of clocks, named observed clocks, whose values
can only observed by guards but cannot be controlled with resets. They will be
usefull to specify test purposes, a sort of observers describing those behaviours of

Control strategies for off-line testing of timed systems 9

a TA (or TAIO) that require testing. TAs (and TAIOS) will be viewed as particular
cases with no observed clocks.

Given a finite set of clocks X, a clock valuation over X is a function v : X → R≥0.
We denote by 0X (and often omit to mention X when clear from the context) the
valuation assigning 0 to all clocks in X. Let v be a clock valuation; for any t ∈ R≥0,
we denote by v + t the valuation mapping each clock x ∈ X to v(x) + t, and for a
subset X ′ ⊆ X, we write v[X′←0] for the valuation mapping all clocks in X ′ to 0,
and all clocks in X \X ′ to their values in v.

A clock constraint is a finite conjunction of atomic constraints of the form
x ∼ n where x ∈ X, n ∈ N, and ∼ ∈ {<,≤,=,≥, >}. That a valuation v satisfies
a clock constraint g, written v |= g, is defined in the obvious way. We write G(X)
for the set of clock constraints over X.

Definition 1. An open timed automaton (OTA) is a tuple3 A = (LA, lA0 , ΣA,
XAp ⊎XAo , IA, EA) where:

– LA is a finite set of locations, with lA0 ∈ LA the initial location;
– ΣA is a finite alphabet;
– XA = XAp ⊎ XAo is a finite set of clocks, partitioned into proper clocks XAp

and observed clocks XAo ; only proper clocks may be reset along transitions; we
denote MA(x) the maximal constant to which x is compared;

– IA : LA → G(XA) assigns invariant constraints to locations;

– EA ⊆ LA × G(XA) × ΣA × 2X
A
p × LA is a finite set of transitions; for e =

(l, g, a,X ′p, l
′) ∈ EA, we write act(e) = a.

Intuitively, proper clocks Xp are the usual ones, controlled by A through resets,
while observed clocks Xo can only be observed by A through guards and invariants.
The later belong to (are proper clocks of) another OTA B that controls them, and
with which A is synchronized by product (see below).

An Open Timed Automaton with Inputs and Outputs (OTAIO) is an OTA in
which ΣA = ΣA? ⊎ΣA! ⊎ΣAτ is the disjoint union of input actions in ΣA? (denoted by
?a, ?b, ...), output actions in ΣA! (denoted by !a, !b, ...), and internal actions in ΣAτ
(denoted by τ1, τ2, ...). We write Σobs = Σ? ⊎ Σ! for the alphabet of observable
actions. Finally, a Timed Automaton (TA), as defined in [AD94], (resp. a Timed
Automaton with Inputs and Outputs (TAIO)) is an OTA (resp. an OTAIO) with
no observed clocks.

TAIOs will be sufficient to model most objects of the testing framework, but the
ability of OTAIOs to observe other clocks will be essential to specify test purposes
(see Section 3.1), which need to synchronize with the specification to focus on
behaviours that need to be tested. The semantics of a OTA is defined as follows:

Definition 2. The semantics of an OTA A = (LA, lA0 , ΣA, XAp ⊎XAo , IA, EA) is

the infinite-state transition system T A = (SA, sA0 , ΓA,→A) where:

– SA = {(l, v) ∈ LA × RX
≥0 | v |= I(l)} is the (infinite) set of configurations (or

states) of A; with initial configuration sA0 = (l0,0X).

– ΓA = R≥0 ⊎ (EA × 2X
A
o) is the set of transitions labels;

3 For this and the following definitions, we may omit to mention superscripts when the
corresponding automaton is clear from the context.

10 Léo Henry et al.

Dest1
true

Boarding
x ≤ 3

Dest2
true

Sort
x ≤ 1

Waste
x ≤ 1

Start
x ≤ 2

start

x ≤ 2
τ
{x}

true
!waste
{x}

true
τ
{x}

true
?ship1
{x}

true
?ship2
{x}

x = 3
!past
{x}

x = 1
!end1
{x}

x = 1
!end2
{x}

true
?ζ
{x}

true
?ζ
{x}

x = 1
τ
{x}

true
?ζ
{x}

Fig. 5 A TAIO specifying a conveyor belt.

– →A ⊆ SA × ΓA × SA is the transition relation. It is defined as the union of
– time elapses, which are triples ((l, v), t, (l, v+ t)) ∈ SA ×R≥0 × SA. By def-

inition of SA and by convexity of clock constraints all intermediary valua-
tions v + t′ with 0 ≤ t′ ≤ t, satisfy the invariant I(l);

– discrete moves, which are all triples ((l, v), (eA, X ′Ao), (l′, v′)) ∈ SA× (EA×
2X

A
o) × SA such that, writing e = (le, g, a,X

′
p, l
′
e), it holds le = l, l′e = l′,

v |= g, and v′ = v[X′
p∪X′

o←0]. Again, by definition, v |= I(l) and v′ |= I(l′).

Notice that an OTA has no control over its observed clocks, the intention being
to synchronize them later in a product (see Def. 3). Hence, in the semantics of a
single OTA, when a discrete transition is taken, observed clocks are unconstrained
and any subset X ′o of Xo may be reset. When dealing with (closed) TAs, where

Xo is empty, we may write (l, v)
e−→ (l′, v′) in place of (l, v)

(e,∅)−−−→ (l′, v′).

Example 3. Fig. 5 is an example of TAIO specifying a conveyor belt such as the
one of Example 1. It uses one proper clock x (no observed one) that is used in
invariants to bound the sojourn time in locations. It has as inputs ?ship1 and ?ship2,
and a special restart action ?ζ (see later), outputs !end1, !end2, !past, !waste, and
internal action τ . After a maximum of 2 time units in location Start (depending
for example on their weight), packages reach a sorting point in location Sort, where
they are automatically sorted between packages to reject and packages to ship.
Packages to reject go to location Waste, while packages to ship are sent to a
boarding platform (location Boarding), where an operator can send them to two
different destinations Dest1 or Dest2. If the operator takes more than 3 time units

Control strategies for off-line testing of timed systems 11

to select a destination, the package goes past the boarding platform and restarts
the process. The restart action ?ζ also allows to go back to Start from several
locations.

From the semantics of OTAs we first define runs. A partial run of A is a (finite or
infinite) sequence ρ = ((si, γi, si+1))1≤i<n of transitions in T A, with n ∈ N∪{+∞}.
We write first(ρ) for s1 and, when n ∈ N, last(ρ) for sn. A run is a partial run
starting in the initial configuration sA0 . The duration of ρ is dur(ρ) =

∑
γi∈R≥0

γi.

A finite run is accepted in a set of locations F ⊆ LA if its last configuration
belongs to F × R≥0. We denote by Run(A) the set of runs of A, RunF (A) the
subset of runs accepted in F (note that Run(A) = RunLA(A)), and pRun(A) the
set of partial runs.

In the sequel, as usual we only consider infinite runs that are non-zeno, i.e., have
an infinite duration. This may restrict the set of theoretically possible runs, but
only suppresses runs that have no interest for test-generation: either a zeno run
expresses a finite delay as an infinite sum of delays converging to that value - which
is clearly a mathematical artifact - or realises an infinite number of discrete actions
in finite time, which is impossible for most systems under test in practice.

Configuration s is reachable from configuration s′ when there exists a partial
run from s′ to s in T A. We write Reach(A, S′) for the set of configurations that are
reachable from some configuration in the set S′, and Reach(A) for Reach(A, {sA0 }).

From runs, two other notions are obtained by consecutive projections. The (par-
tial) signature associated with a (partial) run ρ = ((si, γi, s

′
i))i is its projection

sig(ρ) = (proj(γi))i ∈ (R≥0 ∪ (Σ × 2Xp∪Xo))∗, where only durations or pairs of
actions and resets are kept, i.e., proj(γ) = γ if γ ∈ R≥0, and proj(γ) = (a,X ′p ∪X ′o)
if γ = ((l, g, a,X ′p, l

′), X ′o). We write pSig(A) = proj(pRun(A)) and Sig(A) =
proj(Run(A)) for the sets of (partial) signatures of A, and SigF (A) = proj(RunF (A))

for the subset of signatures accepted in F . We write s
µ−→ s′ when there exists a

(partial) finite run ρ such that µ = proj(ρ), first(ρ) = s and last(ρ) = s′, and write
dur(µ) =

∑
γi∈R≥0

γi its duration. Observe that as expected, when sig(ρ) = µ,

it holds dur(ρ) = dur(µ). We write s
µ−→ when s

µ−→ s′ for some s′.

If A is a TAIO, the trace of a (partial) signature corresponds to what can be
observed by the environment, namely the sequence of delays and observable actions
(internal actions are ignored) . It is defined by the limit of the following inductive
definition, for t, t′ ∈ R≥0, a, b ∈ Σ, X ′ ⊆ X, and partial signatures µ1, µ2:

trace(ε) = 0

trace(t) = t

trace((a,X ′)) = a if a ∈ Σobs, 0 otherwise

trace(µ1 · µ2) = trace(µ1) · trace(µ2)

with the concatenation of traces being defined with two special cases as follow:

t · t′ = t+ t′

a · b = a · 0 · b .

12 Léo Henry et al.

Remark 1. This definition ensures that traces are always alternating, starting from
a delay. The interest is to enforce a structure corresponding to an observation.

For example, for µ1 = 0 · a · 0.7 · τ · 0.3 and µ2 = 0.1 · b, we get µ1 ·µ2 = 0 · a · 1.1 · b.
We write Traces(A) =

⋃
µ∈Sig(A) trace(µ) for the set of traces corresponding to

runs of A, pTraces(A) for the set of traces corresponding to partial runs, and
TracesF (A) for the subset of traces of runs accepted in F . Two OTAIOs are said
to be trace-equivalent if they have the same sets of traces, i.e., if they exhibit the
same observable behaviours. We furthermore define, for an OTAIO A, a trace σ
and a configuration s:

– A after σ = {s ∈ S | ∃µ ∈ Sig(A), s0
µ−→ s ∧ trace(µ) = σ} is the set of all

configurations that can be reached when the trace σ has been observed from sA0 ;
– enab(s) = {e ∈ EA | s e−→} is the set of transitions enabled in s;

– elapse(s) = {t ∈ R≥0 | ∃µ ∈ (R≥0 ∪ (Στ × 2X))∗, s
µ−→ ∧ dur(µ) = t} is the set

of delays that can be observed from location s without observing any action;
– out(s) = {a ∈ Σ! | ∃e ∈ enab(s), act(e) = a} ∪ elapse(s) is the set of possible

outputs and delays that can be observed from s. For S′ ⊆ S, we write out(S′) =⋃
s∈S′ out(s);

– in(s) = {a ∈ Σ? | ∃e ∈ enab(s), act(e) = a} is the set of possible inputs that
can be proposed when arriving in s. For S′ ⊆ S, we write in(S′) =

⋃
s∈S′ in(s).

We now define some useful sub-classes of OTAIOs. An OTAIO A is said

– deterministic if for any pair of transitions e1 = (l, g1, a,X
′
p1
, l′1) and e2 =

(l, g2, a,X
′
p2
, l′2) starting in the same location and sharing the same action,

either e1 = e2 or g1 ∩ g2 = ∅; this entails that for any σ ∈ Traces(A), A after σ
is a singleton;

– determinizable if there exists a trace-equivalent deterministic OTAIO;
– complete if any action can be played from any configuration, formally S =

L × RX
≥0 (i.e., all invariants are always true) and for any location l ∈ L and

action a ∈ Σ,
∨

(l,g,a,X′,l′)∈EA g = true;
– input-complete if any input can be taken from any configuration, formally for

any location l ∈ L and action a ∈ Σ?,
∨

(l,g,a,X′,l′)∈EA g = true;

The following definition of the product of two OTAIOs extends the classical
product of TAs. The intention is that the product of two OTAIOs corresponds to
the intersection of the signatures of the individual OTAIOs, i.e., Sig(A × B) =
Sig(A) ∩ Sig(B) [BSJK15]. Moreover if TAs are equipped with accepting locations
FA ⊆ LA and FB ⊆ LB, we also get SigFA×FB(A× B) = SigFA(A) ∩ SigFB(B).

Notice that, in this definition, proper clocks of the product are proper clocks of
one of the operands, while observed clocks are observed clocks of an operand which
are not proper of the other. Two transitions synchronize when they carry a common
action; the resulting guard is the intersection of the guards of the operands, and
clock resets are the union of proper resets of the operands, thus proper themselves.
Notice also that if a proper clock of A is an observed clock of B, its evolution is
observed through guards of B, and vice versa. Formally:

Definition 3. Given two OTAIOs A = (LA, lA0 , Σ,XAp ⊎XAo , IA, EA) and B =

(LB, lB0 , Σ,XBp ⊎XBo , IB, EB) over the same alphabet Σ, their product is the OTAIO

A × B = (LA × LB, (lA0 , lB0), Σ, (XAp ∪ XBp) ⊎ ((XAo ∪ XBo \ (XAp ∪ XBp)), I, E)

Control strategies for off-line testing of timed systems 13

where E : (l1, l2) 7→ IA(l1) ∧ IB(l2) and E is the (smallest) set such that for
each (l1, g1, a,X ′1p , l′1) ∈ EA and (l2, g2, a,X ′2p , l′2) ∈ EB, E contains ((l1, l2), g1∧
g2, a,X ′1p ∪X ′2p , (l′1, l′2)).

2.2 Regions and zones

The semantics T A of a timed automaton A is an infinite graph. While it does not
raise any issues in most of the reasoning made on them, a finite representation is
sometimes necessary to handle them in practice. Such representations are usually
based on zones [DT98], i.e., finite conjunctions of clock constraints and comparisons.
To simplify the notations of zones, we introduce a clock x0 such that for all valuations
v, v(x0) = 0. It will be used to unify the comparison to clocks and constants.

Definition 4. For a set of clocks X = {x1, ..., xn}, a set of valuations Z is called
a zone if it can be described as

∧
i,j∈(0,n), i ̸=j(xi − xj ≺ dij) with dij ∈ Z and

≺ ∈ {≤, <}.

Zones present the advantage to dispose of an efficient representation: the difference
bounded matrices [BY04,Min17]. They generalize the original finite abstraction
based on regions [AD94], which is known to be exact and intuitively represents
minimal zones. Regions can be defined as the equivalence classes of the following
equivalence relation:

Definition 5. Let A be a TA with the set of clocks X and maximal constants
MA(x) for x ∈ X. The regions of A denoted by RA are the equivalence classes
of the following relation ≈ between valuations: v ≈ v′ if and only if the following
conditions are met:

1. ∀x ∈ X, v(x) > MA(x) ⇔ v′(x) > MA(x) ;
2. ∀x ∈ X, v(x) ≤ MA(x) ⇒

(
⌊v(x)⌋ = ⌊v′(x)⌋ ∧

(
{v(x)} = 0 ⇔ {v′(x)} = 0

))
;

3. ∀x, x′ ∈ X,
(
v(x) ≤ MA(x) ∧ v(x′) ≤ MA(x′)

)
⇒

({v(x)} ≤ {v(x′)} ⇔ {v′(x)} ≤ {v′(x′)}) .
where ⌊·⌋ is the integer part and {·} the fractional part.

The notion of enabled transitions and delay transitions are extended to regions as
follows: for a region reg, we let enab((l, reg)) = enab((l, v)) for any v in reg4; for any
transition e, we let next(e, reg) be the unique region reg′ such that for all s ∈ reg,

s
e−→ s′ implies s′ ∈ reg′, and we write SucTemp(reg) for all strict time-successor

regions reg′ of reg. We also extend the notion of execution to regions5.
Fig. 6 presents the regions and a zone for clocks X = {x, y}, M(x) = 3

and M(y) = 2. Each dot, each line segment and each open minimal polygon
(not containing any other zone) is a region, while the highlighted set is the zone
1 ≤ x ≤ 2 ∧ −1 ≤ x− y ≤ 1.

The standard symbolic representation of a set of configurations a TA is made
of pairs (l, Z) of locations and zones. We will often abuse notations and write Z
for (l, Z) when the context is clear.

4 This definition is valid because Condition 2 in Def. 5 ensures that guards cannot distinguish
between valuations in a given region. Hence the enabled transitions are the same.

5 Observe that writing reg
t−→ reg′ for a delay t is execution-specific, as that delay may lead

to a region reg′′ ̸= reg′ from some configurations in reg.

14 Léo Henry et al.

x

y

1 2 3

1

2

3

Fig. 6 Regions and a zone for M(x) = 3 and M(y) = 2.

3 The testing framework for timed automata

We now present the testing framework, defining (i) the main testing artifacts,
i.e., specifications, implementations, test purposes, and test cases, along with the
assumptions we put on them; (ii) a conformance relation relating implementations
and specifications. The combination of the test purposes and the specification and
the construction of an approximate deterministic tester is explained afterwards.

This framework is almost taken from the one of [BJSK12], but we repeat it here
for completeness. We thus get almost the same properties on the objects that are
built. The main difference is the assumption on restart transitions in specifications
and test purposes that ensures strong connectivity of the objective-centered tester
built from them.

3.1 Timed testing context

Implementation
I (unknown TAIO)

Test purpose
T P (OTAIO)

Specification
S (TAIO)

conforms to?

Product
P = T P × S (TAIO)

Determinised Product
DP (DTAIO)

Objective centered tester
OT (complete DTAIO)

Determinization game [BSJK15]

Completion with Fail state

Strategy

controls

observes

Fig. 7 The testing framework.

Control strategies for off-line testing of timed systems 15

Fig. 7 refines the framework described in the introduction, Fig. 2 for the context
of timed testing. We use TAIOs as models for the specification S and possible black-
box implementations I of them. Conformance is described by the now standard
tioco relation [KT09] that considers discrepancies between their respective traces.
Checking whether I conforms to S is realized by test cases, here seen as strategies
of a game between the tester and the implementation. In our context, this game
and test cases are derived from the specification S and test purposes T P, some
sorts of observers specified as OTAIOS, used to focus on particular behaviours one
wants to test. Expected verdicts should thus indicate non-conformance (Fail) or
realization of the test purpose (Pass). While monitoring non-conformance, the
strategy tries to control I toward the target of the test purpose, by proposing
controllable inputs after some delays, and observes the responses of I in the form
of delays and uncontrollable outputs, and this iteratively until delivering a verdict.
The construction of test cases is as follows. From S and T P, their product P
is built, and a deterministic TAIO (DTAIO) DP by determinization of P. DP
characterizes traces of S and among them, those targeted by T P. Determinization
is needed simply because resulting test case executions need to be deterministic
since tioco relies on traces. It relies on the approach of [BSJK15] that will not be
detailed here, we only stick on the properties of the resulting DP. Adding Fail
by completion from DP produces the objective centered tester which is interpreted
as a game from which the test cases are derived as strategies. We now detail the
framework and some properties we get.

First we formalise specifications with TAIOs, equiped with restart transitions,
corresponding to a kind of system shutdown and restart, and assume that from
any (reachable) configuration, a restart transition is always reachable. In essence
this property ensures that we always keep a chance to restart from the initial state.
We also assume that specifications are:

– non-blocking, i.e., do not block time waiting for an input, formally, for any
s ∈ S and any non-negative real t, there is a partial run ρ from s involving
no input actions (i.e., proj(ρ) is a sequence over R≥0 ∪ (Σ! ∪ Στ) × 2X) and
such that dur(ρ) = t. Intuitively an implementation that could stop time to
wait for an input that it does not control is not desirable. The non-blocking
hypothesis applies to both implementations and specifications, and thus rules
out specifications having no conformant physically-possible implementation.

– repeatedly observable, i.e., from any state some action can be observed, formally
from any s ∈ SA, there exists a partial run ρ from ssuch that trace(ρ) /∈ R≥0.
Repeated-observability will be useful for technical reasons, when analyzing
exhaustiveness of test cases. It intuitively ensures that some output will always
eventually be visible, allowing to detect the current configuration of the system.

Definition 6. A specification with restarts (or simply specification) on (Σ?, Σ!, Στ)
is a non-blocking, repeatedly-observable TAIO S = (LS , lS0 , (Σ?⊎Σ!⊎Στ , X

S
p , IS , ES),

where ζ ∈ Σ? is the restart action. We assume that transitions carrying ζ all belong
to (LS × GMS (XS)× {ζ} × {XSp } × {lS0 }) (i.e., they reset all clocks and go back

to lS0) and from any reachable configuration, there exists a finite partial execution

containing ζ, i.e., for any s ∈ Reach(S), there exists µ s.t. s
µ·ζ−−→ sS0 .

The assumption on ζ-transitions directly entails that Reach(TS) is strongly-
connected. Being strongly connected ensures that there is always a possibility to

16 Léo Henry et al.

reach any (reachable) configuration, and will help us ensure that a strategy always
leads to a conclusive verdict, as it cannot be stuck in a situation where no path
exists to a reachability goal. We discuss the consequences of releasing the strong
connectivity hypothesis in Remark 2.

In practice, conformance testing links a mathematical model, the specification,
and a black-box implementation, that is a real-life physical object observed by its
interactions with the environment. As usual, in order to formally reason about
conformance, one needs to bridge the gap between the mathematical world and
the physical world. We then assume that the real implementation has the same
behavior as an unknown TAIO that we call implementation, and has the same
interface as the specification S.

Definition 7. Let S = (LS , lS0 , Σ? ⊎Σ! ⊎Στ , X
S
p , IS , ES) be a specification with

ζ ∈ Σ?. An implementation of S is an input-complete and non-blocking TAIO
I = (LI , lI0 , Σ? ⊎ Σ! ⊎ ΣIτ , X

I
p , I
I , EI). We denote by I(S) the set of possible

implementations of S.

The input-completeness and non-blocking hypotheses made on implementations
are not restrictions, but model real-world contingencies: the environment might
always provide any input and the system cannot alter the course of time. We do
not assume that resets are correctly implemented, i.e., that they reset all clocks
and go back to lI0 . Indeed, as we will see below, since conformance only considers
traces, the effect of incorrect resets could be later detected by a trace discrepancy.

Having defined the necessary objects, it is now possible to introduce the timed
input-output conformance (tioco) relation [KT09]. Intuitively, it can be understood
as “after any specified timed trace, outputs and delays of the implementation
should be specified”.

Definition 8. Let S be a specification and I ∈ I(S). We say that I conforms to S
for tioco, and write I tioco S when:

∀σ ∈ Traces(S), out(I after σ) ⊆ out(S after σ)

3.2 Selecting behaviours with test purposes

In practice, test purposes are used to describe the intention behind test cases,
typically some behaviours one wants to test because they describe basic func-
tionalities that must be correct and/or because a non-conformance is suspected.
For automatic test case synthesis, we formalize them with OTAIOs. These are
non-intrusive observers of the specification (its actions and clocks) with accepting
locations used to define those behaviours to be tested.

Definition 9. Given a specification S = (LS , lS0 , Σ? ⊎Σ! ⊎Στ , X
S
p , IS , ES), with

ζ ∈ Σ?, a test purpose for S is a pair (T P,AcceptT P) where T P = (LT P , lT P0 , Σ?⊎
Σ! ⊎ Στ , X

T P
p ⊎ XSp , IT P , ET P) is a complete OTAIO and AcceptT P ⊆ LT P is

a subset of accepting locations; it is required that transitions carrying restart
actions ζ in T P are of the form (l, g, ζ,XT Pp , lTP

0), i.e., they reset all proper clocks
and return to the initial state.

Control strategies for off-line testing of timed systems 17

In the following, we may simply write T P in place of (T P,AcceptT P). Notice
that we force test purposes to be complete because they are non-intrusive observers:
they should never constrain the runs of the specification they observe, but should
only label those accepted behaviours to be tested. Observed clocks of T P correspond
to the proper clocks of S that it observes through guards, but it cannot reset them.
T P may have its own proper clocks that it can reset; those clocks may serve e.g., to
count some delays unspecified or indirectly specified in S. The condition on restart
transitions in T P encodes the fact that it forgets behaviours of S preceding ζ (and
thus does not test it), and forces the test purpose to be strongly connected.

Start
true

Accept
true

Waste
true

y ≤ 5, ?ship2, ∅

true, !waste, ∅

oth

true, ?ζ, {y}

oth

true, ?ζ, {y}

oth

true, ?ζ, {y}

Fig. 8 A test purpose for the conveyor belt.

Example 4. Fig. 8 is a test purpose for our conveyor-belt example. It aims to test
that it is possible to ship a package to destination 2 in less than 5 time units, while
avoiding to visit Waste. The Accept set is limited to one location, named Accept.
The test purpose has a proper clock y, and no observed clocks. We denote by oth
(for otherwise) the set of transitions that reset no clocks, and are enabled for an
action other than ζ when no other transition is possible for this action in this
location. This set serves to complete the test purpose.

We now explain how the behaviours targeted by the test purpose T P are
characterized on the specification S by the construction of the product OTAIO
P = S × T P. Since S is a TAIO and the observed clocks of T P are exactly
the clocks of S, the product P is actually a TAIO. Furthermore, since T P is
complete, Sig(P) = Sig(S). By defining accepting locations in the product by
AcceptP = LS × AcceptT P , we get that signatures accepted in P are exactly
signatures of S accepted by T P. Formally:

Proposition 10. Let S be a specification and T P a test purpose on this specifica-
tion, P = S × T P their product. Then

Sig(P) = Sig(S) and SigAcceptP (P) = Sig(S) ∩ SigAcceptT P (T P)

Proof. Remember that the set of signatures of the product of two OTAIOs is
the intersection of the signatures of the two original OTAIOs [BSJK15], so that
Sig(S × T P) = Sig(S) ∩ Sig(T P); since T P is complete (it cannot prevent any
signature of S), Sig(T P) = (R≥0∪(Σ×2Xp∪Xo))∗, we conclude that Sig(S×T P) =
Sig(S).

We also have SigLS×Accept(T P)(S × T P) = SigLS (S) ∩ SigAcceptT P (T P) thus
SigAccept(P)(P) = Sig(S) ∩ SigAcceptT P (T P). ⊓⊔

18 Léo Henry et al.

By projection on traces, we immediately get:

Corollary 11. Let S be a specification, T P a test purpose, and P their product.
S and P are trace-equivalent.

This entails that I tioco S if, and only if, I tioco P. Observe that ζ synchronize
on S and on T P where it is available everywhere. This induces an extension to the
product, of the fact that Reach(TS) is strongly-connected:
Corollary 12. Let S be a specification, T P a test purpose, P their product and
TP its associated timed transition system. The reachable part of TP is strongly-
connected.

Proof. Let ((l1, l2), v) be a reachable configuration of TP . There exists a finite
partial execution of S starting in (l1, v) whose trace contains ζ, and thus by
Corollary 11 there exists a finite partial execution starting in ((l1, l2), v) whose
trace contains ζ. Hence this transition leads to the configuration s0 = ((lS0 , l

T P
0),0).

It comes that there exists a finite partial execution from ((l1, l2), v) to s0. Hence
any reachable configuration of TP is reachable from ((l1, l2), v). It can then be
concluded that the reachable part of TP is strongly-connected. ⊓⊔

Example 5. Fig. 9 represents the product of the conveyor-belt specification of Fig. 5
and the test purpose of Fig. 8. All nodes are named by the first letters of the
corresponding states of the specification (first) and of the test purpose (second).
The only accepting location is (D2, A).

D1, St
true

Bo, St
x ≤ 3

D2, St
true

D2,A
true

So,St
x ≤ 1

Wa,Wa
x ≤ 1

St,St
x ≤ 2

start

x ≤ 2
τ
{x}

true
!waste
{x}

true
τ
{x}

true, ?ship1, {x} y > 5, ?ship2, {x}

y ≤ 5, ?ship2, {x}

x = 3
!past
{x}

x = 1, !end1, {x}

x = 1
!end2
{x}

x = 1, !end2, {x}

true
?ζ
{x, y}

true
?ζ
{x, y}

true
?ζ
{x, y}

x = 1
τ
{x}

true
?ζ
{x, y}

Fig. 9 Product of the conveyor belt specification and the presented test purpose.

Control strategies for off-line testing of timed systems 19

We make one final hypothesis: we consider only pairs of specifications S and
test purposes T P whose product P can be exactly determinized. This restriction is
necessary for technical reasons: if the determinization is only approximated (i.e., the
deterministic product DPa is not trace-equivalent to the product P), we cannot
ensure in general that restarts are still reachable and thus we lose strong connectivity.
As noted in Remark 2 our approach can still be of interest in this general case, but
can benefit of some refinements. One possible method to achieve determinization
is to use the determinization game presented in [BSJK15]. This determinization is
known to be exact for several classes of timed automata, such as strongly-non-Zeno
automata, integer-reset automata, or event-recording automata. Furthermore this
game always constructs a deterministic timed automaton, and when the set of
traces is approximated, it preserves tioco-conformance in the following sense: if an
implementation I conforms to its specification S (equivalently it conforms to P),
then it also conforms to the approximate determinization DPa; in other words, non-
conformances with respect to the approximation DPa are still non-conformances
with respect to the specification S.

Given the product P = S × T P, let DP be its exact determinization. Then
Traces(DP) = Traces(P), and the reachability of restart transitions ζ is preserved.
We also realize the closure by Στ to obtain an observable model6. Moreover the
traces leading to AcceptDP and AcceptP are the same.

Example 6. The automaton in Fig. 10 is a deterministic approximation of the
product presented in Fig. 9. The internal transitions have collapsed, leading to an
augmented Start location.

D1, St
true

St
x ≤ 6

D2, St
true

D2,A
true

Wa
true

x ≤ 3
!waste
{x}

true, ?ship1, {x} y > 5, ?ship2, {x}

x ≤ 5, ?ship2, {x}

3 ≤ x ≤ 6, !past, {x}

x = 1, !end1, {x}

x = 1
!end2
{x}

x = 1, !end2, {x}

true, ?ζ, {x, y}

true, ?ζ, {x, y}

true, ?ζ, {x, y}

true
?ζ
{x, y}

Fig. 10 A deterministic approximation of the product.

3.3 Taking failure into account

At this stage of the process, we dispose of a deterministic and fully-observable
TAIO DP having exactly the same traces as the original specification S, but
equipped with a subset of locations labelled as AcceptDP which identifies those

6 The determinization procedure in [BSJK15] also realizes the closure.

20 Léo Henry et al.

traces of runs of S accepted by the test purpose. From this TAIO, we aim to build
a tester, that can monitor the implementation, feeding it with inputs and selecting
verdicts from the returned outputs.

We also need to explicitly model tioco-faulty behaviours (unspecified outputs
and delays after a specified trace), we simply complete DP with respect to its
output alphabet, by adding an explicit Fail location. This completed TAIO is called
the objective-centered tester.

Definition 13. From the deterministic TAIO DP = (LDP , lDP0 , Σ? ⊎ Σ!, X
DP
p ,

IDP , EDP), we construct its objective-centered tester OT = (LDP ∪ {Fail}, lDP0 ,
Σ? ⊎ Σ!, X

DP
p , IOT , EOT) where IOT (l) = true. The set of transitions EOT is

defined from EDP by:

EOT = EDP ∪
(⋃

l∈LDP

a∈ΣDP
!

{(l, g, a, ∅,Fail) | g ∈ Ga,l}
)

∪
{
(Fail, true, a, ∅,Fail) | a ∈ ΣDP

}
where for each a and l, Ga,l is a set of guards complementing the set of all
valuations v for which an a-transition is available from (l, v) (notice that Ga,l

generally is non-convex, so that it cannot be represented by a single guard).
Verdicts are defined on the configurations of OT as follows:

– Pass =
⋃

l∈AcceptDP ({l} × IDP(l));

– Fail = {Fail} × R≥0 ∪
⋃

l∈LDP

(
{l} ×

(
RXp

≥0 \ IDP(l)
))

.

Pass is the set of configurations reached by behaviours accepted by the test
purpose, and where a Pass verdict will be given. It is defined as the set of
configurations where the location l belongs to AcceptDP and the clock valuation
satisfies its invariant. Fail is the set of configurations supposedly corresponding to
non-conformant behaviours, and where a Fail verdict will be given. It is defined
as the set of configurations where either the reached location is the new location
Fail, or the invariant is violated. This should be understood with the definition of
transitions leading to this location Fail: the set of transitions EDP is completed so
that for each location l ∈ LDP , for each output a ∈ ΣDP! , transitions lead to Fail
in EOT if no guard of a transition in EDP carrying a is satisfied. Moreover loops
are added on any action in Fail, making them trap locations. Usually Inconclusive
is the set of configurations in which we cannot conclude to non-conformance, and
we cannot satisfy the test purpose anymore because AcceptDP is unreachable.
With our hypothesis on ζ-transitions, strong connectivity is preserved and such
configurations do not exist. We will thus enforce the apparition of Pass or Fail .
In the following, we present some of the useful properties of objective oriented
testers, notably what properties are kept from DP.

We first prove that strong connectivity is preserved, except for Fail states:

Proposition 14. Let OT be an objective-centered tester and T OT its associated
timed transition system. Then Reach(T OT) \ Fail is strongly-connected.

Proof. First, the fact that ζ-transitions are always reachable is preserved in OT .
Indeed, the same result holds from any state in S, and Traces(S) = Traces(S×T P).
The result then follows by exact determinizability of the product S ×T P and then
preserved in OT except in Fail states. ⊓⊔

Control strategies for off-line testing of timed systems 21

Proposition 14 is the reason our method assumes exact determinizability: we
cannot ensure in general strong connectivity: if determinization is approximated,
some traces leading to a restart might be lost, and the proposition would not hold
anymore.

A run ρ of an objective-centered tester OT is said conformant if it does not
reach Fail . We write Runconf(OT) for the set of conformant runs of OT , and
Sigconf(OT) (resp. Tracesconf(OT)) the corresponding signatures (resp. traces). We
write Runfail(OT) = Run(OT) \ Runconf(OT) and similarly for the signatures and
traces.

It is easy to prove the following:

Proposition 15. Let DP be the exact determinization of the product P between a
specification and a test purpose, and OT be its associated objective-centered tester.
Then

Traces(DP) = Tracesconf(OT).

Proof. An execution is in Runconf(OT) if it avoids Fail . This amounts to avoiding
location Fail and respecting the invariants of DP. By construction of OT , this
corresponds exactly to the runs of DP. ⊓⊔

By construction we can easily see that Tracesconf(OT) and Traces(Runfail(OT))
are disjoint.

It remains to say that OT is repeatedly-observable, except for state Fail .

Lemma 16. For a repeatedly-observable specification S, Reach(OT) \ Fail is
repeatedly-observable.

Proof. We know that Traces(S) = Traces(P), hence out(P after σ) = out(S after σ)
for all σ ∈ Traces(P). As Traces(DP) = Traces(P) by assumption, we also know
that for all σ ∈ Traces(DP), out(P after σ) ⊆ out(DP after σ). It comes

∀σ ∈ Traces(OT), out(S after σ) ⊆ out(OT after σ)

as OT only adds traces to DP. Hence for all s ∈ Reach(SOT) \ Fail , there exists

µ ∈ Sig(OT) s.t. s
µ−→ and trace(µ) /∈ R≥0. Indeed, there exists σ ∈ Tracesconf(OT)

such that s = OT after σ (as OT is deterministic outside of Fail) and for s′ ∈
S after σ, there exists µ′ such that s′

µ′

−→ and trace(µ′) /∈ R≥0. It suffices to take
µ ∈ pSig(OT) such that trace(µ) = trace(µ′), and by the previous trace-inclusion
property, such a trace exists. ⊓⊔

In this section we explained the construction of the objective-centered tester OT
from the specification and a test purpose and some of its properties. It represents
the most general behaviours of testers that detect both non-conformance to the
specification S and acceptance by the test purpose T P. In the next section, we go
further and explain how to tackle controllability problems by interpreting OT as a
game whose winning strategies will be test cases that try to avoid control losses.

22 Léo Henry et al.

4 Interpreting objectives into games

In this section, we first briefly introduce timed games in Subsection 4.1. Next,
we interpret objective-centered testers as reachability timed games between the
tester and the implementation. In Subsection 4.2 we propose to define test cases as
strategies of this game. In particular, we will compute rank-lowering strategies as
strategies that try to minimize control losses, i.e., situations where the tester needs
help from the implementation to reach Pass. We introduce a fairness criterion
in which these optimal strategies are winning in Subsection 4.3, and discuss the
properties of the resulting test cases (i.e., game structure and built strategy) in
Subsection 4.4.

4.1 Timed games

We introduce timed game automata [AMPS98b], which we later use to formalize
the interactions between the tester and the system under test.

Definition 17. A timed game automaton (TGA) is a timed automaton Ag =
(L, l0, Σc ⊎ Σu, X, I, E) where Σ = Σc ⊎ Σu is partitioned into actions that are
controllable by the player (Σc), and those that are not (Σu).

Intuitively, the tester is the player for which we will try to find strategies against
its opponent, the system under test, with the interpretation of Σc as inputs Σ?

controlled by the tester, and Σu as outputs Σ! controlled by the system but only
observed by the tester. We define the set of transitions with uncontrollable actions
Eu = {e ∈ E | act(e) ∈ Σu} and similarly for controllable actions Ec = {e ∈ E |
act(e) ∈ Σc}. Winning conditions will be discussed later. All the notions of runs,
signatures and traces defined previously for TAs naturally extend to TGAs.

We now define strategies on a game as functions associating to each run a delay
and an action to take after this delay.

Definition 18. Let Ag = (L, l0, Σc ⊎Σu, X, I, E) be a TGA. A strategy for the
player is a partial function f : Run(Ag) → R≥0 × (Σc ∪ {⊥}) \ {(0,⊥)} such that
for any finite run ρ, letting f(ρ) = (t, a), t ∈ elapse(last(ρ)) is a possible delay
from last(ρ), and there is an a-transition available from the resulting configuration
(unless a = ⊥).

The special action ⊥ is used to model situations where the player only wants
to spend some delay: when he or she waits for the opponent to take a move, or
when he or she has already won. We do not allow strategies to output (0,⊥), as it
would amount to instantly recompute a strategy, and would only loop until time
delays. Strategies give rise to outcomes i.e., a subset of runs of Ag that can be
observed while following the strategy f :

Definition 19. Let Ag = (L, l0, Σc ⊎Σu, X, I, E) be a TGA and f be a strategy
over Ag. The set of outcomes of f from a configuration s, denoted by Outcome(f, s)
(we might omit to mention s when it is clear from the context), is the smallest
subset of partial runs starting from s containing the empty partial run (whose last
configuration is s), and s.t. for any ρ ∈ Outcome(f), letting f(ρ) = (t, a) and
last(ρ) = (l, v), we have

Control strategies for off-line testing of timed systems 23

– ρ · ((l, v), t′, (l, v + t′)) · ((l, v + t′), e, (l′, v′)) ∈ Outcome(f) for any 0 ≤ t′ ≤ t
and e ∈ Eu such that ((l, v + t′), e, (l′, v′)) ∈ pRun(Ag);

– and
– either a = ⊥, and ρ · ((l, v), t, (l, v + t)) ∈ Outcome(f);
– or a ∈ Σc, and ρ · ((l, v), t, (l, v+ t)) · ((l, v+ t), e, (l′, v′)) ∈ Outcome(f) with

act(e) = a.

An infinite partial run is in Outcome(f) if infinitely many of its finite prefixes are.

Intuitively, the first point corresponds to the opponent (the system) taking
an uncontrollable transition while the player (the tester) waits. It also includes a
race for actions between the player and the opponent, when t′ = t. The second
point adds the runs corresponding to the actions selected by the player, when the
opponent does not interfere. Said differently, when the player decides to propose
(t, a), the opponent may either preempt it by playing an uncontrollable action
before t (first point), or let the player play (second point).

In this paper, we will be interested in reachability winning conditions, i.e., a
strategy is winning if it leads to Pass or Fail . Formally, a strategy f is winning in
a configuration s if and only if for any infinite ρ ∈ Outcome(f, s) there is a prefix
of ρ ending in Pass or Fail . We denote Win(Ag, s) the set of such executions, and
we say that the configuration s is winning for f .

The set of winning configurations can be computed in exponential time [AMPS98b,
CDF+05], by a backward iterative computation of the controllable predecessors,
starting from the target configurations and using the region abstraction.

In the following, we augment the backward computation by adding a special
step in the computation that encodes control losses, akin to the proposition
in [DLLN08a]. This allows us to compute strategies outside of winning states. Still,
we differ from [DLLN08a]’s approach in that we will only rely on that step when
the classical backward computation reaches a fixpoint. This allows to minimize the
dependency on the system, while resorting to it when necessary.

4.2 Rank-lowering strategies

We want to enforce conclusive verdicts when running test cases, i.e., either the
implementation does not conform to its specification (Fail verdict) or the awaited
behaviour appears (Pass verdict). We thus say that an execution ρ is winning
for the tester if it reaches a Fail or Pass configuration and denote by Win(Ag)
the set of such executions. Observe however that Fail is entirely controlled by
the implementation, which may or may not reveal non-conformances. If it does,
we will capture it. We will thus only target Pass. In the following, we consider
the previously defined DTAIO OT = (LOT , lOT0 , Σ? ⊎Σ!, Xp, I

OT , EOT) where
IOT (l) = true and Fail ∈ LOT as a Timed Game Automaton, and rename it AOTg .
Since we consider that the player is placed on the tester side, its controllable actions
are the inputs Σc = Σ? and its uncontrollable actions are the outputs Σu = Σ!,
and EOT is partitioned accordingly into EOTc and EOTu . We then formalize a test
case as a pair (AOTg , f) where f is a strategy on AOTg .

We restrict our discussion to TGAs where Pass configurations are reachable
(when seen as plain TAs). Indeed, when this is not the case (we will discuss the fact
that the proposed method can detect this), trying to construct a strategy seeking

24 Léo Henry et al.

x

y

1 2 3 4

1

2

3

4

PredΣ?

x

y

1 2 3 4

1

2

3

4

S’

V

tPred

x

y

1 2 3 4

1

2

3

4

ftPred

l2 l1 l3

x ≤ 4

?a

y ≥ 3

!b

x ≥ 3

Fig. 11 The different types of predecessors considered.

a Pass verdict is hopeless. This is a natural restriction, as it only rules out test
purposes that are unsatisfiable by the specification.

As discussed above, a strategy for the tester should target the Pass set in a
partially controllable way, while monitoring Fail . This partial controllability is
discussed using control losses. They intuitively correspond to uncontrollable loops
that could block the game progression. We define a hierarchy of configurations,
depending on their “distance” to Pass, based on the number of control losses one
has to suffer to reach Pass, and the number of transitions toward the next control
loss. This uses a backward algorithm, for which we define the predecessors of a set
of configurations.

Given a set of configurations S′ ⊆ S of AOTg , letting V denote the complement
of V , we define three kinds of predecessors of S′:

– discrete predecessors by a sub-alphabet Σ′ ⊆ Σ

PredΣ′(S′) = {(l, v) | ∃a ∈ Σ′, ∃(l, a, g,X ′, l′) ∈ EOT , v |= g∧(l′, v[X′←0]) ∈ S′}

– timed predecessors, while avoiding a set V of configurations:

tPred(S′, V) = {(l, v) | ∃t ∈ R≥0, (l, v + t) ∈ S′ ∧ ∀ 0 ≤ t′ ≤ t. (l, v + t′) /∈ V }

We furthermore write tPred(S′) = tPred(S′, ∅);
– final timed predecessors are defined for convenience (see below):

ftPred(S′) = tPred(Fail ,PredΣu
(S′)) ∪ tPred(PredΣ(S′))

These predecessors are illustrated in Fig. 11 and explained below. The first
set PredΣ′(S′) is the set of states from which a transition carrying an action in
Σ′ leads to S′; tPred(S′, V) is the set of states from which delaying leads to S′

without entering V ; the final timed predecessors correspond to situations where
the system is cornered into reaching S′ unless it chooses non-conformance or to
remain indefinitely idle: on the left side of the union, tPred(Fail ,PredΣu

(S′)) is
the set of states from which the system under test only has the choice between

Control strategies for off-line testing of timed systems 25

taking an uncontrollable transition to S′ (as no uncontrollable transition to S′ will
be available) or reach Fail . On the right side are the states from which there are no
transitions to anywhere but S′ in the future, hence the system will end up playing
a transition to S′. Intuitively, this is because the system will not remain infinitely
idle when it can act (this will be formally enforced by a fairness hypothesis).
Such situations are not considered as control losses, as the system can only take
a beneficial transition for the tester (either by going to S′ or to Fail). Observe
that tPred and ftPred need not return convex sets, but are efficiently computable
using Pred and simple set constructions [CDF+05].

Now, using these notions of predecessors, a hierarchy of configurations based
on the distance to Pass is defined.

Definition 20. The sequence (W j
i)j,i of sets of configurations is defined as:

– W 0
0 = Pass;

– W j
i+1 = πd(W

j
i) with πd(S

′) = tPred
(
S′ ∪ PredΣc

(S′),PredΣu
(S′)

)
∪ftPred(S′);

– W j+1
0 = πcl(W

j
∞) with πcl(S

′) = tPred(S′ ∪ PredΣ(S′)) and W j
∞ the limit7 of

the sequence (W j
i)i.

In this hierarchy, j corresponds to the minimum number of control losses the tester
has to go through (in the worst case) in order to reach Pass, and i corresponds to
the minimal number of steps before the next control loss (or to Pass).

The definition of W j+1
0 corresponds to the intuition of a control loss: for this

step in the construction of the outcomes, we consider that the tester can get help
from the implementation so as to enter W j

∞. Said differently, the cooperation
of the implementation is needed to construct a strategy beyond the fixpoint
W j
∞. This concerns several causes: first, no controllable actions lead to W j

∞, an
uncontrollable exists but another uncontrollable action reaches a configuration
with a larger rank and can be taken either before, at the same time or after the
one reaching W j

∞
8. Second, a controllable action leads to W j

∞ within some delay t
but some uncontrollable actions with a shorter delay t′ may preempt it and lead
to a configuration with larger rank.

On the other hand, in the construction of W j
i+1, the tester keeps full control to

enter W j
i , as there are no possible armful uncontrollable actions.

The computation of (W j
i)i corresponds to finding the controllable zones, the

least fix points W j
∞. Indeed W 0

∞ are exactly the winning configurations for the
reachability to Pass, and W j

∞ for the reachability to W j
0 . From W j

∞ a control-loss

step is taken to W j+1
0 . Finally, the hierarchy iterates this process and terminates

on its least fix point, effectively finding all configurations coreachable from Pass
and the minimal number of control losses for each of them.

Notice that the sequence (W j
i) is a non-decreasing sequence of regions, and

hence can be computed in time exponential in the size of XOT and linear in the
size of LOT .

We then have the following property saying that the computation of (W j
i)

covers all reachable states except Fail:

7 The sequence (W j
i)i is non-decreasing, and can be computed in terms of clock regions;

hence the limit exists and is reached in a finite number of iterations [CDF+05].
8 Notice that if no harmful uncontrollable action exists even after the one leading to W j

∞,
then ftPred(S′) captures the behaviour and there is no control loss

26 Léo Henry et al.

Proposition 21. There exists i, j ∈ N such that (Reach(AOTg) \ Fail) ⊆ W j
i .

Proof. Let s ∈ Reach(AOTg) \ Fail be a reachable configuration. Since i) Pass is

reachable from sT0 (by hypothesis); ii) there is a path from s back to the initial
configuration (Proposition 14), then Pass is reachable from s. Moreover, there is
such a path with length bounded by the number of regions times the number of
locations.

For each s ∈ Reach(AOTg) \ Fail , we fix a finite path to Pass, and reason by
induction on the length n of this path in order to prove that s ∈ Wn

0 :

– case n = 0: in this case s ∈ Pass = W 0
0 ;

– inductive case: we assume that the result holds for n, and take s with a path

to Pass of length n+ 1. Then s
γ−→ s′ for some γ with act(γ) ∈ Γ , and there

is a path from s′ to Pass of length at most n, so that s′ ∈ Wn
0 . Hence in the

worst case s ∈ Wn+1
0 .

This proves our result. ⊓⊔

As explained above, this property is based on the assumption that the Pass verdict
is reachable. Nevertheless, if this were not the case, it would be detected during the
hierarchy construction, which would then converge to a fixpoint not including sOT0 .
As all the configurations in which we want to define a strategy are covered by the
hierarchy, we can use it to define a preference relation (i.e., a total preorder) that
will guide the tester to better places in terms of control and distance to Pass.

Definition 22. Let s, s′ ∈ Reach(AOTg) \ Fail . The rank r(s) of s is the pair

(js = argmin
j∈N

(s ∈ W j
∞), is = argmin

i∈N
(s ∈ W js

i))

Moreover we define the preference relation ⪯ in Reach(AOTg) \ Fail as follows:

s ⪯ s′ when r(s) ≤N2 r(s′) where ≤N2 is the lexical order on N2.

First by Prop. 21, r is a well defined function on Reach(AOTg) \ Fail . When

r(s) = (js, is), it holds s ∈ W js
is

and js is the minimal number of control losses
before reaching an accepting state, and is is the minimal number of steps in the
strategy before the next control loss. Intuitively, if s ⪯ s′ it is easier, i.e., more
controllable and shorter in terms of the number of transitions, to drive trajectories
to Pass from s than from s′.

Proposition 23. ⪯ is a total preorder on Reach(AOTg) \ Fail.

Proof. ⪯ inherits transitivity and reflexivity from ≤N2 by r. It is not antisymmetric
since r is not injective: several configurations may have the same rank, for example,
all configurations of Pass have rank (0, 0). It is total since r is defined and ≤N2 is
total. ⊓⊔

Example 7. In Fig. 12, the (W j
i) are represented on the game constructed from

the OT corresponding to the deterministic TA presented in Fig 10. For clarity,
the Fail location and the transitions leading to it are not represented. In this
example, W 0

0 = (D2,A)× R≥0, W
1
0 = St× (y ≤ 5) and W 1

1 = St× (5 < x ≤ 6) ∪
{Wa, (D1,St), (D2,St)}×R≥0. The Fail verdict corresponds to Fail∪ (St× (x ≥ 6)).

Control strategies for off-line testing of timed systems 27

D1, St
true

St
true

D2, St
true

D2,A
true

Wa
true

x ≤ 3
!waste
{x}

true, ?ship1, {x} y > 5, ?ship2, {x}

y ≤ 5, ?ship2, {x}

3 ≤ x ≤ 6, !past, {x}

x = 1, !end1, {x}

x = 1
!end2
{x}

x = 1, !end2, {x}

true, ?ζ, {x, y}

true, ?ζ, {x, y}

true, ?ζ, {x, y}

true
?ζ
{x, y}

Fig. 12 The ranks of Ag .

l6l3

l5l4

l2

l1

l0start

true, ?a, ∅
true, !b, {x}

x ≤ 3, !b, ∅

x ≤ 4, !b, {x}

x ≥ 5, ?a, {x}

true, ?a, ∅

true, ?c, ∅

x > 5, ?c, {x}

x < 3, !b, ∅

true, !d, ∅

true, ?c, ∅

true, !b, {x}

Fig. 13 The ranks in a complex game.

Example 8. This notion of rank can be applied to many difficult games, i.e., games
where you can not always win, even out of the testing framework. For example,
the game in Fig. 13 has the following ranks, with all configurations in l6 considered
as accepting: (0, 0) in l6 × R≥0, (0, 1) in l5 × R≥0, (0, 2) in s4 × (x > 4), (1, 0)
in l3 × R≥0 ∪ l4 × (x ≤ 4), (1, 1) in l2 × (x < 3), (1, 2) in l2 × (x ≥ 3), (2, 0)
in l0 × (x ≤ 3) ∪ s1 × R≥0 and (2, 1) in l0 × (x > 3). Notice how control losses
correspond to the existence of uncontrollable loops stopping the tester from forcing
the progress as e.g., the self loop in l4 and the loop l1, l2, l3.

We use the preference relation ⪯ to define a strategy trying to decrease the rank
during the execution, i.e., decrease in each state both the distance to and the
number of control losses. For any s ∈ S, we write r−(s) for the largest rank such
that r−(s) <N2 r(s), and W−(s) for the associated set in (W j

i)j,i. We (partially)
order pairs (t, a) ∈ R≥0 ×Σ according to t. We call our strategies rank-lowering
because from any configuration s they target W−(s).

28 Léo Henry et al.

j=0

j=1

j=2

...

i=2 i=1 i=0

...

i=2 i=1 i=0

...

i=1 i=0

Pass

Fig. 14 A representation of the outcomes of a rank-lowering strategy.

Definition 24. A strategy f for the tester is rank-lowering if, for any finite run ρ
with last(ρ) = s = (l, v), it selects the smallest delay t satisfying one of the following
constraints:

– if s ∈ tPred(PredΣc
(W−(s))), then f(ρ) = (t, act(e)) for some e ∈ EOTc and

s
t−→ s′

e−→ s′′ with s′′ ∈ W−(s), s′ /∈ W− and t is minimal in the following

sense: if s
t′−→ e′

−→ s′′′ with s′′′ ∈ W−(s), e′ ∈ EOTc and t′ ≤ t, then v + t and
v + t′ belong to the same region;

– if s ∈ tPred(PredΣu
(W−(s))), then f(ρ) = (t,⊥) with t such that s

t−→ s′ /∈
PredΣu

(W−(s)), ∃t′ < t s
t′−→ s′′ ∈ PredΣu

(W−(s)) and t is minimal if such a
t exists. Else t is maximal in the same sense as above (maximal delay successor
region);

– if s ∈ tPred(W−(s)), then f(ρ) = (t,⊥) such that s
t−→ s′ with s′ ∈ W−(s), and

t is minimal in the same sense as above;
– otherwise f(ρ) = (t,⊥) where t is maximal in the same sense as above (maximal

delay-successor region).

The first three cases follow the construction of the (W j
i) and propose the shortest

behaviour leading to W−. The fourth case corresponds either to a configuration of
Pass, where W− is undefined, or to a ftPred leading to Fail , cases in which the
tester has won. Interestingly, at least rank-lowering strategies exist as W j

i covers
all reachable configurations (Proposition 21). The constraints of rank-lowering
strategies allow the creation of memoryless strategies, i.e., strategies that only rely
on properties of the current configuration without using the history of the trace
used to reach it. Indeed, they only use local information, aggregated during the
incremental construction of the (W j

i) sets. Hence, a straightforward implementation
only using these sets is memoryless.

Example 9. In Fig. 14 the structure of the (W j
i) is represented together with the

transitions that can be fired while playing a rank-lowering strategy. The dashed
arrows depict uncontrollable transitions while the plain arrows depict controllable
ones, both represented with their source and target W j

i .

Example 10. An example of a rank-lowering strategy on the automaton of Fig. 12 is:
in (D2,A), play ⊥ (as W 0

0 has been reached); in St, play (0, ?ship2) from W 1
0 ,

otherwise play (1,⊥). In any other state, play (0, ?ζ). The omission of Fail in

Control strategies for off-line testing of timed systems 29

Fig. 12 does not impact the strategy representation: Fail is a winning set of
configurations that is hit if conformance is violated, but can not be targeted by
the strategies.

Remark 2. It is worth noting that even in a more general setup where the models
are not equipped with ζ-transitions, as in [BJSK12], rank-lowering strategies may
still be useful: as they are defined on the co-reachable set of Pass, they can still
constitute test cases, and the configurations where they are not defined are exactly
the configurations corresponding to a Fail verdict or to an Inconclusive verdict,
i.e., no conclusions can be made since an accepting configuration cannot be reached.

Yet, rank-lowering strategies would gain to be refined in this case in order to
avoid Inconclusive verdicts as much as possible. Indeed, as defined in this paper,
a rank-lowering strategy would choose a path that is shorter but more prone to
inconclusiveness over a longer but safer path. This can be handled by adding a
new layer to the ranks encoding the distance to an inconclusive verdict (i.e., the
minimum number of uncontrollable actions required to reach one) over the path
to Pass. Strategies are defined in a similar fashion, but in this general case we
can not ensure that they win, as they could sometimes reach Inconclusive . This
approach has been developed in [Hen21].

The rank-lowering strategies allow to play beyond the scope of winning states by
relying on the implementation help, which is formalized as control losses, while
minimizing this reliance.

4.3 Making rank-lowering strategies win

A rank-lowering strategy is generally not a winning strategy: it relies on the
implementation fairly exploring its different possibilities and not repeatedly avoiding
an enabled transition. In this section, we introduce a notion of fairness and prove
that the rank-lowering strategies are winning under this fairness assumption.

The following lemma ensures that we cannot end in a livelock situation where
no transitions can be taken, forcing the system to delay indefinitely. It will be
used with the support of fairness, and will be the key to ensuring victory on fair
executions.

Lemma 25. If OT is repeatedly-observable, then for any run ρ = ((si, γi, si+1))i∈N ∈
Run(AOTg) ending with an infinite sequence of delays, if ρ does no reach Fail, there
is an infinite number of states in ρ where some transition e is enabled, formally,9

ρ /∈ Runfail(AOTg) ⇒ ∃e ∈ EOT ,
∞
∃ i ∈ N, e ∈ enab(si).

Proof. We show this lemma by contradiction. Assume that for some ρ ∈ Run(AOTg),
we have

ρ /∈ Runfail(AOTg) ∧ ∀e ∈ EOT ,
∞
∀ i ∈ N, e /∈ enab(si).

Let ρmax be the shortest prefix such that no transition is enabled after this prefix
along ρ (it exists because EOT is finite and there is only a finite number of these

9 In this expression,
∞
∃ i ∈ N, ϕ(i) means that ϕ(i) is true for infinitely many integers. In

the same way,
∞
∀ i ∈ N ϕ(i) means that ϕ(i) is true for all but finitely many integers.

30 Léo Henry et al.

prefixes per element of EOT). Consider any prefix ρ′ of ρ strictly containing ρmax;

there is no partial signature µ such that last(ρ′)
µ−→ and trace(µ) /∈ R≥0, as there

is no time successor of last(ρ′) with an enabled transition. This contradicts the
repeated-observability of OT out of Fail (as Ag and OT are the same automaton).

⊓⊔

In order to introduce our notion of fairness, we define three notions of the infinite
support of a run. The first one characterizes the set of regions encountered infinitely
often, while the other two distinguish the regions from which a discrete action
was taken infinitely often from the regions left by elapsing time infinitely often.
This distinction will help us precisely define the behaviour expected from the
implementation in each case.

Definition 26. Let ρ be an infinite run, its infinite regions support Inf(ρ) is the
set of regions appearing infinitely often in ρ:

Inf((si, γi, si+1)i∈N) = {reg ∈ R |
∞
∃ i ∈ N, si ∈ reg ∨

(γi ∈ R≥0 ∧ ∃s′i ∈ reg, ∃ti < γi, si
ti−→ s′i)}

Its infinite transitions support InfEOT (ρ) is the set of pairs (reg, e) of R × EOT

such that the transition e is taken infinitely often from the region reg:

InfEOT ((si, γi, si+1)i∈N) = {(reg, e) ∈ Inf(ρ)× EOT |
∞
∃ i ∈ N, si ∈ reg ∧ γi = e}

and its infinite waiting support is the set of regions left infinitely often by delaying
along ρ.

Inft((si, γi, si+1)i∈N) ={reg ∈ Inf(ρ) |
∞
∃ i ∈ N, γi ∈ R≥0 ∧

∃ ti < γi, si
ti−→ s′i ∈ reg ∧ si+1 ∈ reg′ ∈ SucTemp(reg)}

Using these notions of infinite support, we will define the fairness of a run.
The intuition behind it is as follows: if a behaviour is implemented, then it will be
ultimately displayed if repeatedly fireable. Formally, we only dispose of a model of
the specification, not the black box implementation. Hence we have to state our
fairness on the game model, which makes it stronger than this intuition.

We define the set of controllable enabled transitions for a region reg: enabc(reg) =
enab(reg) ∩ EOTc , and similarly the set of conformant uncontrollable enabled
transitions (i.e., that do not lead to Fail):

enabu,conf(reg) = enab(reg) ∩ EOTu \ {e ∈ EOT | next(e, reg) ⊆ Fail}.

Definition 27. An infinite run ρ in the TGA AOTg is said to be fair when:10

10 See definitions of enab, next, SucTemp in subsection 2.2.

Control strategies for off-line testing of timed systems 31

∀reg ∈ Inf(ρ),

{reg} × enabu,conf(reg) ⊆ InfEOT (ρ) ∧ (1) ∨ {e ∈ EOTc | (reg, e) ∈ InfEOT (ρ)} ̸= ∅

∨ reg ∈ Inft(ρ)
enabc(reg) = ∅ ∧ SucTemp(reg) ⊆ Fail

 (2)

We denote by Fair(AOTg) the set of fair runs of AOTg .

Fair runs model restrictions on the system runs corresponding to strategies of the
system. The first part (1) of the definition ensures that for each region visited
infinitely often, each tioco-conformant enabled action of the implementation will
be played infinitely often from that region. Intuitively, it means that the imple-
mentation explores all of its options infinitely often. The second part (2) ensures
that the implementation will infinitely often let the tester play in this region, by
saying that, either a discrete transition controllable by the tester has been played
infinitely often from this region (first disjunctive case), or that it has been possible
to leave this region by waiting infinitely often (second disjunctive case). This is
limited by the third disjunctive case, when no controllable transitions are enabled
and the strict timed successors of the region (maximal delay successor region),
if any, are included in Fail . 11 This definition of fairness is related to the “strong
fairness” notion used in model checking.

As we will in the following property, restricting to fair runs is sufficient to
ensure a winning execution when the tester uses a rank-lowering strategy. Intuitively,
combined with Lemma 25 and the repeated-observability assumption, it assures
that the system will keep providing outputs until a verdict is reached. The proof
reasons on regions, as fairness is defined on them, exploiting the fact that the
sets W j

i are coarser than regions: indeed a region is included in any W j
i it intersects.

In terms of testing, it means that if the implementation is fair, a tester following a
rank-lowering strategy will reach a conclusive verdict (Pass or Fail).

Theorem 28. Rank-lowering strategies are winning on Fair(AOTg) (i.e., all fair
outcomes are winning).

We prove this claim by contradiction. The general idea of the proof is to suppose
that there exists an infinite run in Fair(AOTg) that does not reach W 0

0 , and consider
a zone with minimal rank that is visited infinitely often during this run. We then
discuss according to the structure of the rank-lowering strategies, and, using the
fairness assumption, contradict minimality.

Proof. Let T = (SOT , sOT0 , ΓOT ,→T) be the timed transition system associ-
ated with AOTg , and let f be a rank-lowering strategy. We want to prove that

Outcome(f) ∩ Fair(AOTg) ⊆ Win(AOTg). We proceed by contradiction and sup-

pose that there exists an infinite run ρ ∈ Outcome(f) ∩ Fair(AOTg) such that

ρ /∈ Win(AOTg). We consider the set of prefixes of ρ ending in a ”decision point”
i.e., where the tester plays a pair delay-action, and the regions where those pre-
fixes end. Since there are infinitely many such prefixes but finitely many regions,

11 To be perfectly precise, the fairness should depend on the strategy played by the tester to
only restrict when the strategy tries to play a controllable action and not when it exists. We
hide this dependency for the sake of simplicity but do not use the extra strength of the fairness
in our results.

32 Léo Henry et al.

some region must appear infinitely many times, thus Inf(ρ) ̸= ∅. We denote by rmin

the minimal rank obtained in these regions, and pick a region reg for which
r(reg) = rmin. By definition of reg, there are infinitely many prefixes ν of ρ ending
in reg such that the strategy proposes the same pair f(last(ν)) = (tfν , a

f
ν).

Since Definition 24 distinguishes four possible ways to propose an action for a
rank-lowering strategy, at least one of them appears infinitely often. We examine
these four cases separately in our reasoning and each time construct a zone of
smaller rank that has to be in Inf(ρ), thus contradicting the minimality hypothesis
of rmin:

– case afν ∈ Σc, i.e., last(ν) ∈ tPred(PredΣc
(W−(last(ν)))): in this case, there

exists e ∈ EOTc such that act(e) = afν and last(ν)
tfν−→ s′ν

e−→ s′′ ∈ W−(last(ν)).
Because of the minimality constraint on tfν there exists a unique region reg′

such that for all ν, it holds s′ν ∈ reg′.
– If last(ν) ∈ reg′, then last(ν) ∈ Pred{af

ν}(W
−(last(ν))), and by the minimal-

ity constraint on tfν , no rank-lowering strategies can delay out of reg′; hence
reg′ /∈ Inft(ρ). Furthermore e ∈ enabc(reg). It follows from fairness that there
exists a controllable transition e′ such that (reg, e′) ∈ InfEOT (ρ). As this can
only be a transition labeled by afν by definition of Outcome(f) andAOTg is de-
terministic, e′ = e and next(e, reg) ∈ Inf(ρ)∩W−(last(ν)) = Inf(ρ)∩W−(reg).
f will take a decision once arriving in this region after each of the infinitely
many transitions, contradicting the minimality of rmin;

– otherwise, when last(ν) /∈ reg′ we have reg′ ∈ SucTemp(reg)\Fail . Hence by
construction of a rank-lowering strategy and definition of Outcome(f), there
is no controllable transition taken in reg along ρ. Hence by fairness reg ∈
Inft(ρ) and the first delay-successor region of reg is in Inf(ρ). By induction
on the number of regions between reg and reg′, using the case reg = reg′

as the base case and the previous remark as induction step, we know that
reg′ ∈ Inf(ρ). We can then conclude using the previous discussion;

– case afν = ⊥ and last(ν) ∈ tPred(PredΣu
(W−(last(ν)))): in this case there

exists e ∈ EOTu such that ∃t′ ≤ tfν , last(ν)
t′−→ e−→ s′′ ∈ W−(last(ν)). Moreover,

because of the minimality constraint on tfν there exists a unique region reg′

such that for all ν, last(ν)
tfν−→∈ reg′. As in the previous case,

– if reg = reg′ then by fairness (reg, e) ∈ InfEOT (ρ) as e is uncontrollable,
and thus next(e, reg) ∈ Inf(ρ) ∩ W−(reg), and f will take a new decision
once arriving in this region after each of the infinitely many transitions,
contradicting the minimality of rmin.

– otherwise reg′ ∈ SucTemp(reg) \ Fail , and since a rank-lowering strategy
will never play a discrete transition in reg, by minimality constraint on tfν
we have the same induction as in the previous case, and we can conclude
using the case reg = reg′;

– case afν = ⊥ and last(ν) ∈ tPred(W−(last(ν))): in this situation the simple
induction on time successor regions is enough to conclude that we reach infinitely
often a region in W−(last(ν)) in which (by minimality of the delays proposed
by a rank-lowering strategy) the strategy will take a decision infinitely often.
This contradicts once again the minimality of rmin;

– otherwise, eitherW−(last(ν)) is undefined and hence rmin = (0, 0), contradicting
the fact that ρ is not winning, or there is no partial execution from last(ν) to

Control strategies for off-line testing of timed systems 33

W−(last(ν)) meaning that the system can only delay. By construction of the
(W j

i), this corresponds to a timed predecessor of Fail . Hence the system is
cornered and can only delay to Fail , thus ρ should be winning. ⊓⊔

At this stage, we thus have identified a test-case generation method, starting
from the specification with restarts and the test purpose, and constructing a test
case as a strategy on the game created from the objective-centered tester. This
strategy is winning under the hypothesis of a fair implementation, meaning that
its execution is ensured to deliver in finite time a conclusive verdict Pass or Fail .
The complexity of this method is exponential in the size of DP. More precisely:

Proposition 29. Given a deterministic product DP, the objective-centered tester
OT can be linearly computed from DP, the construction of a strategy relies on the
construction of the W j

i , and is hence exponential in the size of XDP and linear in
the size of LDP .

Observe that if DP is obtained from P by the game presented in [BSJK15], then
LDP is doubly-exponential in the size of XS ⊎XT P ⊎XDP (notice that in the
setting of [BSJK15], XDP is a parameter of the algorithm, since determinization
depends on fixed ressources, namely the number of clocks of the resulting TA and
their maximal constants).

4.4 Properties of the test cases

Having constructed strategies for the tester, and identified a scope of implementation
behaviours that allows these strategies to enforce a conclusive verdict, we now
study the properties obtained by the test generation method presented above. In
fact the first properties do not depend on the strategy and were already valid in the
context of [BJSK12]. Their proofs are based on the exact correspondence between
Fail in OT and the non-conformant traces of S, and use the trace equivalence
of the different models (DP, P and S) to conclude. As they exploit mainly the
game structure AOTg , fairness is not used, and they do not rely on the strategy

being played. They are thus valid for any strategy in AOTg , not only rank-lowering
strategies. Only Proposition 34, the exhaustiveness property, uses rank-lowering
strategies and requires fairness.

Recall that a test case is a pair (AOTg , f) where AOTg is the game corresponding

to the objective-centered tester OT , and f is a strategy on AOTg . We will precise
when f is rank-lowering. We denote by T C(S, T P) the set of possible test cases
generated from a specification S and a test purpose T P, and T C(S) the set of
test cases for any test purpose. Recall that it is assumed that the test purposes
associated with a specification are restricted to those leading to a determinizable
product.

We first define parallel runs as the possible outcomes of a test case combined
with an implementation, which thus model their parallel composition.

Definition 30. Given a test case (AOTg , f) and an implementation I, their parallel
runs are the sequences ((si, s

′
i), (γi, γ

′
i), (si+1, s

′
i+1))i such that (si, γi, si+1)i is an

outcome of f in AOTg , ((s′i, γ
′
i, s
′
i+1))i is a run of I, and for all i, either γi = γ′i if

γi ∈ R≥0 or act(γi) = act(γ′i) otherwise. We write ParRun((AOTg , f), I) for the set

of parallel runs of the test case (AOTg , f) and of the implementation I.

34 Léo Henry et al.

We say that an implementation I fails a test case (AOTg , f), and write I fails

(AOTg , f), when there exists a run in ParRun((AOTg , f), I) that reaches Fail .
Our method is sound, that is, a conformant implementation cannot be detected as
failing a test case.

Proposition 31. The test-case generation method is sound: for any specification S,
it holds

∀I ∈ I(S), ∀(AOTg , f) ∈ T C(S), (I fails (AOTg , f) ⇒ ¬(I tioco S)).

Proof. Let S be a specification, I ∈ I(S) and (AOTg , f) ∈ T C(S). Suppose that

I fails (AOTg , f), we will prove that ¬(I tioco S).
Since I fails (AOTg , f), there is a finite run ρ of ParRun((AOTg , f), I) such that

last(ρ) ∈ Fail×SI and it is the first configuration of ρ in this set. Let σ = trace(ρ).
By construction of Fail , either σ = σ′ · t (if the configuration of Fail reached
corresponds to a faulty invariant) or σ = σ′ · a with a ∈ Σ! (and Fail is reached).
In both cases out(I after σ′) ⊈ out(DP after σ′), and by definition ¬(I tioco DP).

As Traces(P) = Traces(DP) by exact-determinizability hypothesis, ¬(I tioco P).
Finally, as Traces(P) = Traces(S), we have ¬(I tioco S), which concludes the proof.

⊓⊔

The next property says that, under the assumption that DP is an exact
determinization of P, for any generated test case and any implementation, if their
parallel execution follows a non-conformant trace, it raises a fail verdict. This
means that there is no approximation in the detection of non-conformances.

Proposition 32. The test generation method is strict: given a specification S,

∀I ∈ I(S), ∀(AOTg , f) ∈ T C(S), ¬(ParRun((AOTg , f), I) tioco S) ⇒ I fails (AOTg , f)

Proof. Let S be a specification, I ∈ I(S) and (AOTg , f) ∈ T C(S). Suppose

that ¬(ParRun((AOTg , f), I) tioco S). We want to show that I fails (AOTg , f).

By definition of ¬(ParRun((AOTg , f), I) tioco S), there exist σ ∈ Traces(S) and

a ∈ out(ParRun((AOTg , f), I) after σ) \ out(S after σ) with

out(ParRun((AOTg , f), I) after σ) =

{a ∈ Σ! ∪ R≥0 | ∃ρ ∈ ParRun((AOTg , f), I), trace(ρ) = σ · a}

the extension of outputs after a trace to parallel runs. Since DP is an exact
determinization of P we have the following equalities: Traces(S) = Traces(P) =
Traces(DP) = Tracesconf(OT). Since a ∈ R≥0∪Σ!, σ ·a ∈ Traces(OT) as invariants
have been removed, and the automaton has been completed on Σ! with transitions
to Fail). Hence σ ·a ∈ Traces(Runfail(OT)). Thus, for ρ ∈ ParRun((AOTg , f), I) such
that trace(ρ) = σ · a, last(ρ) ∈ Fail and I fails (AOTg , f). ⊓⊔

This method also enjoys a precision property: traces leading the test case to
Pass are exactly traces conforming to the specification and accepted by the test
purpose. The proof uses only properties of the game, the exact encoding of the
Accept states into the definition of Pass by propagation through the different test
artifact, and once more is valid for any strategy used.

Control strategies for off-line testing of timed systems 35

Proposition 33. The test case generation method is precise: for any specifica-
tion S and test purpose T P it can be stated that

∀(AOTg , f) ∈ T C(S, T P), ∀σ ∈ Traces(Outcome(f)),

AOTg after σ ∈ Pass ⇔ (σ ∈ Traces(S) ∧ T P after σ ∩ AcceptT P ̸= ∅)

Proof. Let σ be in Traces(Outcome(f)). Then AOTg after σ ∈ Pass if, and only if,

the run ρ such that trace(ρ) = σ (which is unique by determinism of AOTg out-

side Fail) is such that last(ρ) ∈ Pass, i.e., ρ ∈ Run(DP) and last(ρ) ∈ AcceptDP .
Hence DP after σ ∈ AcceptDP and as the determinization is exact, σ ∈ Traces(P)
and P after σ ∈ AcceptP , which gives by definition σ ∈ Traces(S) ∧ T P after σ ∩
AcceptT P ̸= ∅. ⊓⊔

Lastly, the test generation method when generating rank lowering strategies is
exhaustive in the sense that for any non-conformance, there exists a test case using
a rank lowering strategy that allows to detect it, under fairness assumption.

Proposition 34. The test generation method based on rank-lowering strategies is
exhaustive: for any exactly determinizable specification S and any implementation
I ∈ I(S) making fair runs

¬(I tioco S) ⇒ ∃(AOTg , f) ∈ T C(S), I fails (AOTg , f)

f where f is a rank lowering strategy.

Proof. To demonstrate this property, a test purpose is tailored to detect a given
non-conformance, by targeting a related conformant trace. Fairness ensures that
the tester will eventually hit this trace and then the particular non-conformance.

Let S be a specification, and I ∈ I(S) a non-conformant implementation. By
definition of ¬(I tioco S), there exists σ ∈ Traces(S) and a ∈ R≥0 ∪Σ! such that
a ∈ out(I after σ) and a /∈ out(S after σ). As S is repeatedly-observable, there
exists t ∈ R≥0 and b ∈ ΣSobs such that σ · t · b ∈ Traces(S). Because S is also
non-blocking, if a is a delay, we can take b ∈ ΣS! . Indeed, otherwise there would be
no trace controlled by the implementation for any finite time (say, for time a).

It is possible to build a test purpose T P that accepts exactly the trace σ · t · b.
It suffices to direct every transition that is not part of this trace to a sink location.
As σ · t · b ∈ Traces(S), it is also a trace of the product P = S ×T P. As S is exactly
determinizable and T P is deterministic, P is exactly determinizable by allowing
enough resources (number of clocks and maximal constant) to DP. We thus obtain
Traces(DP) = Traces(P) and σ · t · b ∈ Traces(DP). Hence, the minimal elements
of Pass are OT after σ · t · b.

From OT a test case (AOTg , f) can be built, with f a rank-lowering strategy.
By assumption, the implementation is playing fair runs, hence f is winning. So
there exists ρ ∈ Outcome(f) such that trace(ρ) = σ · t · b, and thus there exists
ρ′ ∈ Outcome(f) such that trace(ρ′) = σ. By assumption, σ · a ∈ Traces(I), and
depending on the nature of a:

– if a ∈ Σ! then σ · a ∈ Outcome(sOT0 , f) as AOTg is complete on Σ!. Hence

σ · a ∈ ParRun((AOTg , f), I) and as σ · a /∈ Traces(S) and the determinization is

exact, σ ·a /∈ Tracesconf(OT) and AOTg after σ ·a ∈ Fail . Hence I fails (AOTg , f);

36 Léo Henry et al.

– if a is a delay, then a > t, and b ∈ Σ!. As b is controlled by the imple-
mentation, and there is no invariant in AOTg , σ · a ∈ Outcome(f). Hence

σ · a ∈ ParRun((AOTg , f), I) and as σ · a /∈ Traces(S) and the determinization is

exact, σ ·a /∈ Tracesconf(OT) and AOTg after σ ·a ∈ Fail . Hence I fails (AOTg , f).
⊓⊔

The properties obtained in this subsection correspond exactly to the properties
already obtained in [BJSK12] in the determinizable case, our results only adapt
the formalism to the game formulation, making it more precise, especially on the
interaction between the test strategy and the implementation, as expected from
the game formulation. The construction of rank-lowering strategies allows to keep
the interesting properties of the test cases, while adding an equally important
information about the control of the test cases: the rank-lowering strategies
minimize the reliance on the implementation and are moreover winning in finite
time (i.e., an outcome of the strategy can not loop infinitely without reaching a
winning configuration) against all fair implementations.

5 Implementing rank-lowering strategies

The construction of a practical algorithm to implement a rank-lowering strategy
mainly boils down to the computation of a zone-based representation of the (W j

i)j,i
hierarchy.

Although the definition points toward a backward implementation, we fol-
low [CDF+05] and prefer a forward approach. Using this, while the exact ranks
are computed online, intermediary results provide an (over-)approximation of the
ranks.

5.1 Algorithm

We extend the zone-based on-the-fly algorithm for constructing winning strategies
in timed games proposed in [CDF+05]. Our algorithm, presented in Algorithm 1,
uses at its core a rank-updating function detailed in Algorithm 2. In order to
present these functions, we first define (j, i)− as the maximal rank strictly lower
than (j, i), so as to avoid the distinction between (j, i− 1) and (j − 1,∞) in the
algorithms. We also define, for a zone Z, a location l, an action α ∈ Σ, the set of
states reached from (l, Z) after α and some delay:

Postα((l, Z)) = {s′ | ∃s ∈ (l, Z). ∃t ∈ R≥0. s
α.t−−→ s′}.

As AOTg is deterministic, this set of states corresponds to a zone in a unique
location.

In the following, we heavily rely on the properties of πd and πcl, the two functions
used to compute the sets (W j

i)j,i (defined in Def. 20). We quickly formalize them
bellow.

Proposition 35. For π a function in {πd, πcl} and S′ a set of configurations,
π(S′) ⊇ S′ and π is increasing.

Control strategies for off-line testing of timed systems 37

Proof. For the first property, π(S′) ⊇ S′ is implied by the inclusion of null delays
in tPred. For the second property, notice that PredΣ and tPred are increasing, and
for πd that S′ decreases when S′ increases. ⊓⊔

These properties transfer to the computation of (W j
i)j,i and are used to ground the

algorithms. Although it was not formally stated before, it was already highlighted
in Fig. 14.

Our algorithm is based on a data structure approximating the W j
i . It takes

the form of a dictionary W (S) for each symbolic state S. It associates with each
rank (j, i) a set of configurations representing a union of zones in S denoted
W (S)[j, i]. In order to reduce the memory cost of W (S), we chose to keep in
memory only the ranks (j, i) that increase strictly the corresponding zone, i.e., such
that W (S)[j, i] ⊋ W (S)[j, i− 1]. The ranks that do not have their zone explicitly
stored hence refer to the greatest zone of lower rank. If no such zone exists, then
the zone is empty. During the execution of the algorithm, the dictionary W will
store under-approximations of the W j

i that will gradually converge to the target
sets.

The computation of an RLS realized by Algorithm 1 is based on a set Visited
of encountered symbolic states representing sets of configurations inside a given
location, and a queue Waiting of transitions to be processed12. For each symbolic
state, two informations are stored: a list Depend of incoming transitions, and a
dictionary W of the sets of configurations associated with the different ranks in
the state. The algorithm is based on a method updateRank that will be presented
later, and that correctly updates the estimates W (S) according to the available
information. After an initialization taking care of the timed successors of the initial
configuration, denoted by 0↗ (lines 1 to 8), the main loop starts in line 9 and iterates
until the reachable part of the automaton is explored, unless the initial configuration
is a final one. In this loop, at each iteration, a transition is taken out of Waiting
and processed. There are two cases to consider, presented in Fig. 15, where the
snake arrow represents the call to an edge, forward or backward. If S′ /∈ Visited the
transition was stored to explore and the first branch of the if executes (line 12).
It records the new S′ and analyses the local information as presented on the left side
of Fig. 15. If new information is acquired, its backpropagation is planed (line 18).
The second situation corresponds to a backpropagation triggered by a previous
call to line 18. In this case we are mostly interested in updating the ranks in the
source location of the transition, and backpropagating again if anything has been
updated. This corresponds to the right side of Fig. 15. Observe that line 23 is there
to account for an exploration that leads to an already explored state13.

Algorithm 2 describes the updateRank function. Its purpose is, for a given
state S, to update W (S)[(j, i)] according to the values of W at its successor
locations. The general structure of the algorithm is a while-loop on the ranks.
In order to compute more efficiently, and to avoid the complex discussion about
the unbounded range of i for a given j (and of j in general), it relies on the
identification of active ranks through active(j, i), i.e., ranks in which W (S′)[(j, i)]
strictly increases in a state S′ of interest (either S or a successor). We distinguish

12 The specific order of computation of the transitions does not impact termination or
correctness, but can be of great importance for efficiency.
13 It corresponds notably to the case where this transition is not triggered by a backpropagation
call.

38 Léo Henry et al.

S

S′

S′′ S′′

α

S

S′

S′′ S′′
α

Fig. 15 The two kind of edges popped from Waiting.

Computation of an RLS
Input: an observable DTA Ag

Output: A symbolic transition system augmented with information about ranks
(*Initialization*)

1 let S0 = (l0,0↗) in
2 Visited← {S0}
3 Waiting← {(S0, α, S′) | S′ = Postα(S0)}
4 Depend(S0) = ∅
5 let S = S0 ∩Pass in
6 if S ̸= ∅ then
7 W (S0)[(0, 0)]← S
8 updateRank(S0)

(*Main*)
9 while Waiting ̸= ∅ ∧ (s0 /∈W (S0)[(0, 0)]) do

10 e = (S, α, S′)← pop(Waiting)
11 if S′ /∈ Visited then
12 Visited := Visited ∪ {S′}
13 Depend(S′)← {(S, α, S′)}
14 let S = S′ ∩Pass in
15 if S ̸= ∅ then
16 W (S′)[(0, 0)]← Z
17 updateRank(S′)
18 Waiting := Waiting ∪ {e}
19 Waiting := Waiting ∪ {(S′, α, S′′) | S′′ = Postα(S′)}

else
20 improved = updateRank(S)
21 if improved then
22 Waiting := Waiting ∪ Depend(S)

23 Depend(S′) := Depend(S′) ∪ {e}
Algorithm 1: Computation of an RLS.

between local activity (in activeloc,) which has to be updated directly, and activity
in a successor (in activesuc), which is of interest for the next rank. Furthermore, we
identify the maximal active rank in rmax

14. This is realized in the initialization (until
line 7). In the following, we use the notations r.i and r.j to denote the components
of a rank. The rest of the algorithm is a loop in the ranks, which uses the jumpNext
method to update the current rank according to active. The loop terminates when
we went far enough to ensure that no more updates can be performed. Lines 9

14 The maximal rank may evolve during the algorithm execution as ranks are added to or
removed from active.

Control strategies for off-line testing of timed systems 39

to 11 compute the current estimation of W j
i according to W (S′). Then, if this set

is strictly greater than the current approximate, it is updated (starting line 16).
Otherwise, the data structure is cleared for this rank (lines 12 to 15). In both cases,
activeloc is updated.

function updateRank
Input: a symbolic state S
Output: a boolean denoting whether an improvement has been performed

1 let activesuc((j, i)) be true iff W (S′)[(j, i)] ̸= W (S′)[(j, i)−] for some successor S′ of S;

2 let activeloc((j, i)) be true iff W (S)[(j, i)] ̸= W (S)[(j, i)−];
3 active((j, i)) = activesuc((j, i)) ∨ activeloc((j, i));
4 rmax = max(j,i)active((j, i));

5 Tempj = −1 (* the last j for which a set has been improved *);

6 TempW = W (S)[(0, 0)] (* the current set *);
7 j = 0; i = 1;
8 while (j, i) ≤ (rmax.j + 1, 0) do

(* We try to improve the set of rank j,i *);
9 if i = 0 then

(*then we add a control loss*);

10 W ← πcl(∪S′∈VisitedW (S′)[(j, i)−]) ∩ S;

else
11 W ← πd(∪S′∈VisitedW (S′)[(j, i)−]) ∩ S;

12 if W ⊆ TempW then
(* this set does not need to be explicitly stored *);

13 erase W (S)[(j, i)] (*handles the data structure*);
14 activeloc(j, i)← false;
15 jumpNext;

else
16 if W (S)[(j, i)] ⊊ W then

(* the set was improved *);
17 W (S)[(j, i)]←W ;
18 activeloc((j, i))← true;
19 Tempj = j;

20 TempW = W ;

21 i := i+ 1;

22 return Tempj ≥ 0

Algorithm 2: Function updateRank.

The jumpNext method is used in updateRank to correctly select the next rank of
interest. Two main discussions are handled by Algorithm 3. First, local and distant
ranks have a different behaviour. Indeed, if something is stored in W (S)[(j, i)], it has
to be updated and thus we target (j, i). Else, we go to (j, i+1) as the construction
of a set only depends on the sets of strictly lesser rank. This distinction is performed
using the activeloc subset of active. Second, when the next active rank is after a
control loss (i.e., if j increases), we have to know if that control loss can increase
the set. If the control loss operator πcl has not been applied to the current set yet,
it could lead to an increase of the set and we go to (j + 1, 0) to test it. Else we can
go directly to the next active rank (with the discussion according to its location).

Example 11. Consider a symbolic state S such that ∅ ⊊ W (S)[0, 1] ⊊ W (S)[0, 4]
and no other ranks are stored locally. We suppose that it has two successors S′

and S′′ that only store one rank each: W (S′)[0, 0] and W (S)[2, 1]. This situation
and the result of a call to updateRank(S) are displayed in Fig. 16. The upper part

40 Léo Henry et al.

jumpNext;
(* we jump to the next possible improvement*);

1 let nr be the next active rank, including the current one.;
2 if j = nr.j then
3 if activeloc(nr) then
4 i := nr.i

else
5 i := nr.i+ 1;

else
6 if Tempj = j then

(* we might win something more after a control loss *);
7 j := j + 1;
8 i := 0;

else
9 j := nr.j;

10 if activeloc(nr) then
11 i := nr.i

else
12 i := nr.i+ 1;

Algorithm 3: jumpNext.

Fig. 16 An execution of updateRank(S). On the left side are the active ranks of S, and on
the right side the sets stored by W in S and its successors. Both sides are represented before
(above) and after (below) the algorithm execution.

j:
i:

(l)

0
0

0
1

(l)

0
4

2
1

j:
i:

(l)

0
0

0
1

0
2

(l)

0
4

1
0

2
1

2
2

W (S)[0, 1]

W (S)[0, 4]

W (S′)[0, 0] W (S′′)[2, 1]

W (S)[0, 1]

W (S′)[0, 0] W (S′′)[2, 1]

of the figure represents the situation before the execution of the algorithm, with
the active ranks being (0, 1), (0, 4)–active locally–, (0, 0) and (2, 1)–active in the
successors. The lower part of the figure represents the situation after the algorithm
execution when we suppose that W (S)[0, 1] = W (S)[0, 4] with the update. The
arrows and the dashed ranks represent the calls to jumpNext and the ranks that
are tested in updateRank.

Control strategies for off-line testing of timed systems 41

One benefit of using a forward algorithm is that it can provide us with sub-
optimal strategies before completion (as soon as the initial state is in some
W (S0)[(j, i)]). The forward approach also avoids exploring unreachable states,
and can be made more efficient by first pruning the sets of losing states (e.g., in-
conclusive states).

Observe that such sub-optimal strategies obtained before completion of updat-
eRank correspond to under-approximated (W j

i)j,i, i.e., to over-approximated ranks;
they do not prevent the implementation to send the test case to unexplored parts
of the model (but can be improved by running updateRank further).

Finally, notice that updateRank is the core of our algorithm, and that it can
actually be used both in forward and backward exploration algorithms.

5.2 Properties

We prove some interesting properties of the algorithm by constructing them from
properties of updateRank and invariants of the main-algorithm’s while loop.

The following lemma ensures that updateRank preserves the soundness of the ap-
proximation of the (W j

i)j,i. Informally, it states that from an under-approximation

of (W j
i)j,i, updateRank cannot overestimate it (i.e., overestimate the rank).

Lemma 36. The following property is an invariant of updateRank:

∀ i, j ∈ N, ∀S ∈ Visited, W (S)[(j, i)] ⊆ W j
i .

Proof. For two integers im and jm, we write P (jm, im) for the property:

∀j ≤ jm, i ≤ im, ∀S ∈ Visited. W (S)[(j, i)] ⊆ W j
i .

We show that property P (jm, im) is preserved by induction on (jm, im):

– for (j, i) = (0, 0), updateRank does not modify W , so P (0, 0) remains is pre-
served;

– fix jm, im ∈ N and suppose that P (jm, im) holds true. For a given S, either
W (S)[(jm, im + 1)] is not updated, and the property is trivially preserved , or

W (S)[(jm, im + 1)] = πd

(⋃
S′∈Visited

W (S′)[(jm, im)]
)
∩ S.

By hypothesis,
⋃

S′∈Visited W (S′)[(jm, im)] ⊆ W jm
im

. Furthermore, πd is an in-

creasing function. Hence W (S)[(jm, im + 1)] ⊆ πd(W
jm
im

) ∩ S = W jm
im+1 ∩ S. It

comes that P (jm, im + 1) is satisfied after the call to updateRank;
– fix jm ∈ N. We denote by ijm the minimal im such that (∀i′m > im, W jm

im
=

W jm
i′m

) holds. Suppose P (jm, ijm). For a given S, if W (S)[(jm + 1, 0)] is not

updated then the property is trivially preserved. Otherwise, with the same
arguments as in the previous case,

W (S)[(jm + 1, 0)] = πcl

(⋃
S′∈Visited

W (S′)[(jm, ijm)]
)
∩ S ⊆ W jm+1

0 .

It comes that after updateRank, P (jm + 1, 0) still holds. ⊓⊔

42 Léo Henry et al.

The following lemma states that W (S) is increasing as a function of the rank, when
it corresponds to a coherent approximation.

Lemma 37. For S ∈ Visited, (j, i) > (j′, i′), when updateRank is not processing a
rank between these two, we have that W (S)[(j, i)] ⊇ W (S)[(j′, i′)].

Proof. The proof can be done by a direct induction using the fact that either
W (S)[(j, i)] is not explicitly stored, which means that W (S)[(j, i)] = W (S)[(j, i)−]
or W (S)[(j, i)] = πd

(⋃
S′∈Visited W (S)[(j, i)−]

)
∩S ⊇

⋃
S′∈Visited W (S)[(j, i)−]∩S =

W (S)[(j, i)−] as for any set of configuration S′, πd(S
′) ⊇ S′, or the same with

πcl. ⊓⊔

We can now use the previous result to state that updateRank correctly updates the
approximation.

Lemma 38. The application of updateRank ensures the following two properties:

– if before the call,

∀S ∈ Visited, ∀i, j ∈ N, W (S)[(j, i+ 1)] ⊆ πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S

then, after the call,

∀S ∈ Visited, ∀i, j ∈ N, W (S)[(j, i+ 1)] = πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S;

– if before the call,

∀S ∈ Visited, ∀i, j ∈ N, W (S)[(j+1, 0)] ⊆ πcl

(⋃
S′∈Visited

W (S′)[(j+1, 0)−]
)
∩S

then, after the call,

∀S ∈ Visited, ∀j ∈ N,W (S)[(j + 1, 0)] = πcl

(⋃
S′∈Visited

W (S′)[(j + 1, 0)−]
)
∩ S.

Proof. We prove the first property. The same proof can be used for the second one
with πcl instead of πd. Fix j, i ∈ N and S ∈ Visited. Suppose that before the call to
updateRank, it holds

∀S ∈ Visited, ∀i, j ∈ N, W (S)[(j, i+ 1)] ⊆ πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S.

– if (j, i) is processed, then when the counters of the function are equal to (j, i) we
discuss according to the condition W ⊆ TempW . If it is satisfied, W (S)[(j, i)] is
suppressed from the data structure, meaning that W (S)[(j, i+1)] = TempW . We
furthermore have W ⊇ TempW as W ⊇ W (S)[(j, i)] as πd(S) ⊇ S and same for
πcl, and W (S)[(j, i)] ⊇ TempW by Lemma 37. It comes that W (S)[(j, i+ 1)] =
W and the property holds. If the condition W ⊆ TempW is not met, either the
test W (S)[(j, i+1)] ⊊ W is satisfied, and in this case the value of W (S)[(j, i+1)]
is updated to the correct value, or it is not, and by hypothesis, we already have
W (S)[(j, i+ 1)] = W = πd

(⋃
S′∈Visited W (S′)[(j, i)]

)
∩ S;

Control strategies for off-line testing of timed systems 43

– if (j, i) is not processed by updateRank, then it means that

πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S = πd

(⋃
S′∈Visited

W (S′)[(j, i)−]
)
∩ s.

Indeed it means that for all S′ that matter for S, there is no increase in
the region between these two ranks. In this case, we know that (j, i) is not
a key of W (S) as the rank is not local (else it would have been updated).
It comes that W (S)[(j, i)] = W (S)[(j, i)−]. By induction W (S)[(j, i)−] =
πd

(⋃
s′∈Visited W (S′)[(j, i)−]

)
∩ S (the induction is correctly initialized as (0, 1)

is processed). It comes that W (S)[(j, i)] = πd

(⋃
S′∈Visited W (S′)[(j, i)]

)
∩ S. ⊓⊔

Now that the properties of the auxiliary function are stated, we discuss of the
while loop invariants in the main algorithm.

Lemma 39. The following properties hold at the beginning and end of every
iteration of the while loop of Algorithm 1:

– for any S ∈ Visited and any α ∈ Σ, writing S′ = Postα(S), we have:

(S, α, S′) ∈ Waiting ∨
(
S′ ∈ Visited ∧ (S, α, S′) ∈ Depend(S′)

)
;

– for any S ∈ Visited and any i, j ∈ N, we have W (S)[(j, i)] ⊆ W j
i ;

– for any S ∈ Visited and any i, j ∈ N,

W (S)[(j, i+ 1)] ⊆ πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S ∧(

W (S)[(j, i+ 1)] = πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S ∨

∃(S, α, S′) ∈ Waiting, s.t. S′ ∈ Visited
)
;

– for any S ∈ Visited and any j ∈ N,

W (S)[(j + 1, 0)] ⊆ πcl(∪S′∈VisitedW (S′)[(j + 1, 0)−]) ∩ S ∧(
W (S)[(j + 1, 0)] = πcl(∪S′∈VisitedW (S′)[(j + 1, 0)−]) ∩ S ∨

∃(S, α, S′) ∈ Waiting, s.t. S′ ∈ Visited
)
.

Proof. We prove each point independently.

– We prove the first invariant by induction. Before the loop execution, Visited =
{S0} and Waiting = {(S0, α, S

′) | S′ = Postα(S0)}. Hence the property is
satisfied. During the loop execution, the property is conserved. Indeed, if
e = (S, α, S′) is the considered edge, if S′ ∈ Visited the only transition taken
out of Waiting is e and it is added to Depend(S′). Furthermore no state is added
to Visited, hence the property is preserved. Else, S′ /∈ Visited and (1) e is added
to Depend(S′) which ensures the property for Visited \ {S′}; (2) {(S′, α, S′′) |
S′′ = Postα(S

′)} is added to Waiting, ensuring the property of S′. In both cases,
the property is preserved;

– We show the property by induction:

44 Léo Henry et al.

– before the loop starts, the property holds. Indeed, either W (S0)[(0, 0)] is
empty, and in this case all the W (S0)[(j, i)] are empty, or W (S0)[(j, i)] =
S0 ∩ Pass ⊆ Pass = W 0

0 . In this case, observe that this satisfies the
property, and we know by Lemma 36 that updateRank preserves it;

– with the same argument as in the base case, we know thatW (S)[(0, 0)] ⊆ W 0
0 .

Hence, by induction hypothesis, the property is always satisfied before the
call to updateRank, and this call preserves it by Lemma 36.

– The property is holds when first entering the loop. Indeed, if S0 ∩Pass = ∅,
W (S0) is empty and the property trivially holds. Else, notice that W (S0)[(j, i+
1)] = W (S0)[(0, 0)] ⊆ πd(W (S0)[(j, i)]) ∩ s before the call to updateRank as
only W (S0)[(0, 0)] adds some states (i.e., implicitly, all other indices have equal
sets). By Lemma 38 the property is ensured upon entering the loop.
During the loop execution, when S′ is a new state, for all states previously
in Visited the property is ensured by induction hypothesis. For S′, if there is
no successor of S′ in Visited then the same proof as for S0 ensures that the
property holds at the end of the loop iteration. Else, such a (S′, α, S′′) is in
Waiting with S′′ ∈ Visited, and W (S′) is empty, and thus W (s′)[j, i + 1] is
included in every set, and in πd

(⋃
S′∈Visited

W (S′)[(j, i)]
)
∩ S. This is enough to

ensure the property.
When S′ is not a new state, the property is ensured for Visited\{S} by induction
hypothesis. For S, we know that W (S)[(j, i+ 1)] ⊆ πd

(⋃
S′∈Visited W (S′)[(j, i)]

)
.

Hence by Lemma 38 the call to updateRank ensures the property;
– this property is proved as the previous one, using the second case of the same

lemma. ⊓⊔

Finally, we prove that when the algorithm terminates the (W j
i) sets are correctly

computed on the reachable part of the game arena. The property further elaborates
that stopping the algorithm early (i.e., when Waiting still contains transitions to
be processed) leads to an under approximation of the sets. Early termination does
not appear in the code proposed in this paper, but could take place based on any
criterion (e.g., number of loops, finite rank in the initial configuration. . .) added
to the while loop condition.

Theorem 40. Upon termination of the algorithm, the ranks are correctly computed.
Early termination leads to an under-approximation is the (W j

i)j,i.

Proof. This is a corollary of the next—more technical—proposition.

For the following property, we restrict A to its reachable part. This allows to
state the third equation without intersecting W j

i with Reach(A) or
⋃

S∈Visited S.

Proposition 41. The following properties are invariants of the while loop of
updateRank:

∀S ∈ Visited, ∀i, j ∈ N. W (S)[(j, i)] ⊆ W j
i (A) (3)

Waiting = ∅ ⇒∀q ∈ ReachA((l0,0)),∃S ∈ Visited. q ∈ S (4)

Waiting = ∅ ⇒
(
∀S ∈ Visited, ∀, j, i. W (S)[(j, i)] ⊇ S ∩W j

i (A)
)

(5)

Equation 3 gives the under approximation that holds during the algorithm, and
ensure the properties for early termination. Equations 4 and 5 ensure the correct
computation in the case of complete termination (as in this case Waiting is empty).

Control strategies for off-line testing of timed systems 45

Proof. The first property is a direct consequence of the second point of Lemma 39.
For the second property, we reason by induction on an execution. Consider

q = (l, v) ∈ Reach((l0,0)). There exists a path qi
ai−→ qi+1 in A with q0 = (l0,0)

and qn = q. We associate an element of Visited to each qi by induction as follow:
q0 ∈ S0 by construction. If ai ∈ R, Si+1 = Si. As the elements of Visited are
closed by delays, we have qi+1 ∈ Si+1. Else Si+1 = Postai(Si). Observe that Si+1

is guaranteed to be in Visited by the first point of Lemma 39 as Waiting = ∅. By
induction, we have a Sn ∈ Visited such that q ∈ Sn.

In order to prove the third property, we suppose that Waiting = ∅ and prove
the property by induction:

– for (0, 0) we have that W (S)[(0, 0)] = S ∩Pass = S ∩W 0
0 ;

– for (j, i+1) suppose that the property is verified for (j, i) for any S′. W (S)[(j, i+
1)] = πd

(⋃
S′∈Visited W (S′)[(j, i)]

)
∩ S by the third point of Lemma 39 (as

Waiting = ∅). By induction hypothesis W (S)[(j, i+ 1)] ⊇ πd

(⋃
S′∈Visited W

j
i ∩

S′
)
∩ S as πd is an increasing function. As Waiting = ∅, we have Equation 4

and
⋃

S′∈Visited S
′ = Reach((l0,0)) and as we restricted A to its reachable part

we have W (S)[(j, i+ 1)] ⊇ πd

(⋃
S′∈Visited W

j
i

)
∩ S = W j

i+1 ∩ S. We thus have
our result;

– for (j + 1, i) we follow the same ideas using the fourth point of Lemma 39
instead of the third, and the properties of πcl instead of those of πd. ⊓⊔

6 Conclusion

This paper proposes a game approach to solve a controllability problem in con-
formance testing of real-time systems specified as timed automata with inputs
and outputs (TAIO). Given a specification and a test purpose targetting some
behaviours, test synthesis consists in producing test cases that control system
inputs and observe outputs and delays. Test cases can then be defined as strate-
gies of a game between the tester and the system, where the satisfaction of the
test purpose should be reached, while non-conformance is detected if it occurs.
Unfortunately winning strategies do not always exist, even under the simplifying
assumption of strong connectivity that we consider, and the tester needs to rely
on the system cooperation to reach its goal. Our aim is then to minimize those
cooperative outputs and delays, named control losses. We define rank-lowering
strategies that minimize both the distance to the satisfaction of a test purpose,
and the control losses and the distance to the next one. We also exhibit fairness
assumptions that are sufficient to make those strategies winning. In terms of testing
this means that if the system obeys those assumptions, exhaustiveness of the test
synthesis method is ensured, together with soundness, strictness and precision.
A symbolic algorithm is proposed to effectively compute these strategies, paving
the way to an implementation.

This paper opens numerous directions for future work. First, we intend to tackle
partial observation in a more complete and practical way. One direction consists
in finding weaker conditions under which approximate determinization [BSJK15]
preserves strong connectivity, a condition for the existence of winning strategies.
Another possibility would be to suppress the restart transition and the need for
exact determinization, and try to make strategies as robust as possible in this very

46 Léo Henry et al.

general setting where victory can not be ensured even with a fairness condition.
Quantitative aspects could also better meet practical needs. The distance to the goal
could also include the time distance or costs of transitions, in particular to avoid
restarts when they induce heavy costs but longer and cheaper paths are possible.
The fairness assumption could also be refined. For now it is assumed on both the
specification and the implementation. If the implementation does not implement
some outputs, a tester could detect it with a bounded fairness assumption [Ram98],
adapted to the timed context (after sufficiently many experiments traversing some
region all outputs have been observed), thus allowing a stronger conformance
relation with equality of output sets. A natural extension could also be to complete
the approach in a stochastic view, for example by constructing a probabilistic
approximation of the implementation behaviour during the test execution, allowing
to use this information to improve efficiency or to gradually adapt our fairness
expectation and thus the test strategy. Finally, we plan to implement the results
of this work in an open tool for the analysis of timed automata (e.g., TChecker,
https://www.labri.fr/perso/herbrete/tchecker/index.html), experiment on
real examples and check the scalability of the method.

Declaration

Partial financial support was received from French ANR project TickTac (ANR-18-
CE40-0015). The authors have no competing interests to declare that are relevant
to the content of this article.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, April 1994.

[AFH94] Rajeev Alur, Limor Fix, and Thomas A Henzinger. A determinizable class of
timed automata. In International Conference on Computer Aided Verification,
number 818 in Lecture Notes in Computer Science, pages 1–13. Springer, 1994.

[AMPS98a] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis
for timed automata. IFAC Proceedings Volumes, 31(18):447–452, 1998.

[AMPS98b] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis
for timed automata. In Proceedings of the 5th IFAC Cconference on System
Structure and Control (SSC’98), pages 469–474. Elsevier, July 1998.

[AMPS98c] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis
for timed automata1. IFAC Proceedings Volumes, 31(18):447–452, 1998. 5th IFAC
Conference on System Structure and Control 1998 (SSC’98), Nantes, France, 8-10
July.

[BB04] Laura Brandán Briones and Ed Brinksma. A test generation framework for quies-
cent real-time systems. In Jens Grabowski and Brian Nielsen, editors, Proceedings
of the 4th International Workshop on Formal Approaches to Software Testing
(FATES’04), volume 3395 of Lecture Notes in Computer Science, pages 64–78.
Springer-Verlag, September 2004.

[BJSK12] Nathalie Bertrand, Thierry Jéron, Amélie Stainer, and Moez Krichen. Off-line
test selection with test purposes for non-deterministic timed automata. Logical
Methods in Computer Science, 8(4), 2012.

[BSJK15] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. A game
approach to determinize timed automata. Formal Methods in System Design,
46(1):42–80, February 2015.

https://www.labri.fr/perso/herbrete/tchecker/index.html

Control strategies for off-line testing of timed systems 47

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on
Concurrency and Petri Nets, volume 2098 of Lecture Notes in Computer Science,
pages 87–124. Springer-Verlag, 2004.

[CDF+05] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and
Didier Lime. Efficient on-the-fly algorithms for the analysis of timed games. In
Mart́ın Abadi and Luca de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR’05), volume 3653 of Lecture Notes
in Computer Science, pages 66–80. Springer-Verlag, August 2005.

[CKL98] Richard Castanet, Ousmane Koné, and Patrice Laurençot. On-the-fly test gen-
eration for real time protocols. In Proceedings of the International Conference
On Computer Communications and Networks (ICCCN’98), pages 378–387. IEEE
Comp. Soc. Press, October 1998.

[COG98] Rachel Cardell-Oliver and Tim Glover. A practical and complete algorithm for
testing real-time systems. In Proceedings of the 5th Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486 of Lecture Notes
in Computer Science, pages 251–261. Springer-Verlag, September 1998.

[DLLN08a] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Cooperative
testing of timed systems. In Proceedings of the 4th Workshop on Model Based
Testing (MBT’08), volume 220 of Electronic Notes in Theoretical Computer
Science, pages 79–92, 2008.

[DLLN08b] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. A game-theoretic
approach to real-time system testing. In Proceedings of the Conference on Design,
Automation and Test in Europe (DATE’08), pages 486–491, March 2008.

[DLLN09] Alexandre David, KimG. Larsen, Shuhao Li, and Brian Nielsen. Timed testing
under partial observability. In International Conference on Software Testing
Verification and Validation (ICST09), pages 61–70. IEEE, 2009.

[DT98] Conrado Daws and Stavros Tripakis. Model checking of real-time reachability
properties using abstractions. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 313–329, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[ENDK02] Abdeslam En-Nouaary, Radhida Dssouli, and Ferhat Khendek. Timed WP-
method: Testing real-time systems. IEEE Transactions on Software Engineering,
28(11):1023–1038, November 2002.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In Eugene Asarin
and Patricia Bouyer, editors, International Conferences on Formal Modelling and
Analysis of Timed Systems (FORMATS’06), volume 4202 of Lecture Notes in
Computer Science, pages 187–199. Springer-Verlag, September 2006.

[Hen21] Léo Henry. There and back again : formal methods and model learning for real-time
systems. PhD thesis, University of Rennes 1, France, December 2021.

[HJM18] Léo Henry, Thierry Jéron, and Nicolas Markey. Control strategies for off-line
testing of timed systems. In SPIN 2018 - International Symposium on Model
Checking Software, pages 171–189, 06 2018.

[HMN16] Robert M Hierons, Mercedes G Merayo, and Manuel Núñez. Controllability
through nondeterminism in distributed testing. In IFIP International Conference
on Testing Software and Systems, pages 89–105. Springer, 2016.

[KLSV03] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed
I/O automata: A mathematical framework for modeling and analyzing real-time
systems. In Real-Time Systems Symposium, pages 166–177, January 2003.

[KT04] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-time
systems. In Susanne Graf and Laurent Mounier, editors, International Workshop on
Model Checking Software (SPIN2004), number 2989 in Lecture Notes in Computer
Science, pages 109–126, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[KT09] Moez Krichen and Stavros Tripakis. Conformance testing for real-time systems.
Formal Methods in System Design, 34(3):238–304, June 2009.

[LMN04] Kim Guldstrand Larsen, Marius Mikučionis, and Brian Nielsen. Online testing of
real-time systems using Uppaal. In Jens Grabowski and Brian Nielsen, editors,
Proceedings of the 4th International Workshop on Formal Approaches to Software
Testing (FATES’04), volume 3395 of Lecture Notes in Computer Science, pages
79–94. Springer-Verlag, September 2004.

48 Léo Henry et al.

[Min17] Antoine Miné. Tutorial on static inference of numeric invariants by abstract
interpretation. Foundations and Trends in Programming Languages, 4(3-4):120–
372, 2017.

[NS03] Brian Nielsen and Arne Skou. Automated test generation from timed automata.
International Journal on Software Tools for Technology Transfer, 5(1):59–77,
November 2003.

[Ram98] Solofo Ramangalahy. Strategies for comformance testing. Research Report 98-010,
Max-Planck Institut für Informatik, May 1998.

[RW89] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE; Special issue on Dynamics of Discrete Event Systems,
77(1):81–98, 1989.

[SPKM08] P Vijay Suman, Paritosh K Pandya, Shankara Narayanan Krishna, and Lakshmi
Manasa. Timed automata with integer resets: Language inclusion and expressive-
ness. In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 78–92. Springer, 2008.

[SVD01] Jan Springintveld, Frits Vaandrager, and Pedro R. D’Argenio. Testing timed
automata. Theoretical Computer Science, 254(1-2):225–257, March 2001.

[Tre96] Jan Tretmans. Conformance testing with labelled transition systems: Implemen-
tation relations and test generation. Computer Networks and ISDN Systems,
29(1):49–79, 1996.

[Tri04] Stavros Tripakis. Folk theorems on the determinization and minimization of timed
automata. In Kim Guldstrand Larsen and Peter Niebert, editors, International
Conferences on Formal Modelling and Analysis of Timed Systems (FORMATS’03),
volume 2791 of Lecture Notes in Computer Science, pages 182–188, Berlin, Hei-
delberg, 2004. Springer-Verlag.

[vdB20] Petra van den Boss. Coverage and Games in Model-Based Testing. PhD thesis,
Radboud University Nijmegen, 2020.

[Yan04] Mihalis Yannakakis. Testing, optimization, and games. In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP’04),
Lecture Notes in Computer Science, pages 28–45. Springer-Verlag, 2004.

	Introduction
	Timed automata and extensions
	The testing framework for timed automata
	Interpreting objectives into games
	Implementing rank-lowering strategies
	Conclusion

