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Abstract. We present abstraction-refinement algorithms for model check-
ing safety properties of timed automata. The abstraction domain we con-
sider abstracts away zones by restricting the set of clock constraints that
can be used to define them, while the refinement procedure computes the
set of constraints that must be taken into consideration in the abstraction
so as to exclude a given spurious counterexample. We implement this
idea in two ways: an enumerative algorithm where a lazy abstraction
approach is adopted, meaning that possibly different abstract domains
are assigned to each exploration node; and a symbolic algorithm where
the abstract transition system is encoded with Boolean formulas.

1 Introduction

Model checking [26,10,12,4] is an automated technique for verifying that the set
of behaviors of a computer system satisfies a given property. Model-checking
algorithms explore finite-state automata (representing the system under study) in
order to decide if the property holds; if not, the algorithm returns an explanation.
These algorithms have been extended to verify real-time systems modelled as
timed automata [3,2], an extension of finite automata with clock variables to
measure and constrain the amount of time elapsed between occurrences of transi-
tions. The state-space exploration can be done by representing clock constraints
efficiently using convex polyhedra called zones [9,8]. Algorithms based on this
data structure have been implemented in several tools such as Uppaal [7], and
have been applied in various industrial cases.

The well-known issue in the applications of model checking is the state-space
explosion problem: the size of the state space grows exponentially in the size
of the description of the system. There are several sources for this explosion:
the system might be made of the composition of several subsystems (such as a
distributed system), it might contain several discrete variables (such as in a piece
of software), or it might contain a number of real-valued clocks as in our case.

Numerous attempts have been made to circumvent this problem. Abstraction
is a generic approach that consists in simplifying the model under study, so as
to make it easier to verify [13]. Existential abstraction may only add extra
behaviors, so that when a safety property holds in an abstracted model, it also
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holds in the original model; if on the other hand a safety property fails to hold,
the model-checking algorithms return a witness trace exhibiting the non-safe
behaviour: this either invalidates the property on the original model, if the
trace exists in that model, or gives information about how to automatically
refine the abstraction. This approach, named CEGAR (counter-example guided
abstraction refinement) [11], was further developed and used, for instance, in
software verification (BLAST [20], SLAM [5], ...).

The CEGAR approach has been adapted to timed automata, e.g. in [14,18],
but the abstractions considered there only consist in removing clocks and discrete
variables, and adding them back during refinement. So for most well-designed
models, one ends up adding all clocks and variables which renders the method
useless. Two notable exceptions are [22], in which the zone extrapolation opera-
tors are dynamically adapted during the exploration, and [28], in which zones are
refined when needed using interpolants. Both approaches define “exact” abstrac-
tions in the sense that they make sure that all traces discovered in the abstract
model are feasible in the concrete model at any time.

In this work, we consider a more general setting and study predicate abstrac-
tions on clock variables. Just like in software model checking, we define abstract
state spaces using these predicates, where the values of the clocks and their
relations are approximately represented by these predicates. New predicates are
generated if needed during the refinement step. We instantiate our approach by
two algorithms. The first one is a zone-based enumerative algorithm inspired by
the lazy abstraction in software model checking [19], where we assign a possibly
different abstract domain to each node in the exploration. The second algorithm
is based on binary decision diagrams (BDD): by exploiting the observation that a
small number of predicates was often sufficient to prove safety properties, we use
an efficient BDD encoding of zones similar to one introduced in early work [27].

Let us explain the abstract domains we consider. Assume there are two clock
variables x and y. The abstraction we consider consists in restricting the clock
constraints that can be used when defining zones. Assume that we only allow to
compare x with 2 or 3; that y can only be compared with 2, and x−y can only be
compared with −1 or 2. Then any conjunction of constraints one might obtain in
this manner will be delimited by the thick red lines in Fig. 1; one cannot define a
finer region under this restriction. The figure shows the abstraction process: given
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(a) Abstraction of zone 1 ≤ x, y ≤ 2
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(b) Abstraction of zone y ≤ 1 ∧ 1 ≤ x− y ≤ 2

Fig. 1: The abstract domain is defined by the clock constraints shown in thick
red lines. In each example, the abstraction of the zone shown on the left (shaded
area) is the larger zone on the right.



a “concrete” zone, its abstraction is the smallest zone which is a superset and is
definable under our restriction. For instance, the abstraction of 1 ≤ x, y ≤ 2 is
0 ≤ x, y ≤ 2 ∧ −1 ≤ x− y (cf. Fig. 1a).

Related Works. We give more detail on zone abstractions in timed automata.
Most efforts in the literature have been concentrated in designing zone abstraction
operators that are exact in the sense that they preserve the reachability relation
between the locations of a timed automaton; see [6]. The idea is to determine
bounds on the constants to which a given clock can be compared to in a given
part of the automaton, since the clock values do not matter outside these bounds.
In [21,22], the authors give an algorithm where these bounds are dynamically
adapted during the exploration, which allows one to obtain coarser abstractions.
In [28], the exploration tree contains pairs of zones: a concrete zone as in the
usual algorithm, and a coarser abstract zone. The algorithm explores all branches
using the coarser zone and immediately refines the abstract zone whenever an
edge which is disabled in the concrete zone is enabled. In [17], a CEGAR loop
was used to solve timed games by analyzing strategies computed for each abstract
game. The abstraction consisted in collapsing locations.

Some works have adapted the abstraction-refinement paradigm to timed
automata. In [14], the authors apply “localization reduction” to timed automata
within an abstraction-refinement loop: they abstract away clocks and discrete
variables, and only introduce them as they are needed to rule out spurious
counterexamples. A more general but similar approach was developed in [18].
In [30], the authors adapt the trace abstraction refinement idea to timed automata
where a finite automaton is maintained to rule out infeasible edge sequences.

The CEGAR approach was also used recently in the LinAIG framework for
verifying linear hybrid automata [1]. In this work, the backward reachability algo-
rithm exploits don’t-cares to reduce the size of the Boolean circuits representing
the state space. The abstractions consist in enlarging the size of don’t-cares to
reduce the number of linear predicates used in the representation.

2 Timed Automata and Zones

2.1 Timed automata

Given a finite set of clocks C, we call valuations the elements of RC≥0. For a clock
valuation v, a subset R ⊆ C, and a non-negative real d, we denote with v[R← d]
the valuation w such that w(x) = v(x) for x ∈ C \R and w(x) = d for x ∈ R, and
with v + d the valuation w′ such that w′(x) = v(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock. An atomic guard is a formula of the
form x ≺ k or x − y ≺ k with x, y ∈ C, k ∈ N, and ≺ ∈ {<,≤, >,≥}. A guard
is a conjunction of atomic guards. A valuation v satisfies a guard g, denoted
v |= g, if all atomic guards hold true when each x ∈ C is replaced with v(x).
Let JgK = {v ∈ RC≥0 | v |= g} denote the set of valuations satisfying g. We write
ΦC for the set of guards built on C.



A timed automaton A is a tuple (L, Inv, `0, C, E), where L is a finite set of
locations, Inv : L → ΦC defines location invariants, C is a finite set of clocks,
E ⊆ L×ΦC × 2C ×L is a set of edges, and `0 ∈ L is the initial location. An edge

e = (`, g, R, `′) is also written as `
g,R−−→ `′. For any location `, we let E(`) denote

the set of edges leaving `.

A configuration of A is a pair q = (`, v) ∈ L×RC≥0 such that v |= Inv(`). A run
of A is a sequence q1e1q2e2 . . . qn where for all i ≥ 1, qi = (`i, vi) is a configuration,
and either ei ∈ R>0, in which case qi+1 = (`i, vi+ei), or ei = (`i, gi, Ri, `i+1) ∈ E,
in which case vi |= gi and qi+1 = (`i+1, vi[Ri ← 0]). A path is a sequence of edges
with matching endpoint locations.

2.2 Zones and DBMs

Several tools for timed automata implement algorithms based on zones, which
are particular polyhedra definable with clock constraints. Formally, a zone Z is a
subset of RC≥0 definable by a guard in ΦC .

We recall a few basic operations defined on zones. First, the intersection Z∩Z ′
of two zones Z and Z ′ is clearly a zone. Given a zone Z, the set of time-successors
of Z, defined as Z↑ = {v + t ∈ RC≥0 | t ∈ R≥0, v ∈ Z}, is easily seen to be

a zone; similarly for time-predecessors Z↓ = {v ∈ RC≥0 | ∃t ≥ 0. v + t ∈ Z}.
Given R ⊆ C, we let ResetR(Z) be the zone {v[R ← 0] ∈ RC≥0 | v ∈ Z}, and

Freex(Z) = {v′ ∈ RC≥0 | ∃v ∈ Z, d ∈ R≥0, v′ = v[x← d]}.
Zones can be represented as difference-bound matrices (DBM) [15,8]. Let C0 =

C ∪ {0}, where 0 is an extra symbol representing a special clock variable whose
value is always 0. A DBM is a |C0| × |C0|-matrix taking values in (Z× {<,≤}) ∪
{(+∞, <)}. Intuitively, cell (x, y) of a DBM M stores a pair (d,≺) representing
an upper bound on the difference x − y. For any DBM M , we let JMK denote
the zone it defines.

While several DBMs can represent the same zone, each zone admits a canonical
representation, which is obtained by storing the tightest clock constraints defining
the zone. This canonical representation can be obtained by computing shortest
paths in a graph where the vertices are clocks and the edges weighted by clock
constraints, with natural addition and comparison of elements of (Z× {<,≤}) ∪
{(+∞, <)}. This graph has a negative cycle if, and only if, the associated DBM
represents the empty zone.

All the operations on zones can be performed efficiently (in O(|C0|3)) on their
associated DBMs while maintaining reduced form. For instance, the intersection
N = Z ∩ Z ′ of two canonical DBMs Z and Z ′ can be obtained by first com-
puting the DBM M = min(Z,Z ′) such that M(x, y) = min{Z(x, y), Z ′(x, y)}
for all (x, y) ∈ C02, and then turning M into canonical form. We refer to [8]
for full details. By a slight abuse of notation, we use the same notations for
DBMs as for zones, writing e.g. M ′ = M↑, where M and M ′ are reduced DBMs
such that JM ′K = JMK↑. Given an edge e = (`, g, R, `′), and a zone Z, we define
Poste(Z) = Inv(`′) ∩ (g ∩ ResetR(Z))↑, and Pree(Z) = (g ∩ FreeR(Inv(`′) ∩ Z))↓.



For a path ρ = e1e2 . . . en, we define Postρ and Preρ by iteratively applying Postei
and Preei respectively.

2.3 Clock-predicate abstraction and interpolation

For all clocks x and y in C0, we consider a finite set Dx,y ⊆ N×{≤, <}, and gather
these in a table D = (Dx,y)x,y∈C0 . D is the abstract domain which restricts zones
to be defined only using constraints of the form x − y ≺ k with (k,≺) ∈ Dx,y,
as seen earlier. Let us call D the concrete domain if Dx,y = N × {≤, <} for
all x, y ∈ C0. A zone Z is D-definable if there exists a DBM D such that Z = JDK
and D(x, y) ∈ Dx,y for all x, y ∈ C0. Note that we do not require this witness
DBM D to be reduced; the reduction of such a DBM might introduce additional
values. We say that domain D′ is a refinement of D if for all x, y ∈ C0, we have
Dx,y ⊆ D′x,y.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2R

C
≥0

where αD(Z) is the smallestD-definable zone containing Z. For any reduced DBMD,
αD(JDK) can be computed by setting D′(x, y) = min{(k,≺) ∈ Dx,y | D(x, y) ≤
(k,≺)} (with min ∅ = (∞, <)).

An interpolant for a pair of zones (Z1, Z2) with Z1 ∩ Z2 = ∅ is a zone Z3

with Z1 ⊆ Z3 and Z3∩Z2 = ∅1 [28]. We use interpolants to refine our abstractions;
in order not to add too many new constraints when refining, our aim is to find
minimal interpolants : define the density of a DBM D as d(D) = #{(x, y) ∈ C02 |
D(x, y) 6= (∞, <)}. Notice that while any pair of disjoint convex polyhedra can
be separated by hyperplanes, not all pairs of disjoint zones admit interpolants of
density 1; this is because not all (half-spaces delimited by) hyperplanes are zones.

Lemma 1. There exist pairs of zones accepting no simple interpolants.

Proof. Consider 3-dimensional zones A, defined as z = 0 ∧ x = y, and B, defined
as y ≥ 2 ∧ z ≤ 2 ∧ y − x ≤ 1 ∧ x− z ≤ 1. Both zones and their canonical DBMs
are represented on Fig. 2.

We observe that they are disjoint: if a triple (x, y, z) were in both A and B,
then x = y and z = 0 (for being in B); in A, y ≥ 2, hence also x ≥ 2, contradicting
x− z ≤ 1.

Now, assume that there is a simple interpolant I, with A ∩ I = ∅ and B ⊆ I.
In the canonical DBM of I, only one non-diagonal element is not (+∞, <);
assume I(x, y) 6= (+∞, <). Then we must have A(y, x) + I(x, y) < (0,≤), and
B(x, y) ≤ I(x, y). Then A(x, y) +B(x, y) < (0,≤). However, it can be observed
that in our example, A(x, y) +B(y, x) ≥ (0,≤) for all pairs (x, y). ut

Still, we can bound the density of a minimal interpolant:

Lemma 2. For any pair of disjoint, non-empty zones (A,B), there exists an
interpolant of density less than or equal to |C0|/2.
1 It is sometimes also required that the interpolant only involves clocks that have

non-trivial constraints in both Z1 and Z2. We do not impose this requirement in our
definition, but it will hold true in the interpolants computed by our algorithm.
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(0,≤) (+∞, <) (+∞, <) (0,≤)

(+∞, <) (0,≤) (0,≤) (+∞, <)
(+∞, <) (0,≤) (0,≤) (+∞, <)

(0,≤) (+∞, <) (+∞, <) (0,≤)



B =


(0,≤) (3,≤) (4,≤) (2,≤)

(−1,≤) (0,≤) (1,≤) (1,≤)
(−2,≤) (1,≤) (0,≤) (0,≤)
(0,≤) (1,≤) (2,≤) (0,≤)


Fig. 2: Two zones that cannot be separated by a simple interpolant

Proof. Assume that A and B are given as canonical DBMs, which we also write A
and B for the sake of readability. We prove the stronger result that A ∩B = ∅
if, and only if, for some n ≤ |C0|/2, there exists a sequence of pairwise-distinct
clocks (xi)0≤i≤2n−1 such that, writing x2n = x0,

n−1∑
i=0

A(x2i, x2i+1) +B(x2i+1, x2i+2) < (0,≤).

Before proving this result, we explain how we conclude the proof: the inequality
above entails that

n−1⋂
i=0

A(x2i, x2i+1) ∩
n−1⋂
i=0

B(x2i+1, x2i+2) = ∅

where we abusively identify A(x, y) with the half-space it represents. It follows

that
⋂n−1
i=0 B(x2i+1, x2i+2) is an interpolant, whose density is less than or equal

to |C0|/2.
Assume that such a sequence exists, and write C for the DBM min(A,B).

Then

2n−1∑
i=0

C(xi, xi+1) =

2n−1∑
i=0

min{A(xi, xi+1), B(xi, xi+1)}

≤
n−1∑
i=0

A(x2i, x2i+1) +B(x2i+1, x2i+2) < (0,≤).

This entails that the intersection is empty.
Conversely, if the intersection is empty, then there is a sequence of clocks

(xi)0≤i<m, with m ≤ |C0|, such that, letting xm = x0, we have

m−1∑
i=0

min{A(xi, xi+1), B(xi, xi+1)} < (0,≤).



Algorithm 1: Algorithm for minimal interpolant

Input: canonical DBM A, B
1 ;
2 for (x, y) ∈ C02 do
3 if A(x, y) ≤ B(x, y) then
4 M0(x, y) := A(x, y);
5 else
6 M0(x, y) := (∞, <);

7 N0 := canonical(M0);
8 for (i = 1; i ≤ |C0|/2; i+ +) do
9 for (x, y) ∈ C02 do

10 M i(x, y) := min{N i−1(x, y),minz∈SCB(y)N
i−1(x, z) +B(z, y)};

11 for (x, y) ∈ C02 do
12 N i(x, y) := min{M i(x, y),minz∈SCA(y)M

i(x, z) +A(z, y)};
13 if (x = y) and N i(x, x) < (0,≤) then
14 return (true, i);

15 return false;

Consider one of the shortest such sequences. Since A and B are non-empty, the
sum must involve at least one element of each DBM. Moreover, if it involves two
consecutive elements of the same DBM (i.e., if A(xi, xi+1) < B(xi, xi+1) and
A(xi+1, xi+2) < B(xi+1, xi+2) for some i), then by canonicity of the DBMs of A
and B, we can drop clock xi+1 from the sequence and get a shorter sequence
satisfying the same inequality, contradicting minimality of our sequence. The result
follows. ut

By adapting the algorithm of [28] for computing interpolants, we can compute
minimal interpolants efficiently:

Proposition 3. Computing a minimal interpolant can be performed in O(|C|4).

Proof. Algorithm 1 describes our procedure. In order to prove its correctness,
we begin with proving that the sequence of DBM it computes satisfies the
following property:

Lemma 4. For any i ≥ 0 such that N i has been computed by Algorithm 1, for
any (x, y) ∈ C02, it holds

N i(x, y) = min
π∈Paths(x,y)
|π|B≤i

Wmin(A,B)(π).



Proof. The proof proceeds by induction on i. For i = 0, pick a path π = (xi)0≤i≤k
from x+ 0 to xk such that |π|B = 0. Then

Wmin(A,B)(π) =
∑

0≤i<k

A(xi, xi+1) =
∑

0≤i<k

M0(xi, xi+1)

=
∑

0≤i<k

N0(xi, xi+1) ≥ N0(x0, xk).

The first two equalities follow from the fact that π only involves transitions
in EA≤B; the third equality is because canonization will not modify entries
from A (since A is originally in canonical form). The last inequality follows from
canonicity of N0.

Now assume that the result holds at step i, and that N i+1 is defined. Pick x
and y in C0. By construction of M i+1 and N i+!, there exists z and t in C0 such
that N i+1(x, y) = N i(x, z) + B(z, t) + A(t, y) with t ∈ SCA(y) (or t = y) and
z ∈ SCB(t) (or z = t). From the induction hypothesis, there is a path π′ from x
to z such that N i(x, z) = Wmin(A,B)(π

′), and |π′|B ≤ i. Adding t and y to this
path, we get a path π from x to y such that N i+1(x, y) = Wmin(A,B)(π) and
|π|B ≤ i+ 1.

It remains to prove that any path π from x to y with |π|B ≤ i+ 1 is such that
N i+1(x, y) ≤Wmin(A,B)(π). Fix such a path π = (xj)0≤j≤k we concentrate on the
case where |π|B = i+1, since the other case follows from the induction hypothesis.
We decompose π as π1 = (xj)0≤j≤l, π2 = (xl, xl+1) and π3 = (xj)l+1≤j≤k, such
that (xl, xl+1) ∈ EB and (xj , xj+1) ∈ EA for all j > l; in other terms, π2 is
the last EB transition of π, and π3 is a path from xl+1 to xk only involving
transitions in A. Then

wmin(A,B)(π2 · π3) = B(xl, xl+1) + wA(π3) ≥ B(xl, xl+1) + wA(xl+1, xk),

and

– if (xl+1, xk) ∈ EB, then wmin(A,B)(π2 · π3) ≥ wB(xl, xk), and, applying the
induction hypothesis, wmin(A,B)(π) ≥ N i(x, xl) + min{A(xl, xk), B(xl, xk)}.
Since M i+1(x, xl) ≤ N i(x, xl), we get

wmin(A,B)(π) ≥ min{N i(x, xl) +B(xl, xk),M i+1(x, xl) +A(xl, xk)}
≥ N i+1(x, xk).

– if (xl+1, xk) ∈ EB, then wmin(A,B)(π2 · π3) ≥ B(xl, xl+1) + A(xl+1, xk).
From the induction hypothesis, wmin(A,B)(π) ≥ N i(x, xl) + B(xl, xl+1) +
A(xl+1, xk) ≥ N i+1(x, xk). ut
Following the argument of the proof of Lemma 2, we get:

Corollary 5. If A∩B 6= ∅, then Algorithm 1 returns false; otherwise, it returns
(true, k) for the smallest k such that for all cyclic path π such that |π|B < k,
it holds wmin(A,B)(π) ≥ (0,≤).

This entails that k is the dimension of the minimal interpolant. The minimal
interpolant can be obtained by taking the B-elements of the negative cycle found
by the algorithm. ut



3 Enumerative Algorithm

The first type of algorithm we present is a zone-based enumerative algorithm based
on the clock-predicate abstractions. Let us first describe the overall algorithm
in Algorithm 2, which is a typical abstraction-refinement loop. We then explain
how the abstract reachability and refinement procedures are instantiated.

Algorithm 2: Enumerative
algorithm checking the reach-
ability of a target location `T .

Input: A = (L, Inv, `0, C, E), `T
1 Initialize D0;
2 wait:= {node(`0,0↑,D0)};
3 passed:= ∅;
4 while do
5 π := AbsReach(A,wait,

passed, `T );
6 if π = ∅ then
7 return Not reachable;
8 else
9 if trace π is feasible then

10 return Reachable;

11 else
Refine(π,wait, passed);

12 return Not reachable;

Algorithm 3: AbsReach

Input: (L, Inv, l0, C, E), wait, passed, `T
1 while wait 6= ∅ do
2 n := wait.pop();
3 if n.` = `T then
4 return Trace from root to n;

5 if ∃n′ ∈ passed such that n.` =
n′.` ∧ n.Z ⊆ n′.Z then

6 n.covered := n′;
7 else
8 n.Z := α(n.Z, n);
9 passed.add(n);

10 for e = (`, g, R, `′) ∈ E(n.`) s.t.
Z′ := Poste(n.Z) 6= ∅ do

11 D′ := choose-dom(n, e);
12 n′ := node(`′, Z′,D′);
13 n′.parent := n;
14 wait.add(n′);

15 return ∅;

The initialization at line 1 chooses an abstract domain for the initial state,
which can be either empty (thus the coarsest abstraction) or defined according to
some heuristics. The algorithm maintains the wait and passed lists that are used
in the forward exploration. As usual, the wait list can be implemented as a stack,
a queue, or another priority list that determines the search order. The algorithm
also uses covering nodes. Indeed if there are two node n and n′, with n ∈ passed,
n′ ∈ wait, n.` = n′.`, and n′.z ⊆ n.Z, then we know that every location reachable
from n′ is also reachable from n. Since we have already explored n and we
generated its successors, there is no need to explore the successors of n′. The
algorithm explicitly creates an exploration tree: line 2 creates a node containing
location `0, zone 0↑, and the abstract domain D0 as the root of our tree, and
adds this to the wait list. More details on the tree are given in the next subsection.
Procedure AbsReach then looks for a trace to the target location `T . If such a
trace exists, line 9 checks its feasibility. Here π is a sequence of node and edges
of A. The feasibility check is done by computing predecessors with zones starting
from the final state, without using the abstraction function. If the last zone



intersects our initial zone, this means that the trace is feasible. More details are
given in Section 3.2.

3.1 Abstract forward reachability: AbsReach

We give a generic algorithm independently from the implementations of the
abstraction functions and the refinement procedure.

Algorithm 3 describes the reachability procedure under a given abstract
domain D. It is similar to the standard forward reachability algorithm using a
wait-list and a passed-list. We explicitly create an exploration tree where the leaves
are nodes in wait, covered nodes, or nodes that have no non-empty successors.
Each node n contains the fields `, Z which are labels describing the current
location and zone; field covered points to a node covering the current node (it is
undefined if the current node is not (known to be) covered); field parent points
to the parent node in the tree (it is undefined for the root); and field D is the
abstract domain associated with the node. Thus, the algorithm uses a possibly
different abstract domain for each node in the exploration tree.

The difference of our algorithm w.r.t. the standard reachability can be seen
at lines 8 and 11. At line 8, we apply the abstraction function to the zone taken
from the wait-list before adding it to the passed-list. The abstraction function α
is a function of a zone Z and a node n. This allows one to define variants with
different dependencies; for instance, α might depend on the abstract domain n.D
at the current node, but it can also use other information available in n or on
the path ending in n. For now, it is best to think of α simply as Z 7→ αn.D(Z).
At line 11, the function choose-dom chooses an abstract domain for the node n′.

In our implementation, the abstraction function always abstracts the given
zone w.r.t. the abstract domain n.D. For choose-dom, we considered three variants:

– one using a global domain, the same for all nodes: this way, each refinement
benefits to all nodes, but this is often a drawback since in general different
parts of the automaton will better have different abstract domain;

– one using a local domain for each node: this has the advantage of using the
coarsest possible abstraction, but it takes more memory and usually involves
more refinements.

– one using one domain per location of the automaton: this appears to be a
good trade-off between the above two approaches.

Remark 1. Note that we use the abstraction function when the node is inserted
in the passed list. This is because we want the node to contain the smallest zone
possible when we test whether the node is covered. We only need to use the
abstracted zone when we compute its successor and when we test whether the
node is covering. This allows us to store a unique zone.

As a first step towards proving correctness of our algorithm, we consider that
the following property is preserved by Algorithm AbsReach:

For all nodes n in passed, for all edges e from n.`, if Poste(n.Z) 6= ∅,
then n has a child n′ such that Poste(n.Z) ⊆ n′.Z. If n′ is in passed,
then we also have αn′.D(Poste(n.Z)) ⊆ n′.Z.

(1)



Algorithm 4: Refine

Input: π, wait, passed
1 ;
2 n := last node of π;
3 Z := n.Z;
4 r := Refine-rec(n,Z,wait, passed);
5 ncut := node to cut

(according to heuristics);
6 cut(ncut);
7 if ncut.Z = ∅ then
8 delete ncut

9 else
10 passed.remove(ncut);
11 wait.add(ncut);
12 ncut.Z := Concrete(ncut);

13 return r;

Algorithm 5: Refine-rec

Input: n,Z,wait, passed
1 ;
2 C := Concrete(n);
3 if C ∩ Z = ∅ then
4 Strengthen (n,Z,C,wait);
5 return Not Feasible;

6 else if n has no parent then
7 return Feasible ;
8 else
9 e edge from n.parent to n;

10 Z′ := Pree(Z) ∩ n.parent.Z;
11 if Refine-rec(n.parent, Z′,wait,

passed)= Feasible then
12 return Feasible;
13 else
14 C :=Concrete(n);
15 Strengthen(n,Z,C,wait);
16 return Not Feasible;

Algorithm 6: Concrete

Input: n
1 ;
2 if n has parent then
3 e := edge from n.parent to n;
4 return Poste(n.parent.Z);

5 else
6 return initial zone;

Algorithm 7: Strengthen

Input: n,Z,C,wait
1 ;
2 if αn.D(C) ∩ Z 6= ∅ then
3 I :=interpolant(C,Z);
4 n.D.add(I);

5 n := αn.D(C);
6 Add every uncovered nodes to wait;

The following is an easy observation about our algorithm:

Lemma 6. Algorithm AbsReach preserves Property (1).

Note that although we use inclusion in Property (1), AbsReach would actually
preserve equality of zones, but we will not always have equality before running
AbsReach. This is because Refine might change the zones of some nodes without
updating the zones of all their descendants.

3.2 Refinement: Refine

We now describe our refinement proecdure Refine. Let us now assume that

AbsReach returns π = A1
σ1−→ A2

σ2−→ . . .
σk−1−−−→ Ak, and write Di for the domain

associated with each Ai. We write C1 for the initial concrete zone, and for
i < k, we define Ci+1 = Postσi

(Ai). We also note Zk = Ak and for i < k,
Zi = Preσi

(Zi+1) ∩Ai. Then π is not feasible if, and only if, Postσ1...σk
(C1) = ∅,



or equivalently Preσ1...σk
(Ak) ∩ C1 = ∅. Since for all i < k, it holds Ci ⊆ Ai+1,

we have that π is not feasible if, and only if, ∃i ≤ k. Ci ∩ Zi = ∅. We illustrate
this on Fig. 3.

Z1

C1

A1

Z2

C2

A2

C3

A3 = Z3

Post Post

Pre
Pre

Fig. 3: Spurious counter-example: Z1 ∩ C1 = ∅

Let us assume that π is not feasible. Let us denote by i0 the maximal index
such that Ci0 ∩ Zi0 = ∅. This index also has the property that for all j < i0,
we have Zj = ∅ and Zi0 6= ∅. Once we have identified this trace as spurious by
computing the Zj , we have two possibilities:

– if Zi0 ∩ αDi0
(Ci0) 6= ∅: this means that we can reach Ak from αDi0

(Ci0) but
not from Ci0 . In other words, our abstraction is too coarse and we must add
some values to Di0 so that Zi0 ∩ αDi0

(Ci0) = ∅. Those values are found by
computing the interpolant of Zi0 and Ci0

– Otherwise it means that αDi0
(Ci0) cannot reach Ak and the only reason the

trace exists is because either Di0 or Ai0−1 has been modified at some point
and Ai0 was not modified accordingly.

We can then update the values of Ci for i > i0 and repeat the process
until we reach an index j0 such that Cj0 = ∅. We then have modified the
nodes ni0 , . . . , nj0 and knowing that nj0 .Z = ∅, we can delete it and all of its
descendants. Since some of the descendants of ni0 have not been modified, this
might cause some refinements of the first type in the future. In order to ensure
termination, we sometimes have to cut a subtree from a node in ni0 , . . . , nj0−1
and reinsert it in the wait list to restart the exploration from there. We call this
action cut, and we can use several heuristics to decide when to use it. In the rest
of this paper we will use the following heuristics: we perform cut on the first
node of ni0 ...nj0 that is covered by some other node. Since this node is covered,
we know that we will not restart the exploration from this node, or that the
node was covered by one of its descendant. If none of these nodes are covered,
we delete nj0 and its descendants. Other heuristics are possible, for instance
applying cut on ni0 . We found that the above heuristics was the most efficient in
our experiments.

Lemma 7. Pick a node n, and let Y = n.Z. Then after running Refine, either
node n is deleted, or it holds n.Z ⊆ Y . In other words, the zone of a node can
only be reduced by Refine.



Proof. Refine may only add values to the domain of a node, so that the refined zone
is included in the previous one. If no values were added to the domain of a node,
then its parent must have been modified. Since A ⊆ B ⇒ Poste(A) ⊆ Poste(B),
the result follows by induction. ut

It follows that Refine also preserves Property (1), so that:

Lemma 8. Algorithm 2 satisfies Property (1).

Proof. We prove that procedure Refine preserves property (1). Combined with
Lemma 6, this entails the result. First notice that Refine may not add new nodes.
Let n′ be a node, n its parent, and e the edge from n to n′. Three cases may
arise:

– n′ has been modified: then it must have been modified at line 4 or 15. At this
point n is no longer modified, and Refine ensures that Concrete(n) ⊆ n′.Z, and
Concrete(n) = Poste(n.Z). If n′ is in passed, we also have αn′.D(Poste(n.Z)) =
n′.Z;

– n′ has been deleted: in this case, if n is part of the subtree and it has either
been deleted or moved to wait, and is not in passed anymore. Otherwise n is
not part of the subtree that has been cut and n′ is the root of this subtree,
with n′.Z = ∅ and since Concrete(n) ⊆ n′.Z;

– n′ has not been modified, but n has: then using Lemma 7, we know that the
inclusion Poste(n.Z) ⊆ n′.Z (or αn′.D(Poste(n.Z)) ⊆ n′.Z) is preserved by
Refine. ut

We can then prove that our algorithm correctly decides the reachability
problem and always terminates.

Theorem 9. Algorithm 2 terminates and is correct.

Proof. We first prove correctness, assuming termination. First let us notice that
if the wait set is empty, then for any reachable location l, there is a node n such
that n.` = l. This is because we over-approximate the zones as shown in Lemma 8,
so we over-approximate the set of reachable states. Thus, if AbsReach(A, wait,
passed, `T ) returns ∅, then `T is not reachable in A. In other words, if the
enumerative algorithm returns ”Not reachable” then `T is indeed not reachable.

On the other hand, if the algorithm returns ”Reachable”, it means that there
is a feasible trace reaching `T , and `T is indeed reachable.

We now prove termination. Since there are a finite number of possible locations
and we can limit the number of possible zones to a finite number using abstraction
functions, we can deduce that AbsReach terminates.

Let us assume that the enumerative algorithm does not terminate. Then it
means that Refine is called infinitely many timed. Note that Refine is modifying
a node and a node can be modified a finite number of time.

We can also note that a node can be destroyed only if one of its ancestors
is modified. As such, we can show that for every depth k, there is a point in



the algorithm where every node at depth k or less is fixed and will no longer be
modified.

So we know that the algorithm does not terminate if, and only if, the depth
of the resulting tree is unbounded. This means that there exists a path where we
have two distinct nodes n1 and n2 with n1.` = n2.` and n1.Z = n2.Z, since the
number of location and possible zones is finite. Without loss of generality, we
can assume that n1 is an ancestor of n2 and n2 is the parent of another node.
This is only possible if n2 is in passed, which means that n2 was in wait and
was not covered at some point. Since a zone can only be modified to be smaller,
this means that n2 has been modified at some point. Otherwise n2 has always
been covered by n1, which is not possible. Since n2 has been modified, and it is
covered (at least by n1), this means that cut has been called on n2 last time its
zone has been modified. This means that n2 has no children and is not in passed,
contradicting our assumption. Hence the algorithm always terminates. ut

4 Symbolic Algorithm

4.1 Boolean encoding of zones

We now present a symbolic algorithm that represents abstract states using Boolean
formulas. Let B = {0, 1}, and V be a set of variables. A Boolean formula f that
uses variables from set X ⊆ V will be written f(X) to make the dependency
explicit; we sometimes write f(X,Y ) in place of f(X ∪ Y ). Such a formula
represents a set JfK = {v ∈ BV | v |= f}. We consider primed versions of all
variables; this will allow us to write formulas relating two valuations. For any
subset X ⊆ V, we define X ′ = {p′ | p ∈ X}.

A literal is either p or ¬p for a variable p. Given a set X of variables, an X-
minterm is the conjunction of literals where each variable of X appears exactly
once. X-minterms can be seen as elements of BX .

Given a vector of Boolean formulas Y = (Yx)x∈X , formula f [Y/X] is the
substitution of X by Y in f , obtained by replacing each x ∈ X with the formula Yx.
The positive cofactor of f(X) by x is ∃x. (x ∧ f(X)), and its negative cofactor
is ∃x. (¬x ∧ f(X)).

Let us define a generic operator post that computes successors of a set S(X,Y )
given a relation R(X,X ′) (here, Y designates any set of variables on which S
might depend outside of X): postR(S(X,Y )) = (∃X.S(X,Y )∧R(X,X ′))[X/X ′].
Similarly, we set preR(S(X,Y )) = (∃X ′.S(X,Y )[X ′/X] ∧ R(X,X ′)), which
computes the predecessors of S(X,Y ) by the relation R [24].

Clock predicate abstraction. We fix a total order / on C0. In this section, abstract
domains are defined as D = (Dx,y)x/y∈C0 , that is only for pairs x / y. In fact,
constraints of the form x− y ≤ k with x . y are encoded using the negation of
y − x < −k since (x− y ≤ k)⇔ ¬(y − x < −k). We thus define Dx,y = −Dy,x
for all x . y.

For x, y ∈ C0, let Px,y denote the set of clock predicates associated to Dx,y:

PDx,y = {Px−y≺k | (k,≺) ∈ Dx,y}.



Let PD = ∪x,y∈C0Px,y denote the set of all clock predicates associated with D
(we may omit the superscriptD when it is clear). For all (x, y) ∈ C02 and (k,≺) ∈ Dx,y,
we denote by px−y≺k the literal Px−y≺k if x / y, and ¬Py−x≺−1−k otherwise
(where ≤−1 = < and <−1 = ≤). We also consider a set B of Boolean variables
used to encode locations. Overall, the state space is described using Boolean
formulas on these two types of variables, so states are elements of BP∪B.

Our Boolean encoding of clock constraints and semantic operations follow
those of [27] for a concrete domain. We define these however for abstract domains,
and show how all successor computation and refinement operations can be
performed.

Let us define the clock semantics of predicate Px−y�k as JPx−y�kKC0 =

{ν ∈ RC0≥0 | ν(x) − ν(y) � k}. Since the set C of clocks is fixed, we may omit
the subscript and just write JPx−y�kK. We define the conjunction, disjunction,
and negation as intersection, union, and complement, respectively. Given a P-
minterm v ∈ BP , we define JvKD =

⋂
p s.t. v(p)JpKD ∩

⋂
p s.t. ¬v(p)JpK

c
D. Thus,

negation of a predicate encodes its complement. For a Boolean formula F (P),
we set JF K =

⋃
v∈Minterms(F )JvKD. Intuitively, the minterms of P define smallest

zones of RC≥0 definable using P . A minterm v ∈ BB∪P defines a pair JvKD = (l, Z)
where l is encoded by v|B and Z = Jv|PKD. A Boolean formula F on B ∪ P
defines a set JF KD = ∪v∈Minterms(F )JvKD of such pairs. A minterm v is satisfiable
if JvKD 6= ∅.

An abstract domain D induces an abstraction function αD : 2R
C
≥0 → 2BP

with αD(Z) = {v | v ∈ BP and JvKD ∩ Z 6= ∅}, from the set of zones to the set
of subsets of Boolean valuations on P. We define the concretization function

as J·KD : 2B
P → 2R

C
≥0 . The pair (αD, J·KD) is a Galois connection, and JαD(Z)KD is

the most precise abstraction of Z in the domain induced by D. Notice that αD is
non-convex in general: for instance, if the clock predicates are x ≤ 2, y ≤ 2, then
the set defined by the constraint x = y maps to (px≤2 ∧ py≤2)∨ (¬px≤2 ∧¬py≤2),
which is not convex.

4.2 Reduction

We now define the reduction operation, which is similar to the reduction of
DBMs. The idea is to eliminate unsatisfiable minterms from a given Boolean
formula. For example, we would like to make sure that in all minterms, if px−y≤1
holds, then so does px−y≤2, when both are available predicates. Another issue is
to eliminate minterms that are unsatisfiable due to triangle inequality. This is
similar to the shortest path computation used to turn DBMs in canonical form.

Let a path in D be a sequence x1, (α1,≺1), x2, (α2,≺2), . . . , xk, (αk,≺k), xk+1

where x1, . . . , xk+1 ∈ C0, and (αi,≺i) ∈ Dxi,xi+1 for 1 ≤ i ≤ k. Let us define

PathsDk (x − y ≺ α) as the set of paths from x to y of length k and weight
at most (α,≺), that is, paths x1, (α1,≺1), x2, (α2,≺2), . . . , xk, (αk,≺k), xk+1

with x1 = x, xk+1 = y, and
∑k
i=1(αi,≺i) ≤ (α,≺). We also denote PathsD≤k(x− y ≺ α) =⋃

l≤k PathsDl (x− y ≺ α). For a path π = x1, (α1,≺1), . . . , xk+1 and minterm v,

let us write v |= π for the statement v |= ∧ki=1pxi−xi+1≺αi
.



A minterm v ∈ BP is k-reduced if for all (x, y) ∈ C02 and (α,≺) ∈ Dx,y, for
all π = x1, (α1,≺1), x2, . . . , xk+1 ∈ Paths≤k(x− y ≺ α), whenever v |= π, we also

have v |= px1−xk+1≺α for all (α,≺) ∈ Dx1,xk+1
with (α,≺) ≥

∑k
i=1(αi,≺i). Thus,

in a k-reduced minterm, no contradictions can be obtained via paths of length
less than or equal to k. Observe that |C0|-reduction is equivalent to satisfiability
since the condition then includes all paths, and it is known that in the absence of
negative cycles, a set of difference constraints is satisfiable. Furthermore, for the
concrete domain, k-reduction is equivalent to reduction for any k ≥ 2. A formula
is said to be k-reduced if all its minterms are k-reduced.

Example 1. Given predicates P = {px−y≤1, py−z≤1, px−z≤2}, the formula px−y≤1∧
py−z≤1 is not reduced since it contains the unsatisfiable minterm px−y≤1∧py−z≤1∧
¬px−z≤2. However, the same formula is reduced if P = {px−y≤1, py−z≤1}.

Consider now the predicate set P = {px−y≤1, py−z≤1, pz−w≤3, px−w≤5}, and
consider the formula φ = px−y≤1 ∧ py−z≤1 ∧ pz−w≤3 which is 2-reduced. Notice
that the reduction of φ is px−y≤1 ∧ py−z≤1 ∧ pz−w≤3 ∧ px−w≤5 since the last
predicate is implied by the conjunction of others. However, φ is 2-reduced since no
path of length 2 allows to deduce px−w≤5. In the concrete domain, px−y≤1∧py−z≤1
would imply px−z≤2, thus, px−w≤5 could be derived too. It is indeed because of
the abstract domain that 2-reduction might fail to capture all shortest paths.

In this paper, we only consider 2-reduction since computing reductions is
the most expensive operation in our algorithms, and the formula below defining
2-reduction already tends to grow in size. Let us define reduce2D as follows

∧
(x,y)∈C02

(k,≺)∈Dx,y

[
px−y≺k ←

( ∨
(l1,≺1)∈Dx,y

(l1,≺1)≤(k,≺)

px−y≺1l1∨
∨

z∈C0,(l1,≺1)∈Dx,z,
(l2,≺2)∈Dz,y

(l1,≺1)+(l2,≺′2)≤(k,≺)

px−z≺1l1 ∧ pz−y≺2l2

)]

The formula intuitively applies shortest paths over paths of length 1 or 2.

Lemma 10. For all formulas S(P), we have JSKD = Jreduce2D(S)KD and all
minterms of reduce2D(S) are 2-reduced.

Proof. It is easy to see that JreducekD(S)KD ⊆ JSKD. In fact, any minterm of the
former is a minterm of S as well by definition.

To see the converse, consider v ∈ Minterms(S). We show that JvKD ⊆
JreducekD(S)KD. If JvKD = ∅ then the inclusion holds trivially. Otherwise, we
must have v ∈ Minterms(reducekD(S)). In fact, we show that all minterms v 6∈
Minterms(reducekD(S)) satisfy JvK = ∅. Consider such a minterm v. There must
exist x, y ∈ C0 and (k,≺k) ∈ Dx,y such that ¬px−y≺k but the right hand side of
the implication holds. But this implies that JvK = ∅.

The fact that all miterms of reducekD(S) are k-reduced follow by the definition
of the operator. ut

Example 2. Note that reduce2D(S) can still contain valuations that are unsatis-
fiable. Consider P = {px−y≤1, py−z≤1, px−z≤4, pz−x≤−3}. Then the minterm u



that sets all predicates to true is still contained in reduce2D(S) although JuK = ∅
since x− y ≤ 1∧ y− z ≤ 1 implies x− z ≤ 2 which contradicts z− x ≤ −3. Here,
adding the predicate px−z≤2 or px−z<3 would render the abstraction precise
enough to eliminate this valuation in reduce2D(S).

Let us see how an abstraction can be refined so that the reduced constraint
eliminates a given unsatisfiable minterm.

Lemma 11. Let v ∈ BPD be a minterm such that v |= reduce2D and JvK = ∅.
One can compute in polynomial time a refinement D′ ⊃ D such that v 6|= reduce2D′ .

Proof. Consider a (non-canonial) DBM D that encodes v. Formally, for all (x, y) ∈
C02, D(x, y) = min{(k,≺) | px−y≺k ∈ Px,y and v(px−y≺k) = 1}. The correspond-
ing graph must have a negative cycle s1s2 . . . sm with sm = s1. To define D′,
we add the following predicates to D:

– si − si+1 ≤ D(si, si+1) for all 1 ≤ j ≤ m− 1.
– s1 − sj ≤ D(s1, s2) +D(s2, s3) + . . .+D(sj−1, sj) for 1 ≤ j ≤ m− 1.

Intuitively, along the negative cycle, we are adding predicates to represent exactly
each single step, and also each big step from s1 to sj . This allows to derive the
negative cycle using only paths of length 2.

More precisely, v ∧ reduce2D′ implies the following two predicates: s1 − sm ≤∑m−1
j=1 D(sj , sj+1), and sm−s1 ≤ D(sm, s1) as implied by v. Since −D(sm, s1) >∑m−1
j=1 D(sj , sj+1) (due to the negative cycle), the first predicate entails that

¬ps1−sm≤−D(sm,s1), which contradicts the second one. Hence v 6|= reduce2D′ . ut

4.3 Successor Computation

In this section, we explain how successor computation is realized in our en-
coding. For a guard g, assume we have computed an abstraction αD(g) in the
present abstract domain. For each transition σ = (`1, g, R, `2), let us define the
formula Tσ = `1∧αD(g). We show how each basic operation on zones can be com-
puted in our BDD encoding. In our algorithm, all formulas A(B,P) representing
sets of states are assumed to be reduced, that is, A(B,P) ⊆ reduce2D(A(B,P)).

The intersection operation is simply logical conjunction.

Lemma 12. For all reduced formulas A(P), B(P), A(P)∧B(P) = αD(JA(P)KD∩
JB(P)KD).

Proof. Consider v ∈ Minterms(A(P) ∧ B(P)). Then v ∈ Minterms(A(P)) ∩
Minterms(B(P)). So JvK ⊆ JA(P)K ∩ JB(P)K, and v = αD(JvK) ⊆ αD(JA(P)KD ∩
JB(P)KD).

We will now show αD(JA(P)KD∩JB(P)KD) ⊆ A(P)∧B(P), which is equivalent
to JA(P)KD ∩ JB(P)KD ⊆ JA(P) ∧B(P)K. Consider any clock valuation ν in the
LHS, and let v = αD(ν). Since ν ∈ JA(P)KD and ν ∈ JB(P)KD, we must have
v ∈ A(P) ∧B(P), so ν ∈ JA(P) ∧B(P)K. ut
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Fig. 4: Time successors: the successors of the gray zone on the left are the union
of all blue dashed zones on the right.

For the time successors, we define

SUp =
∧
x∈C

(k,≺)∈Dx,0

(¬px−0≺k → ¬p′x−0≺k)
∧

x,y∈C0,x 6=0
(k,≺)∈Dx,y

(p′x−y≺k ↔ px−y≺k).

Note that this relation is not a function: for x ≤ 0, y = 0, if ¬px−y≺k, then
necessarily ¬p′x−y≺k; but otherwise both truth values for p′x−y≺k are allowed.
In fact, the formula only says that all lower bounds on clocks and diagonal
constraints must be preserved. We let Up(A(B,P)) = reduce(postSUp

(A(B,P))).

Example 3. Figure 4 shows this operation applied to the gray zone on the left.
The overapproximation is visible in this example. In fact, the blue dashed zone
defined by Z = 3 < x < 5 ∧ 0 ≤ y < 1 ∧ x − y < 4 (on the bottom right) is
computed as a successor of the gray zone although no point of the gray zone
can actually reach Z by a time delay. Adding more diagonal constraints to the
abstract domain, for instance, x− y ≤ 2 would eliminate this successor.

Lemma 13. For any Boolean formula A(B,P), αD(JAK↑) ⊆ Up(A). Moreover,
if D is the concrete domain and A is reduced, then this holds with equality.

Proof. We show that αD(JAK↑) ⊆ Up(A), which is equivalent to JAK↑ ⊆ JUp(A)KD.
Let ν′ ∈ JAK↑, and let ν ∈ JAK such that ν′ = ν + d for some d ≥ 0. We
write u = αD(ν) ∈ Minterms(A), and v = αD(ν′). We now show that (u, v) ∈ SUp.
This suffices to prove the inclusion since v ∈ Minterms(Up(A)) implies that ν′ ∈
JvKD ⊆ JUp(A)KD. Observe that αD(ν) and αD(ν′) satisfy the same diagonal
predicates of the form px−y≺α with x, y 6= 0, since ν′ = ν + d. Moreover, any
lower bound satisfied by u is also satified by v. Thus, (u, v) ∈ SUp.

Assume now that A is reduced. We show that Up(A) ⊆ αD(JAK↑). Let v ∈
Minterms(Up(A)), and let (u, v) ∈ SUp with u ∈ Minterms(A). We claim that JvK ⊆
JuK↑. This suffices to prove the inclusion since {v} = αD(JvK) ⊆ αD(JuK↑) ⊆
αD(JAK↑). To prove the claim, it suffices to see JuK and JvK as DBMs. In fact,
SUp precisely corresponds to the up operation on DBMs. In particular, u and v
have the same diagonal constraints, and any lower bound of u is a lower bound
of v. Because u is reduced, this implies that JvK↑ ⊆ JuK. ut



Example 4. Note that we do need that the domain is concrete to prove equality.
In fact, assume the predicates are p1 = y−x ≤ 3, p2 = x−y ≤ 1, x ≤ 1, y ≤ 2, x ≤
2, y ≤ 4. Then if u = x ≤ 1∧ y ≤ 2∧ p1 ∧ p2 and v = 1 ≤ x ≤ 2∧ y ≤ 4∧ p1 ∧ p2.
So v is larger than u↑.

Second, to see that the Up operation can yield strict over-approximations,
consider px≤1 ∧ py≥1 in a domain with no predicate on x − y. The operator
relaxes all upper bounds, yielding py≥1 which defines a set larger than the
concrete time-successors y ≥ 1 ∧ x− y ≤ 0.

Alternatively, we can also use the method described in [27, Theorem 2]
to compute time successors, but the above relation will allow us to compute
predecessors as well.

Last, we define the reset operation as follows. For any z ∈ C,

SResetz =
∧

(0,≤)≤(k,≺)∈Dz,0

p′z−0≺k

∧
∧
x 6=z

(k,≺)∈Dx,z

( ∨
(l,≺′)∈Dx,0

(l,≺′)≤(k,≺)

px−0≺′l

)
⇒ p′x−z≺k

∧
∧
y 6=z

(k,≺)∈Dz,y

( ∨
(l,≺′)∈D0,y

(l,≺′)≤(k,≺)

p0−y≺′l

)
⇒ p′z−y≺k

∧
∧
y 6=z

(0,≤)≤(k,≺)∈Dz,y

p′z−y≺k

∧
∧
x,y 6=z

(k,≺)∈Dx,y

p′x−y≺k ⇔ px−y≺k.

Intuitively, the first conjunct ensures all non-negative upper bounds on the reset
clock hold; the second conjunct ensures that a diagonal predicate x − z ≺ k
with x 6= z is set to true if, and only if, an upper bound (l,≺′) ≤ (k,≺) already
holds on x. Recall that in operations on DBMs, one sets such a diagonal component
to the tightest upper bound on x. The third conjunct is symmetric to the second,
and the last one ensures diagonals not affected by reset are unchanged. Let us
define Resetz(A) = reduce(postSResetz

(A)).

Lemma 14. For any Boolean formula A(B,P), and for any z ∈ C, we have
αD(Resetz(JAKD)) ⊆ Resetz(A). Moreover, if D is the concrete domain, and A
is reduced, then the above holds with equality.

Proof. Let r = {z}. We show the equivalent inclusion Resetr(JAKD) ⊆ JResetr(A)KD.
Let ν′ ∈ Resetr(JAK), and ν ∈ JAK such that ν′ = ν[r ← 0]. So u = αD(ν) ∈ A.
Letting v = αD(ν′), let us show that (u, v) ∈ SResetr , which proves that v ∈
Resetr(A), thus ν′ ∈ JvKD ⊆ JResetr(A)KD.



y

x

y

x

Fig. 5: Reset Operation: The abstract successor of the gray zone on the left is
the blue dashed zone on the right.

– Consider x ∈ r. Since ν′(x) = 0, we have that v |= px−y≺k for all (k,≺) ∈ Dx,y
with (k,≺) ≥ (0,≤); so (u, v) satisfies the first conjunct. Fix (k,≺) ∈ Dx,y.

– Assume x 6∈ r, y ∈ r, so that ν′(x) = ν(x), ν′(y) = 0. If there is (l,≺′) ∈ Dx,0
with (l,≺′) ≤ (k,≺), this means ν(x)− 0 ≺′ l ≺ k so ν′(x)− ν′(y) ≺ k. Thus
the second conjunct is satisfied.

– Assume x ∈ r, y 6∈ r so that ν′(x) = 0, ν′(y) = ν(y). If there is (l,≺′) ∈ D0,y

with (l,≺′) ≤ (k,≺), this means 0−ν(y) ≺′ l ≺ k so ν′(x)−ν′(y) ≺ k as well.
Thus the third conjunct is satisfied. We also have trivially ν′(x)− ν′(y) ≺ k
for all (0,≤) ≤ (k,≺), which entails the fourth conjunct.

– Observe that ν and ν′ satisfy the same predicates of type px−y≺α with x, y 6∈ r
since these values are not affected by the reset; so the pair (u, v) satisfies the
last conjunct of SResetr as well.

Now, if the domain is concrete and A is reduced, then we have JResetr(A)KD ⊆
Resetr(JAKD). In fact, the operation then corresponds precisely to the reset
operation in DBMs, see [8, Algorithm 10]. On DBMs, for a component (x, y)
with x ∈ r, y 6∈ r, the algorithm consists in setting this component to value (0, y).
In our encoding, we thus set the predicate p′x−y≺k to true whenever p0−x≺′l holds
with (l,≺′) ≤ (k,≺). The argument is symmetric for (x, y) with x 6∈ r, y ∈ r. ut

4.4 Model-checking algorithm

Algorithm 8 shows how to check the reachability of a target location given an
abstract domain. The list layers contains, at position i, the set of states that
are reachable in i steps. The function ApplyEdges computes the disjunction of
immediate successors by all edges. It consists in looping over all edges e =
(l1, g, R, l2), and gathering the following image by e:

enc(`2) ∧ Resetrk(Resetrk−1
(. . . (Resetr1((((∃B.A(B,P) ∧ enc(`1)) ∧ αD(g))))))),

where R = {r1, . . . , rk}. We thus use a partitioned transition relation and do not
compute the monolithic transition relation.

When the target location is found to be reachable, ExtractTrace(layers) returns
a trace reaching the target location. This is standard and can be done by
computing backwards from the last element of layers, by finding which edge



Algorithm 8: Algorithm SymReach that checks the reachability of a
target location lT in a given abstract domain D.

Input: A = (L, Inv, `0, C, E), `T , D
1 ;
2 next := enc(l0) ∧ αD(∧x∈Cx = 0);
3 layers := [];
4 reachable := false;
5 while (¬reachable ∧ next) 6= false do
6 reachable := reachable ∨ next;
7 next := ApplyEdges(Up(next)) ∧ ¬reachable;
8 layers.push(next);
9 if (next ∧ enc(lT )) 6= false then

10 return ExtractTrace (layers);

11 return Not reachable;

can be applied to reach the current state. Since both reset and time successor
operations are defined using relations, predecessors in our abstract system can
be easily computed using the operator preR. As it is standard, we omit the
precise definition of this function (the reader can refer to the implementation)
but assume that it returns a trace of the form

A1
σ1−→ A2

σ2−→ . . .
σn−1−−−→ An,

where the Ai(B,P) are minterms and the σi belong to the trace alphabet Σ =
{up, r∅} ∪ {r(x)}x∈C , with the following meaning:

– if Ai
up−→ Ai+1 then Ai+1 = Up(Ai);

– if Ai
r∅−→ Ai+1 then Ai+1 = Ai;

– if Ai
r(x)−−→ Ai+1 then Ai+1 = Resetx(Ai).

The feasibility of such a trace is easily checked using DBMs.
The overall algorithm then follows a classical CEGAR scheme. We initialize D

by adding the clock constraints that appear syntactically in A, which is often
a good heuristic. We run the reachability check of Algorithm 8. If no trace is
found, then the target location is not reachable. If a trace is found, then we check
for feasibility. If it is feasible, then the counterexample is confirmed. Otherwise,
the trace is spurious and we run the refinement procedure described in the next
subsection, and repeat the analysis.

4.5 Abstraction refinement

Since we initialize D with all clock constraints appearing in guards, we can make
the following hypothesis.

Assumption 1. All guards are represented exactly in the considered abstractions.



Note that the algorithm can be easily extended to the general case; but this
simplifies the presentation.

The abstract transition relation we use is not the most precise abstraction
of the concrete transition relation. Therefore, it is possible to have abstract
transitions A1

a−→ A2 for some action a while no concrete transition exists
between JA1K and JA2K. This requires care and is not a direct application of the
standard refinement technique from [11]. A second difficulty is due to incomplete
reduction of the predicates using reduce2D. In fact, some reachable states in our
abstract model will be unsatisfiable. Let us explain how we refine the abstraction
in each of these cases.

Consider an algorithm interp that returns an interpolant of two given zones Z1, Z2.
In what follows, by the refinement of D by interp(Z1, Z2), we mean the domain D′
obtained by adding (k,≺) to Dx,y for all constraints x− y ≺ k of interp(Z1, Z2).
Observe that αD′(Z1) ∩ αD′(Z2) = ∅ in this case.

We define concrete successor and predecessor operations for the actions in Σ.
For each a ∈ Σ, let Preca denote the concrete predecessor operation on zones
defined straightforwardly, and similarly for Postca.

Consider domain D and the induced abstraction function αD. Assume that

we are given a spurious trace π = A1
σ1−→ A2

σ1−→ . . .
σn−1−−−→ An. Let B1 . . . Bn be

the sequence of concrete states visited along π in A, that is, B1 is the concrete
initial state, and for all 2 ≤ i ≤ n, let Bi = Postcπi−1

(Bi−1). This sequence can
be computed using DBMs.

The trace is realizable if Bn 6= ∅, in which case the counterexample is confirmed.
Otherwise it is spurious. We show how to refine the abstraction to eliminate a
spurious trace π.

Let i0 be the maximal index such that Bi0 6= ∅. There are three possible
reasons explaining why Bi0+1 is empty:

1. first, if the abstract successor Ai0+1 is unsatisfiable, that is, if it contains
contradictory predicates; in this case, JAi0+1K = ∅, and the abstraction is
refined by Lemma 11 to eliminate this case by strengthening reducekD.

2. if there are predecessors of Ai0+1 inside Ai0 but none of them are in Bi0 , i.e.,
Precπi0

(JAi0+1K) ∩ JAi0K 6= ∅; in this case, we refine the domain by separating

these predecessors from the rest of Ai0 using interp(Precπi0
(JAi0+1K), Bi0−1),

as in [11].
3. otherwise, there are no predecessors of Ai0+1 inside Ai0 : we refine the ab-

straction according to the type of the transition from step i0 to i0 + 1:
(a) if πi0 = up: refine D by interp(JAi0K↑, JAi0+1K↓).
(b) if πi0 = r(x): refine D by interp(Freex(JAi0K),Freex(JAi0+1K)).

Note that the case πi0 = r∅ is not possible since this induces the identity function
both in the abstract and concrete systems.

Given abstraction αD and spurious trace π, let refine(αD, π) denote the refined
abstraction αD′ obtained as described above. The following two lemmas justify
the two subcases of the third case above. They prove that the detected spurious
transition disappears after refinement. The reset and up operations depend on
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(a) Refinement for the time successors
operation. The interpolant that sepa-
rates JA1K↑ from JA2K↓ contains the con-
straint x = y + 2. When this is added to
the abstract domain, the set A′2 (which is
A2 in the new abstraction) is no longer
reachable by the time successors opera-
tion.
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(b) Refinement for the reset opera-
tion. The interpolant that separates
Freey(A1) from Freey(A2) contains the
constraint x < 2. When this is added to
the abstract domain, the set A′2 (which
is A2 in the new abstraction) is no
longer reachable by the reset operation.

the abstraction, so we make this dependence explicit below by using superscripts,
as in Resetαx and Upα, in order to distinguish the operations before and after a
refinement.

Lemma 15. Consider (A1, A2) ∈ Upα with JA1K↑ ∩ JA2K = ∅. Then JA1K↑ ∩
JA2K↓ = ∅. Moreover, if α′ is obtained by refinement of α by interp(JA1K↑, JA2K↓),
then for all (A′1, A

′
2) ∈ Upα

′
, JA′1K ⊆ JA1K implies JA′2K ∩ JA2K = ∅.

Proof. Assume there is v ∈ JA1K↑ ∩ JA2K↓. There exists d1, d2 ≥ 0 and v1 ∈ A1

such that v = v1 + d1 and v + d2 ∈ A2, which means v1 + d1 + d2 ∈ A2, thus
JA1K↑ ∩ JA2K 6= ∅.

Let Z = Jinterp(JA1K↑, JA2K↓)K. By definition, JA1K↑ ⊆ Z, and Z ∩ JA2K↓ = ∅.
We have Z↑ = Z; in fact, Z cannot have upper bounds since JA1K↑ does not
have any. It follows that Z↑ ∩ JA2K↓ = ∅.

Now, consider (A′1, A
′
2) ∈ Upα

′
with JA′1K ⊆ JA1K. Let us show that JA′2K ⊆ Z.

Notice that all constraints of Z must be satisfied by A′2 due to the inclusion
JA′1K ⊆ Z: there are no upper bounds in Z, all its lower bounds are satisfied
by A1, thus also by A′1, and are preserved by definition by Up, and all diagonal
constraints of Z hold in A1, thus also in A′1, and are preserved as well in A′2.
This shows the required inclusion. It follows that JA′2K ∩ JA2K = ∅. ut

Lemma 16. Consider x ∈ C, and (A1, A2) ∈ Resetαx such that JA1K[x ← 0] ∩
JA2K = ∅. Then Freex(JA1K) ∩ Freex(JA2K) = ∅. Moreover, if α′ is obtained
by refinement of α by interp(Freex(JA1K),Freex(JA2K)), then for all (A′1, A

′
2) ∈

Resetα
′

x with JA′1K ⊆ JA1K, we have JA′2K ∩ JA2K = ∅.

Proof. Let v ∈ Freex(JA1K) ∩ Freex(JA2K). Then there exist v1 ∈ JA1K, v2 ∈ JA2K
and v0 such that v0 = v[x← 0] = v1[x← 0] = v2[x← 0]. But JA2K is closed by
resetting x, that is, JA2K[x := 0] ⊆ JA2K. This follows from Lemma 14 applied



to A2, by observing that A2 is unchanged by the reset operation. So v0 ∈ JA2K.
But then JA1K[x := 0] ∩ JA2K 6= ∅ as witnessed by v1[x := 0] = v0.

Let Z = Jinterp(Freex(JA1K),Freex(JA2K))K. For all A′1 satisfying JA′1K ⊆ JA1K,
we have JA′1K[x ← 0] ⊆ JA1K[x ← 0] ⊆ Freex(JA1K) ⊆ Z. So Z ∩ A2 = ∅ means
that JA′1K[x← 0] ∩A2 = ∅. ut

5 Experiments

We implemented both algorithms. The symbolic version was implemented in
OCaml using the CUDD library2; the explicit version was implemented in C++
within an existing model checker using Uppaal DBM library. Both prototypes
take as input networks of timed automata with invariants, discrete variables,
urgent and committed locations. The presented algorithms are adapted to these
features without difficulty.

We evaluated our algorithms on three classes of benchmarks we believe are
significant. We compare the performance of the algorithm with that of Uppaal [7]
which is based on zones, as well as the BDD-based model checker engine of
PAT [25]. We were unable to compare with RED [29] which is not maintained
anymore and not open source, and with which we failed to obtain correct results.
The tool used in [16] was not available either. We thus only provide a comparison
here with two well-maintained tools.

Two of our benchmarks are variants of schedulability-analysis problems where
task execution times depend on the internal states of executed processes, so that
an analysis of the state space is necessary to obtain a precise answer.
Monoprocess Scheduling Analysis. In this variant, a single process sequen-
tially executes tasks on a single machine, and the execution time of each cycle
depends on the state of the process. The goal is to determine a bound on the
maximum execution time of a single cycle. This depends on the semantics of the
process since the bound depends on the reachable states.

More precisely, we built a set of benchmarks where the processes are defined
by synchronous circuit models taken from the Synthesis Competition (http:
//www.syntcomp.org). We assume that each latch of the circuit is associated
with a resource, and changing the state of the resource takes some amount of
time. So a subset of the latches have clocks associated with them, which measure
the time elapsed since the latest value change (latest moment when the value
changed from 0 to 1, or from 1 to 0). We provide two time positive bounds `0
and `1 for each latch, which determine the execution time as follows: if the value
of latch ` changes from 0 to 1 (resp. from 1 to 0), then the execution time of the
present cycle cannot be less than `1 (resp. `0). The execution time of the step is
then the minimum that satisfies these constraints.
Multi-process Stateful Scheduling Analysis. In this variant, three processes
are scheduled on two machines with a round-robin policy. Processes schedule tasks
one after the other without any delay. As in the previous benchmarks, a process

2 http://vlsi.colorado.edu/~fabio/

http://www.syntcomp.org
http://www.syntcomp.org
http://vlsi.colorado.edu/~fabio/


executing a task (on any machine) corresponds to a step of the synchronous circuit
model. Each task is described by a tuple (C1, C2, D) which defines the minimum
and maximum execution times, and the relative deadline. When a task finishes,
the next task arrives immediately. The values in the tuple depend on the state of
the process. The goal is to check the absence of any deadline miss. Processes are
also instantiated with AIG circuits from http://www.syntcomp.org.
Asynchronous Computation. We consider an asynchronous network of “thresh-
old gates”, defined as follows: each gate is characterized by a tuple (n, θ, [l, u])
where n is the number of inputs, 0 ≤ θ ≤ n is the threshold, and l ≤ u are lower
and upper bounds on activation time. Each gate has an output which is initially
undefined. The gate becomes active during the time period [l, u]. During this
time, if all inputs are defined, and if at least θ of the inputs have value 1, then
it sets its output to 1. At the end of the time period, it becomes deactivated
and the output becomes undefined again, until the next period, which starts l
time units after the deactivation. The goal is to check whether the given gate
can output 1 within a given time bound T .

Fig. 7: Comparison of our enumerative and symbolic algorithms (resp. Abs-
enumerative and Abs-symbolic) with Uppaal and PAT. Each figure is a cactus
plot for the set of benchmarks: a point (X,Y) means X benchmarks were solved
within time bound Y.

Results. Figure 7 displays the results of our experiments. All algorithms were
given 8GB of memory and a timeout of 30 minutes, and the experiments were run

http://www.syntcomp.org


on laptop with an Intel i7@3.2Ghz processor running Linux. The symbolic algo-
rithm performs best among all on the monoprocess and multiprocess scheduling
benchmarks. Uppaal is the second best, but does not solve as many benchmarks
as our algorithm. Our enumerative algorithm quickly fails on these benchmarks,
often running out of memory. On asynchronous computation benchmarks, our
enumerative algorithm performs remarkably well, beating all other algorithms.
We ran our tools on the CSMA/CD benchmarks (with 3 to 12 processes); Uppaal
performs the best but our enumerative algorithm is slightly behind. The symbolic
algorithm does not scale, while PAT fails to terminate in all cases.

The tool used for the symbolic algorithm is open source and can be found at
https://github.com/osankur/symrob along with all the benchmarks.

6 Conclusion and Future Work

There are several ways to improve the algorithm. Since the choice of interpolants
determines the abstraction function and the number of refinements, we assumed
that taking the minimal interpolant should be preferable as it should keep the
abstractions as coarse as possible. But it might be better to predict which
interpolant is the most adapted for the rest of the computation in order to limit
future refinements. The number of refinement also depends on the search order,
and although it has already been studied in [23], it could be interesting to study
it in this case. Generally speaking, it is worth noting that we currently cannot
predict which (variant of) our algorithms is better suited for which model.

Several extensions of our algorithms could be developed, e.g. combining our
algorithms with other methods based on finer abstractions as in [22], integrating
predicate abstraction on discrete variables, or developing SAT-based versions of
our algorithms.
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of the 18th International Symposium on Formal Methods (FM’12), volume 7436 of
Lecture Notes in Computer Science, pages 326–340. Springer-Verlag, Aug. 2012.

26. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Comp. Soc. Press, Oct.-Nov. 1977.

27. S. A. Seshia and R. E. Bryant. Unbounded, fully symbolic model checking of timed
automata using boolean methods. In W. A. Hunt, Jr and F. Somenzi, editors,
Proceedings of the 15th International Conference on Computer Aided Verification
(CAV’03), volume 2725 of Lecture Notes in Computer Science, pages 154–166.
Springer-Verlag, July 2003.
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A Details on Benchmarks

Monoprocess-scheduling benchmarks we considered are listed below. In each case,
the .aag file is the circuit defining the process (the models with identical file
names is available at http://www.syntcomp.org). Only a subset of the latches
are “clocked”, that have time constraints. This can be seen in the file name:
for instance, in amba3b5y.aag 4L 200.xml, only the first four latches are clocked.
The number of clocks is then five (an additional one is used to test the elapsed
global time). The last number is the time bound to be tested. The complete list
of benchmarks are given in Table 1.

amba3b5y.aag 10L 300.xml

amba3b5y.aag 4L 200.xml

amba3b5y.aag 4L 290.xml

amba3b5y.aag 4L 300.xml

amba3b5y.aag 5L 290.xml

amba3b5y.aag 5L 300.xml

amba3b5y.aag 6L 290.xml

amba3b5y.aag 6L 300.xml

amba3b5y.aag 7L 290.xml

amba3b5y.aag 7L 300.xml

amba3b5y.aag 8L 300.xml

amba3b5y.aag 9L 300.xml

amba4c7y.aag 10L 300.xml

amba4c7y.aag 4L 200.xml

amba4c7y.aag 4L 300.xml

amba4c7y.aag 5L 200.xml

amba4c7y.aag 5L 300.xml

amba4c7y.aag 6L 300.xml

amba4c7y.aag 7L 300.xml

amba4c7y.aag 8L 300.xml

amba4c7y.aag 9L 300.xml

bs16y.aag 4L 100.xml

bs16y.aag 4L 150.xml

bs16y.aag 4L 200.xml

cnt5y.aag 4L 200.xml

cnt5y.aag 4L 300.xml

factory assembly 3x3 1 1errors.aag 10L 500.xml

factory assembly 3x3 1 1errors.aag 4L 200.xml

factory assembly 3x3 1 1errors.aag 4L 300.xml

factory assembly 3x3 1 1errors.aag 5L 300.xml

factory assembly 3x3 1 1errors.aag 6L 300.xml
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factory assembly 3x3 1 1errors.aag 6L 400.xml

factory assembly 3x3 1 1errors.aag 6L 500.xml

factory assembly 3x3 1 1errors.aag 7L 500.xml

factory assembly 3x3 1 1errors.aag 8L 500.xml

factory assembly 3x3 1 1errors.aag 9L 500.xml

genbuf2b3unrealy.aag 10L 400.xml

genbuf2b3unrealy.aag 4L 300.xml

genbuf2b3unrealy.aag 5L 250.xml

genbuf2b3unrealy.aag 5L 300.xml

genbuf2b3unrealy.aag 6L 300.xml

genbuf2b3unrealy.aag 7L 300.xml

genbuf2b3unrealy.aag 7L 400.xml

genbuf2b3unrealy.aag 8L 400.xml

genbuf2b3unrealy.aag 9L 400.xml

genbuf5f5n.aag 10L 300.xml

genbuf5f5n.aag 5L 290.xml

genbuf5f5n.aag 5L 300.xml

genbuf5f5n.aag 6L 290.xml

genbuf5f5n.aag 6L 300.xml

genbuf5f5n.aag 7L 290.xml

genbuf5f5n.aag 7L 300.xml

genbuf5f5n.aag 8L 300.xml

genbuf5f5n.aag 9L 300.xml

moving obstacle 8x8 1glitches.aag 10L 300.xml

moving obstacle 8x8 1glitches.aag 4L 150.xml

moving obstacle 8x8 1glitches.aag 4L 300.xml

moving obstacle 8x8 1glitches.aag 5L 150.xml

moving obstacle 8x8 1glitches.aag 5L 300.xml

moving obstacle 8x8 1glitches.aag 6L 150.xml

moving obstacle 8x8 1glitches.aag 6L 300.xml

moving obstacle 8x8 1glitches.aag 7L 150.xml

moving obstacle 8x8 1glitches.aag 7L 300.xml

moving obstacle 8x8 1glitches.aag 8L 300.xml

moving obstacle 8x8 1glitches.aag 9L 300.xml

Table 1: Monoprocess benchmarks

For the multiprocess-scheduling benchmarks, we generated instances using the
data shown in Table 2. All models have three clocks, one per process. The first
three entries show the circuits (from http://www.syntcomp.org) used to define
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the processes that are being executed. The last number is the number of the
scenario, which determines the execution times of arriving tasks according to the
value of a selected latch:

– in scenario 0, the two tuples (C1, C2, D) of execution time interval and relative
deadlines are: (500, 1000, 3000), (400, 800, 3000).

– in scenario 1: (500, 1000, 1500), (400, 800, 1600).
– in scenario 2: (1000, 1000, 10000), (20000, 20000, 200000).

Model Process1 Process2 Process3 Scenario

0 amba3b5y.aag add2y.aag add2y.aag 0

1 amba3b5y.aag add2y.aag add2y.aag 1

2 amba3b5y.aag add2y.aag add2y.aag 2

3 cnt4y.aag cnt3y.aag cnt3y.aag 0

4 cnt4y.aag cnt3y.aag cnt3y.aag 1

5 cnt4y.aag cnt3y.aag cnt3y.aag 2

6 cnt4y.aag cnt4y.aag cnt3y.aag 0

7 cnt4y.aag cnt4y.aag cnt3y.aag 1

8 cnt4y.aag cnt4y.aag cnt3y.aag 2

9 cnt4y.aag cnt4y.aag cnt4y.aag 0

10 cnt4y.aag cnt4y.aag cnt4y.aag 1

11 cnt4y.aag cnt4y.aag cnt4y.aag 2

12 cnt5y.aag cnt4y.aag cnt3y.aag 0

13 amba3b5y.aag cnt3y.aag cnt3y.aag 2

14 cnt5y.aag cnt3y.aag cnt3y.aag 0

15 cnt5y.aag cnt3y.aag cnt3y.aag 1

16 cnt5y.aag cnt3y.aag cnt3y.aag 2

17 cnt3y.aag cnt3y.aag cnt3y.aag 0

18 cnt3y.aag cnt3y.aag cnt3y.aag 1

19 cnt3y.aag cnt3y.aag cnt3y.aag 2

20 amba3b5y.aag add2y.aag add2y.aag 1

21 amba3b5y.aag add2y.aag add2y.aag 0

22 amba3b5y.aag add2y.aag cnt3y.aag 1

23 amba3b5y.aag add2y.aag cnt3y.aag 0

24 bs8y.aag add2y.aag add2y.aag 0

25 bs8y.aag add2y.aag add2y.aag 1

26 bs8y.aag add2y.aag add2y.aag 2

27 bs8y.aag bs8y.aag add2y.aag 0

28 bs8y.aag bs8y.aag add2y.aag 1

29 bs8y.aag bs8y.aag add2y.aag 2

30 bs8y.aag bs8y.aag bs8y.aag 0



Model Process1 Process2 Process3 Scenario

31 bs8y.aag bs8y.aag bs8y.aag 1

32 bs8y.aag bs8y.aag bs8y.aag 2

33 mv4y.aag mv4y.aag add2y.aag 0

34 mv4y.aag mv4y.aag add2y.aag 1

35 mv4y.aag mv4y.aag add2y.aag 2

36 mv4y.aag mv4y.aag mv4y.aag 2

37 stay2y.aag stay2y.aag mv4y.aag 2

38 stay4y.aag add2y.aag add2y.aag 2

39 stay4y.aag cnt4y.aag add2y.aag 2

40 stay4y.aag stay2y.aag mv4y.aag 2

41 stay4y.aag stay2y.aag stay2y.aag 2

Table 2: Multiprocess benchmarks

Information on asynchronous-computation benchmarks is listed in Table 3.
The number of clocks in each model is equal to the number of non-input gates.

File name Number of gates Number of inputs Time bound

a0 8 4 50

a1 8 4 150

a2 9 4 50

a3 9 4 150

a4 9 4 400

a5 16 8 50

a6 16 8 150

a7 19 14 150

a8 19 14 300

a9 20 14 300

a10 20 14 300

b0 9 4 1000

b1 10 4 1000

b2 9 4 1000

b3 16 8 1000

b4 40 35 1000

b5 20 14 1000

b6 20 15 1000

b7 9 4 1000

b8 10 3 1000

b9 19 14 1000



File name Number of gates Number of inputs Time bound

b10 16 8 1000

Table 3: Asynchronous Computation Benchmarks
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