
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
06

4
05

7
B

1

(Cont. next page)

EP004064057B1
(11) EP 4 064 057 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
26.07.2023 Bulletin 2023/30

(21) Application number: 21305374.7

(22) Date of filing: 24.03.2021

(51) International Patent Classification (IPC):
G06F 30/3315 (2020.01) G06F 11/36 (2006.01)

G06F 119/12 (2020.01)

(52) Cooperative Patent Classification (CPC):
G06F 30/3315; G06F 11/3608; G06F 2119/12

(54) METHOD AND SYSTEM FOR CORRECTING THE OPERATION OF A TARGET COMPUTER
SYSTEM BY USING TIMED REQUIREMENTS

VERFAHREN UND SYSTEM ZUM KORRIGIEREN DES BETRIEBS EINES
ZIELRECHNERSYSTEMS UNTER VERWENDUNG VON ZEITGESTEUERTEN ANFORDERUNGEN

PROCÉDÉ ET SYSTÈME POUR CORRIGER LE FONCTIONNEMENT D’UN SYSTÈME
INFORMATIQUE CIBLE AU MOYEN D’EXIGENCES TEMPORISÉES

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
28.09.2022 Bulletin 2022/39

(73) Proprietors:
• Mitsubishi Electric R&D Centre Europe B.V.

1119 NS Schiphol Rijk Amsterdam (NL)
Designated Contracting States:
FR

• Mitsubishi Electric Corporation
Tokyo 100-8310 (JP)
Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO RS SE SI SK SM TR

• Institut National de Recherche en Informatique et
en Automatique
78150 Le Chesnay-Rocquencourt (FR)

(72) Inventors:
• NOGUCHI, Reiya

35708 Rennes Cedex 7 (FR)
• JÉRON, Thierry

35042 Rennes Cédex (FR)
• MARKEY, Nicolas

35042 Rennes Cédex (FR)
• SANKUR, Ocan

35042 Rennes Cédex (FR)

(74) Representative: Plasseraud IP
66, rue de la Chaussée d’Antin
75440 Paris Cedex 09 (FR)

(56) References cited:
• Jéron T., Markey N., Mentré D., Noguchi R.,

Sankur O.: "Incremental Methods for Checking
Real-Time Consistency", 25 August 2020
(2020-08-25), ADVANCES IN INTELLIGENT DATA
ANALYSIS XIX; [LECTURE NOTES IN
COMPUTER SCIENCE; LECT.NOTES
COMPUTER], PAGE(S) 249 - 264, XP047587727,
ISSN: 0302-9743 ISBN: 978-3-030-57628-8 DOI:
https://doi.org/10.1007/978-3-030-57628-8_ 15, *
Abstract, Sections 1, 2.4, 3, 5 *

• POST AMALINDA ET AL: "Formalization and
Analysis of Real-Time Requirements: A
Feasibility Study at BOSCH", 28 January 2012
(2012-01-28), ICIAP: INTERNATIONAL
CONFERENCE ON IMAGE ANALYSIS AND
PROCESSING, 17TH INTERNATIONAL
CONFERENCE, NAPLES, ITALY, SEPTEMBER
9-13, 2013. PROCEEDINGS; [LECTURE NOTES IN
COMPUTER SCIENCE; LECT.NOTES
COMPUTER], SPRINGER, BERLIN,
HEIDELBERG, PAGE(S) 225 - 2, XP047371198,
ISBN: 978-3-642-17318-9 * Abstract, Sections 1,
2.3, 4.1, 6 *

2

EP 4 064 057 B1

• POST AMALINDA ET AL: "rt-Inconsistency: A
New Property for Real-Time Requirements", 26
March 2011 (2011-03-26), ICIAP:
INTERNATIONAL CONFERENCE ON IMAGE
ANALYSIS AND PROCESSING, 17TH
INTERNATIONAL CONFERENCE, NAPLES,
ITALY, SEPTEMBER 9-13, 2013. PROCEEDINGS;
[LECTURE NOTES IN COMPUTER SCIENCE;
LECT.NOTES COMPUTER], SPRINGER, BERLIN,
HEIDELBERG, PAGE(S) 34 - 49, XP047432027,
ISBN: 978-3-642-17318-9 * the whole document *

EP 4 064 057 B1

3

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] This disclosure relates to requirement engineering for computer systems and relates more specifically to a
method and system for correcting the operation of a target computer system by using timed requirements.

BACKGROUND ART

[0002] In the process of developing computer systems, requirement engineering consists in defining, documenting
and maintaining the requirements that a computer system needs to comply with. Requirements can be of different nature
but, in computer systems, timed requirements are of importance. Basically, a timed requirement corresponds to con-
straints, including timing constraints, between outputs of the computer system and inputs to said computer system. In
practice, timed requirements will be the basis of the design and development of the computer system. Also, timed
requirements will partly drive the validation campaign in order to check that they are indeed complied by the actual
computer system, once developed.
[0003] Of course, it is of primary importance to design timed requirements that are consistent, i.e. that are not contra-
dictory such that implementations conforming with said timed requirements are indeed possible and may be designed
and developed.
[0004] In the scientific literature, there exist different consistency notions defined for timed requirements of real-time
systems. For instance, real-time consistency (a.k.a. RT-consistency) [PHP11] requires that all finite execution sequences
that do not already violate some timed requirement have an extension that satisfies all of them. Put differently, this
means that if an implementation produces a finite execution sequence whose all continuations necessarily lead to the
violation of some timed requirement, then there must be a timed requirement that is already violated by the finite execution
sequence.
[0005] However, once an inconsistency of a set of timed requirements is detected, or another issue, the set of timed
requirements needs to be corrected, which can be extremely complex even for an experienced requirement engineer.
[0006] Methods for detecting the real-time consistency of a given set of requirements are disclosed in Jéron T., Markey
N., Mentré D., Noguchi R., Sankur O.: "Incremental Methods for Checking Real-Time Consistency", 25 August 2020
(2020-08-25), ADVANCES IN INTELLIGENT DATA ANALYSIS XIX; [LECTURE NOTES IN COMPUTER SCIENCE;
LECT.NOTES COMPUTER], PAGE(S) 249 - 264, XP047587727,ISSN: 0302-97431SBN: 978-3-030-57628-8DOI: ht-
tps:// doi.org/10.1007/978-3-030-57628-8_15
[0007] Additional background on formalizing and analyzing real-time requirements is provided in POST AMALINDA
ET AL: "Formalization and Analysis of Real-Time Requirements: A Feasibility Study at BOSCH", 28 January 2012
(2012-01-28), ICIAP: INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, 17TH INTERNA-
TIONAL CONFERENCE, NAPLES, ITALY, SEPTEMBER 9-13, 2013. PROCEEDINGS; [LECTURE NOTES IN COM-
PUTER SCIENCE; LECT.NOTES COMPUTER], SPRINGER, BERLIN, HEIDELBERG, PAGE(S) 225 - 2,
XP047371198,ISBN: 978-3-642-17318-9

SUMMARY

[0008] The present disclosure aims at proposing a solution for correcting automatically, by a correcting computer
system, inconsistencies of a set of timed requirements describing the operation of a target computer system.
[0009] According to a first aspect, the present disclosure relates to a computer implemented method for correcting
the operation of a target computer system. The operation of the target computer system is constrained by a set of timed
requirements, and an execution sequence of the target computer system, referred to as witness trace, satisfies a criterion
for detecting a conflict between timed requirements of the set of timed requirements, referred to as inconsistency. The
set of timed requirements comprises a first subset and a second subset of timed requirements. The method comprises
initializing a set of constraints based on said witness trace, and iterating steps of:

- modifying the second subset of timed requirements to obtain an updated set of timed requirements for which each
constraint in the set of constraints is satisfied;

- searching for a further witness trace of the inconsistency of the updated set of timed requirements;
- when a further witness trace is found: augmenting the set of constraints based on said further witness trace;

wherein the operation of the target computer system is considered corrected when no further witness trace is found for
an updated set of timed requirements.
[0010] The target computer system may be any computer system for which timed requirements may be defined, such

EP 4 064 057 B1

4

5

10

15

20

25

30

35

40

45

50

55

as an embedded electronic system and/or mechatronic system and/or a mechanical control system, etc.
[0011] The operation of the target computer system is constrained by a set of timed requirements. Correcting the
operation of the target computer system relies on evaluating said operation by simulating the behavior of the target
computer system at the timed requirement level, in order to detect e.g. inconsistencies among the timed requirements
and/or vacuous timed requirements. Correcting the operation of the target computer system therefore corresponds to
correcting the set of timed requirements which constrain the operation of said target computer system. Hence, it is
emphasized that the correcting method does not interact with the actual target computer system, which may not be
designed or developed yet, but evaluates the operation of the target computer system by simulating its behavior at the
timed requirement level. Accordingly, the correcting method is carried out by a correcting computer system that is different
from the target computer system.
[0012] As discussed above, a timed requirement may be viewed as constraints, including timing constraints, between
outputs of the target computer system and inputs to said target computer system.
[0013] The correcting method uses execution sequences of the target computer system, referred to as "witness traces",
that lead to conflicts between timed requirements, i.e. that lead to at least one timed requirement being violated. An
execution sequence basically corresponds a sequence of inputs to the target computer system and resulting outputs
from said target computer system at successive time steps. A timed requirement is violated when the constraints it
defines cannot be satisfied at some point. The witness trace itself does not violate a timed requirement yet. However,
the witness trace is not prevented to occur by the considered timed requirements and yet it reaches a configuration of
the target computer system from which at least one timed requirement will be necessarily violated at some point.
[0014] When such a witness trace demonstrating the inconsistency (e.g. RT-inconsistency) of the set of timed require-
ments is found, it is used to define a (trace-based) constraint which is included in a set of constraints.
[0015] Then the correcting method iteratively modifies a second subset of timed requirements, while maintaining
unchanged a first subset of timed requirements, to obtain a modified second subset such that each constraint in the set
of constraints is satisfied. For instance, for a witness trace σ, the constraint included in the set of constraints may require
that said witness trace σ is prevented from occurring when considering the updated set (combining the first subset and
the modified second subset) or that it ceases to be an inconsistency witness trace when considering the updated set.
[0016] Once such a modified subset is found (satisfying all the constraints of the set of constraints), it is further verified
whether further issues are detected for the updated set. For instance, it is verified whether a further witness trace of the
inconsistency of the updated set can be found. If such a further witness trace can be found, then the set of constraints
is incremented with a further constraint based on said further witness trace (i.e. this constraint is added to the other
previous constraints present in the set of constraints).
[0017] Hence, the set of constraints is iteratively incremented with constraints which are defined by witness traces.
When modifying the second subset of timed requirements, such trace-based constraints can be easily verified, such
that a modified second subset satisfying all the constraints can be searched for with a reasonable computational com-
plexity. When no further witness trace is found for an updated set, then this updated set can replace the original set,
thereby correcting the operation of the target computer system.
[0018] In specific embodiments, the correcting method can further comprise one or more of the following features,
considered either alone or in any technically possible combination.
[0019] In specific embodiments, the correcting method comprises iterating steps of:

- searching for a timed requirement in the first subset, referred to as vacuous timed requirement, which cannot be
triggered when considering the updated set of timed requirements;

- when a vacuous timed requirement is found: determining an execution sequence, referred to as triggering trace,
which triggers the vacuous timed requirement when considering the first subset of timed requirements, and aug-
menting the set of constraints based on said triggering trace;

wherein the operation of the target computer system is considered corrected when no further witness trace and no
vacuous timed requirement is found for an updated set of timed requirements.
[0020] Hence, it is also possible to correct not only the consistency of the updated set but also its non-vacuity. Once
a modified second subset is found (such that the updated set satisfies all the constraints of the set of constraints), it is
further verified whether one or more timed requirements of the first subset have become vacuous due to the modifications
made to the second subset. If such a vacuous timed requirement is found, then an execution sequence that triggered
said timed requirement before modifying the second subset, referred to as "triggering trace", is identified and used to
add a further constraint to the set of constraints. For instance, the added constraint may require that the modified second
subset of subsequent iterations does not prevent said triggering trace to occur, thereby removing the vacuity. Again,
such (triggering) trace-based constraint can be easily verified.
[0021] In specific embodiments, augmenting the set of constraints based on a further witness trace of the inconsistency
of the first subset of timed requirements comprises adding a constraint requiring that the modified second subset of

EP 4 064 057 B1

5

5

10

15

20

25

30

35

40

45

50

55

timed requirements of subsequent iterations prevents said further witness trace to occur.
[0022] In specific embodiments, augmenting the set of constraints based on a further witness trace of the inconsistency
of the updated set of timed requirements which is not a witness trace of the inconsistency of the first subset of timed
requirements comprises adding a constraint requiring that:

- either the modified second subset of timed requirements of subsequent iterations prevents said further witness trace
to occur;

- or said further witness trace is not a witness trace of the inconsistency of the updated set of timed requirements of
subsequent iterations.

[0023] In specific embodiments, the operation of a target computer system is initially constrained by the first subset
of timed requirements and correcting the operation of the target computer system comprises adding the second subset
of timed requirements to the first subset of timed requirements.
[0024] In specific embodiments, the correcting method comprises determining a subset of parameters of the set of
timed requirements based on the witness trace, and determining the first and the second subset based on the subset
of parameters, wherein the second subset is modified by modifying only parameters in said subset of parameters.
[0025] In specific embodiments, the second subset is modified such that a distance between any modified second
subset and the initial second subset does not exceed a predetermined maximum distance.
[0026] In specific embodiments, the criterion for detecting a conflict is satisfied when an RT-inconsistency is detected.
[0027] In specific embodiments, the second subset of timed requirements is modified to obtain an updated set of timed
requirements for which each constraint in the set of constraints is satisfied and for which all timed requirements in the
modified second subset can be triggered when considering the updated set of timed requirements.
[0028] In specific embodiments, the correcting method comprises augmenting the set of constraints based on a desired
trace that can occur when considering the original set of timed requirements but is prevented from occurring by an
updated set of timed requirements. This is advantageous for it prevents from reducing too drastically the set of possible
execution sequences (traces) when correcting the set of timed requirements. Indeed, defining a constraint based on a
desired trace ensures that said desired trace will remain in the set of possible execution sequences (i.e. correcting the
set of timed requirements will not prevent the desired trace from occurring). The constraint added to the set of constraints
typically requires that the updated set of subsequent iterations does not prevent said desired trace to occur.
[0029] In specific embodiments, searching for a witness trace or a triggering trace uses a Satisfiability Modulo Theories,
SMT, solver.
[0030] In specific embodiments, each timed requirement is modeled as a Simplified Universal Pattern, SUP. SUPs
are a type of timed requirements, for which computationally efficient specific consistency checking tools exist.
[0031] According to a second aspect, the present disclosure relates to a computer program product comprising in-
structions which, when executed by at least one processor, configure said at least one processor to carry out a correcting
method according to any one of the embodiments of the present disclosure.
[0032] According to a third aspect, the present disclosure relates to a computer-readable storage medium comprising
instructions which, when executed by at least one processor, configure said at least one processor to carry out a correcting
method according to any one of the embodiments of the present disclosure.
[0033] According to a fourth aspect, the present disclosure relates to a correcting computer system for correcting the
operation of a target computer system, said correcting computer system comprising at least one processor configured
to carry out a correcting method according to any one of the embodiments of the present disclosure.
[0034] It should be noted that the present disclosure may also be applied when the original set is only vacuous, i.e.
no conflict between timed requirements is detected but one or more timed requirements cannot be triggered in the
original set of timed requirements.
[0035] Hence, according to a fifth aspect, the present disclosure relates to a computer implemented method for cor-
recting the operation of a target computer system, said operation of the target computer system being constrained by
a set of timed requirements comprising a first subset and a second subset of timed requirements, wherein a timed
requirement of the first subset, referred to as vacuous timed requirement, cannot be triggered when considering the set
of timed requirements, and an execution sequence, referred to as triggering trace, triggers the vacuous timed requirement
when considering the first subset, wherein said method comprises initializing a set of constraints based on said triggering
trace, and iterating steps of:

- modifying the second subset of timed requirements to obtain an updated set of timed requirements for which each
constraint in the set of constraints is satisfied;

- searching for a further vacuous timed requirement in the first subset which cannot be triggered when considering
the updated set of timed requirements;

- when a further vacuous timed requirement is found: determining a further triggering trace which triggers the further

EP 4 064 057 B1

6

5

10

15

20

25

30

35

40

45

50

55

vacuous timed requirement when considering the first subset of timed requirements, and augmenting the set of
constraints based on said triggering trace;

wherein the operation of the target computer system is considered corrected when no further vacuous timed requirement
is found for an updated set of timed requirements.

BRIEF DESCRIPTION OF DRAWINGS

[0036] The invention will be better understood upon reading the following description, given as an example that is in
no way limiting, and made in reference to the figures which show:

- Figure 1: a schematic representation of a timed requirement modeled as a Simplified Universal Pattern, SUP;
- Figure 2: a schematic representation of an exemplary timed requirement modeled as a timed automaton;
- Figure 3: a diagram representing the main steps of an exemplary embodiment of a correcting method;
- Figure 4: a diagram representing the main steps of a preferred embodiment of a correcting method.

[0037] In these figures, references identical from one figure to another designate identical or analogous elements. For
reasons of clarity, the elements shown are not to scale, unless explicitly stated otherwise.

DESCRIPTION OF EMBODIMENTS

[0038] The present disclosure relates to a method 30 and system for correcting the operation of a target computer
system, wherein the operation of the target computer system is constrained by a set of timed requirements.
[0039] We first introduce some definitions and conventions used in the following non-limitative description, and then
we present different embodiments of the correcting method 30.

A. Definitions

[0040] We consider target computer systems (such as Programmable Logic Controllers or PLCs) whose behaviors
are driven by the observation of Boolean variables and are subject to discrete timing constraints. Intuitively, a run of the
target computer system can be understood as a sequence of time steps at which the value of Boolean variables is
observed, the evolution of the target computer system being governed by both timing constraints and the Boolean value
of these Boolean variables.
[0041] For this kind of target computer systems, timed requirements can for example be represented by timed automata
such as those described in [AD90], with specific restrictions, but extended with Boolean variables.

A.1. Timed automata

[0042] Timed automata (TA) [AD90] extend finite-state automata with variables, called clocks, that can be used to
measure (and impose constraints on) delays between various events along executions. More precisely, given a set X
= {ci|1≤ i ≤ k} of clocks, the set of constraints allowed for a timed automaton is defined using the following grammar:

where c ranges over X, n ranges over , ~ ranges over {<, ≤, =, ≥, >}, and the operator Λ corresponds to the logical
"AND". We consider integer-valued clocks. The semantics of such clock constraints may be defined as follows: given a

clock valuation , that a constraint holds true at v, denoted v|=g, is defined inductively as
follows:

v|=g~n if, and only if, v(c)~n
v|=g1∧g2 if, and only if, v|=g1 and v|=g2.

[0043] For a valuation , an integer , and a subset R # X, we define v + d as the valuation (v +
d)(c) = v(c) + d for all c ∈ X, and v[R ← 0] as v[R ← 0](c) = 0 if c ∈ R and v[R ← 0](c) = v(c) if c ∉ R. R.Finally, we let 0

EP 4 064 057 B1

7

5

10

15

20

25

30

35

40

45

50

55

be the valuation mapping all variables to 0.
[0044] In our timed automata, we also consider the observation of the evolution of the target computer system through
the values of Boolean variables. We thus consider a set AP = {bi|1 ≤ i ≤ n} of atomic propositions, and we define the set

of Boolean constraints as the set of all propositional formulas built on AP. Notice that those Boolean variables
cannot be modified, but are only observed, since they belong to the target computer system itself, contrary to clocks
that can be reset since they are owned by the timed requirement only and used by it to check timing constraints.
[0045] We consider timed automata over the alphabet 2AP. For succinctness, transitions will be labelled with Boolean
constraints on AP rather than with a list of sets of atomic propositions.

[0046] A timed automaton is a tuple where S is a finite set of states, S0 # S is a set of

initial states, X is a finite set of clocks, T # is a finite set of transitions, and F
S is a subset of accepting states (F = S\E wherein E is a subset of error states.

[0047] A configuration of a timed automaton is a pair (s,v) where s ∈ S and . With a timed automaton ,
we associate the infinite-state automaton

where:

- the set of states Q contains all configurations ;
- the initial states are obtained by adjoining the null valuation (all clocks are mapped to zero) to initial states S0, i.e.

Q0 = S0 3 0;
- Σ = 2AP is the alphabet of actions, i.e. valuations of all Boolean variables;
- transitions in D are combinations of a transition of the timed automaton and a 1-time-unit delay. Formally, given a

∈ Σ and two configurations (s,v) and (s’, v’) , there is a transition ((s,v), a, (s’, v’)) in D if, and only if, there is a
transition (s, c, g, r, s’) in T such that a|=c and v|=g, and v’ = (v[r ← 0] + 1);

- is the set of accepting configurations.

[0048] It should be noted that the transition system

is infinite because we impose no bound on the values of the clocks during executions. However, as is classical in the
setting of timed automata [AD90], we may notice that the exact value of a clock is irrelevant as soon as it exceeds the
largest integer constant with which it is compared. We could thus easily modify the definition of

in such a way that it only contains finitely many states.

[0049] A run of is a run of its associated infinite-state automaton

It can be represented as a sequence along which configurations and actions alternate:

[0050] An execution sequence (or trace) of this sequence is its projection on the set of actions. In other terms, it is a

EP 4 064 057 B1

8

5

10

15

20

25

30

35

40

45

50

55

finite or infinite sequence σ = {σi}0≤i≤l of actions where is the length of σ, denoted with |σ|. Finite traces

belong to Σ* and infinite ones to Σ∞. A finite run is accepted if it ends in QF. A trace σ = {σi}0≤i≤l is accepted by if

there is an accepted run (s0,v0) · σ1 · (s1,v1) · σ2 ··· (sl, vl) in .
[0051] In the sequel, we will need to consider several timed requirements, each of them specified by a timed automaton.
To this aim, we define the product of timed automata. Formally, given two timed automata

and

with disjoint clock sets (i.e., X1 ∩ X2 =ø), their product

is a timed automaton

where S = S1 3 S2, S0 = S1,0 3 S2,0, AP = AP1 ∪ AP2, X = X1 ∪ X2, F = F1 3 F2, and the set of transitions is defined
as follows: there is a transition ((s1, s2), c, g, r, (s’1, s’2)) in T if there are transitions (s1, c1, g1,r1, s’1) in T1 and (s2, c2,
g2,r2,s’2) in T2 with c = c1∧c2, g = g1∧g2, and r = r1 ∪ r2.
[0052] This product of timed automata can be easily generalized to an arbitrary number of timed automata, and timed

requirements that they specify. For a set of timed requirements, each specified by a timed automaton

we note the timed requirement specified by the timed automaton

A.2. Execution sequences

[0053] In the sequel, we consider in a non-limitative manner that the timed automata are complete, meaning that from
any (reachable) configuration (s, v), and for any subset σ of AP, there is a transition t = (s,c,g,r,s’) in T such that σ|=c
and v|=g. Also, the timed automaton are considered in a non-limitative manner to be deterministic, i.e. for any two
configurations (a,c,g,r,s) and (a,c’,g’,r’,s’) (hence starting from the same state a) such that both c ∧ c’ and g ∧ g’ are
satisfiable, then s = s’ and r = r’.
[0054] Also, we consider in a non-limitative manner that the timed automata are safe, meaning that there are no

EP 4 064 057 B1

9

5

10

15

20

25

30

35

40

45

50

55

transitions from E = S\F to F. Under such a condition, a run is accepted if and only if it never visits E = S\F.
[0055] Notice that those properties are preserved when composing several timed automata. We use timed automata
to encode timed requirements. Intuitively, entering an error state (i.e. leaving the subset F of accepted states) of a timed

automaton corresponds to violating the corresponding timed requirement. In the sequel, for any timed automaton
and any finite or infinite execution sequence (also referred to as "trace") σ, we write

("σ satisfies ") if and only if σ does not violate , i.e. running σ on does not visit F.
[0056] As discussed above, we consider a set AP = {bi|1 ≤ i ≤ n} of atomic propositions. A valuation is of type AP →
{Ú,⊥}, wherein Ú means "true" and ⊥ means "false". In preferred embodiments, a generalized valuation may be used,
of type AP → {Ú,⊥,∗} . In such generalized valuations, some atomic propositions are assigned to ∗, which stands for a
"don’t care" value, i.e. it is not important whether the value is actually Ú or ⊥. We write v ≤ v’ for two generalized valuations
whenever for any x ∈ AP, if v’(x) ∈ {Ú,⊥} or v(x) =∗, then v(x) = v’(x). In other words, v ≤ v’ means that v is less generalized
than v’. We define DontCare(v) = {x ∈ AP | v(x) =∗}. This is the set of "don’t care" variables of the valuation. Intuitively,
a generalized valuation v represents the set of valuations v’ such that v’ ≤ v.
[0057] A trace σ is therefore a sequence of valuations of length |σ| and a generalized trace is a sequence of generalized
valuations. A concretization of a generalized trace σ is a trace σ’ such that for all 1 ≤ i ≤ |σ|, σ’i ≤ σi . A generalized trace
then represents a set of traces, i.e. the set of the concretizations of said generalized trace.
[0058] We denote by APi = {xi | x ∈ AP} the set of i -th copies of atomic propositions. A (generalized) trace of length
k can be seen as a (generalized) valuation over AP1, ..., APk,. For a generalized trace σ, let DontCare((σ) be the subset
of AP1 u ... u APk, that are assigned to ∗.

A.3. Simplified Universal Patterns (SUP)

[0059] In this subsection, we describe a pattern language called Simplified Universal Pattern (SUP) [Bec19] that can
be used to define timed requirements. Compared to timed automata, SUPs offer a more intuitive though less expressive
way of writing timed requirements. All SUPs can be written as timed automata, but not all timed automata can be written
using SUPs.
[0060] SUP instances can be denoted by:

[0061] A SUP instance is thus defined by the choice of the Boolean formulas TSE, TC, TEE, ASE, AC, AEE, and
durations Tmin, Tmax, Lmin, Lmax, Amin, Amax. The Boolean formulas are propositional formulas built from system
Boolean variables in a set AP of atomic propositions. For simplicity, when talking about an individual SUP, we gather
the values of these parameters in a vector P, and refer to its elements using the names of the parameters (e.g. PTSE is
the value of the first parameter TSE). But we should remember that they are valuations of formulas, and when several
SUPs are considered, since they may refer to some common Boolean variables, their valuations may interfere on those
variables.
[0062] Figure 1 illustrates the intuitive semantics of SUP. Intuitively, the left part of a SUP defines a trigger phase,
while the right part is the action phase. For a trigger phase to be realized, TSE ("Trigger Start Event") has to be true,
and then confirmed within a duration in [Tmin, Tmax]. Confirmation means that TC ("Trigger Condition") holds until TEE
("Trigger End Event") occurs. Otherwise the trigger is aborted.
[0063] If the trigger phase is realized, for the SUP to be satisfied, its action phase should be started by ASE ("Action
Start Event") within [Lmin, Lmax] time units, and then confirmed. That an action phase is realized is defined as for
triggers, with a confirmation duration within [Amin, Amax], during which both AC ("Action Condition") holds until AEE
("Action End Event") occurs. Otherwise, the SUP is violated.
[0064] Figure 2 represents schematically an example of deterministic timed automaton that can be used to encode a
SUP timed requirement, since a SUP timed requirement is a special case of a timed automata as defined above.
[0065] As can be seen in figure 2, the timed automaton encoding the SUP timed requirement has five states idle, trig,
delay, act and err (wherein err is the only error state), and an associated clock c. Also, in figure 2, the operator v
corresponds to the logical "OR" and the operator ¬ corresponds to the logical operator "NOT".
[0066] This timed automaton clearly exhibits the successive phases of a SUP. However, the real timed automaton we
use to encode a SUP is the transitive closure of the timed automaton depicted on Figure 2. For instance, if both TSE
and TEE hold true at the same time and Tmin = 0, then the transitions from idle to trig and from trig to delay have to be

EP 4 064 057 B1

10

5

10

15

20

25

30

35

40

45

50

55

taken at the same time. All maximal simple (i.e. where no transitions may appear twice) sequences of transitions have
to be merged this way, provided that the conjunctions of their Boolean constraints and clock guards (taking intermediary
clock resets into account) can be satisfied.

[0067] For such a SUP, we define the set of Boolean parameters as {TSE, TC, TEE, ASE, AC, AEE} , and the

set of time parameters as [Tmin, Tmax, Lmin, Lmax, Amin, Amax} , and their union . As discussed
above, SUPs can be defined as a valuation P of those parameters. We write SUP(P) for the SUP with parameters defined
by P, and

for the complete deterministic timed automaton corresponding to SUP(P).
[0068] In the rest, we consider in a non-limitative manner SUPs whose Boolean parameters are defined as conjunctive
formulas. Also, we define the distance between two conjunctive formulas as:

where ⊕ denotes the symmetric difference. For two time bounds T, T’, we extend this definition to d(T, T’) = |T - T’|. The
distance between two SUPs with parameters P and P’ is the sum of the distances of their parameters:

 . Furthermore, given two vectors of SUP requirements of the same size,

 and , we define .

A.4. RT-consistency and non-vacuity

[0069] As discussed above, there exist different consistency notions defined for real-time systems’ timed requirements,
such as RT-consistency [PHP11], partial consistency [Bec19], etc. In the sequel, we consider in a non-limitative manner
the case of RT-consistency notion introduced in [PHP11].

[0070] For any requirement R defined by a complete deterministic timed automaton , and any finite or infinite trace
σ, we denote σ fails R if running σ in R ultimately leaves the subset F of accepting states. Similarly, we denote σ I-fails
R if for all infinite traces σ’, the trace σ. σ’ ultimately leaves the subset F of accepting states.

[0071] Hence, a set of SUP requirements is RT-consistent if, for any finite trace σ, if σ I-fails then σ fails

 . A trace that demonstrates the RT-inconsistency, referred to as "witness trace", is then a finite trace σ such that

σ I-fails but not σ fails .
[0072] In the sequel, we will use also the notion of non-vacuity, which is basically existential consistency with a non-

vacuity condition. A set of SUP requirements is non-vacuous if for each , there exists a trace that satisfies

 and that triggers R. Such a trace is referred to as "triggering trace".

B. Correcting method

[0073] Figure 3 represents the main steps of a method 30 for correcting the operation of a target computer system
(not represented in the figures).
[0074] The correcting method 30 is carried out by a correcting computer system (not represented in the figures). In
preferred embodiments, the correcting computer system comprises one or more processors (which may belong to a
same computer or to different computers) and storage means (magnetic hard disk, optical disk, electronic memory, or
any computer readable storage medium) in which a computer program product is stored, in the form of a set of program-
code instructions to be executed in order to implement all or part of the steps of the correcting method 30. Alternatively,
or in combination thereof, the correcting computer system can comprise one or more programmable logic circuits (FPGA,
PLD, etc.), and/or one or more specialized integrated circuits (ASIC), etc., adapted for implementing all or part of said
steps of the correcting method 30. In other words, the correcting computer system comprises a set of means configured

EP 4 064 057 B1

11

5

10

15

20

25

30

35

40

45

50

55

by software (specific computer program product) and/or by hardware (processor, FPGA, PLD, ASIC, etc.) to implement
the steps of the correcting method 30.

[0075] The operation of the target computer system is constrained by a set timed requirements.
[0076] As illustrated by figure 3, the correcting method 30 comprises a step S30 of evaluating a criterion for detecting

a conflict between timed requirements of the set of timed requirements. The conflict detection criterion may use
different notions of inconsistency checking, but we consider in a non-limitative manner that RT-inconsistency is evaluated.

[0077] If the set is considered to be RT-consistent (reference S30a in figure 3), then the execution of the correcting

method 30 may stop. If the set is considered to be RT-inconsistent (reference S30b in figure 3), typically by finding
a trace σ demonstrating the RT-inconsistency referred to as "witness trace", then the correcting method 30 comprises
a step S31 of initializing a set

of constraints by using the witness trace σ. The set

gathers trace-based constraints (i.e. constraints derived from execution sequences) that need to be satisfied when

modifying the set .

[0078] The set R of timed requirements is assumed to comprise a first subset and a second subset of timed
requirements, and the correcting method 30 will then proceed to try and correct the set R of requirements by modifying

the second subset while maintaining the first subset unchanged.

[0079] It should be noted that, in some embodiments, the first subset may correspond to the original set of timed
requirements constraining the operation of the target computer system, for which a RT-inconsistency is detected. In

such a case, one or more new timed requirements, which compose the second subset , may be added to the first

subset in order to obtain a set . Hence, the original subset is not modified, and the RT-

inconsistency is corrected by finding new timed requirements which, when added to the subset , enable to obtain

a set that is RT-consistent.

[0080] In other embodiments, the set may be the original set of timed requirements constraining the operation of
the target computer system, for which a RT-inconsistency is detected. In such a case, one or more timed requirements

of the set , which compose the second subset , are modified in order to obtain a set that is RT-consistent. In

preferred embodiments, the second subset may be modified such that a distance between any modified second

subset and the original second subset does not exceed a predetermined maximum distance dmi.e.

 . This embodiment is advantageous in that it prevents from modifying too significantly the set .
[0081] Also, it should be noted that it is possible to combine both approaches, i.e. by both modifying some of the
original timed requirements constraining the operation of the target computer system and adding new timed requirements.

In such a case, the second subset , to be modified, comprises both timed requirements of the original set and new
timed requirements.

[0082] In the sequel, we assume in a non-limitative manner, the case of SUP timed requirements. Hence, the set
may be defined as:

EP 4 064 057 B1

12

5

10

15

20

25

30

35

40

45

50

55

wherein n is the number of timed requirements. Also, we assume that the set is updated by modifying only a prede-

termined subset M of parameters of the set , . In such a case, can be the subset

of requirements without any parameter in M, and

[0083] As discussed above, the original set may correspond to e.g. the first subset (in which case RT-inconsistency

is solved by adding one or more new timed requirements) or the set (in which case RT-inconsistency may be solved

by modifying some of the timed requirements of the set).

[0084] If the original set corresponds to the first subset , then each new timed requirement may be initialized as
a timed requirement trivial which denotes the SUP timed requirement that is trivially satisfied in which all Boolean
parameters are Ú and all time parameters are 0. In such a case, the subset M of parameters may be chosen to comprise
all the parameters of each added timed requirement trivial.

[0085] If the original set corresponds to the set , the subset M of parameters may be e.g. chosen arbitrarily.
Preferably, the subset M of parameters is chosen based on the witness trace used to initialize the set

of constraints. For instance, the subset M of parameters comprises all the parameters that are involved in the proof

of the RT-inconsistency of the set .
[0086] As illustrated by figure 3, the correcting method 30 then comprises the following steps, which are iterated:

- a step S32 of modifying the second subset of timed requirements to obtain an updated set of timed requirements
for which each constraint in the set

of constraints is satisfied;
- a step S33 of searching for a further witness trace of the RT-inconsistency of the updated set of timed requirements;
- when a further witness trace is found (reference S33b in figure 3): a step S34 of augmenting the set

of constraints based on said further witness trace.

[0087] Hence, the second subset is iteratively modified to produce an updated set (

corresponding to the subset obtained by modifying the subset) at each iteration. It should be noted that, if it is not
possible to satisfy all the constraints in the set

(case not considered in figure 3), then the set cannot be completely corrected. If an updated set is found that
is both RT-consistent (i.e. no further witness trace found, reference S33a in figure 3) and that satisfies all the constraints
in the set

EP 4 064 057 B1

13

5

10

15

20

25

30

35

40

45

50

55

of constraints, then the correcting method 30 returns the updated set which is used to constrain and validate the
operation of the target computer.
[0088] As discussed above, the set

of constraints is initialized and augmented based on (further) witness traces of the RT-inconsistency. The initializing
S31 and augmenting S34 steps are similar, the main difference being that the set

is empty before the initializing step S31. Basically, for each new (further) witness trace σ of the RT-inconsistency, a new
constraint φ is added to the set

of constraints. The added constraint φ may depend on whether the witness trace demonstrates the RT-inconsistency of

the first subset (i.e. without considering the timed requirements of the second subset or of the modified second

subset) or not (the RT-inconsistency requires to take into account all the timed requirements of the set or of

the updated set). In the first case (RT-inconsistency of the first subset), since the timed requirements of the

first subset are not modified, the added constraint φ may require that the modified second subset of subsequent

iterations prevents said (further) witness trace σ to occur. In the second case (first subset alone not RT-inconsistent),
then the added constraint φ may require that:

- either the modified second subset of subsequent iterations prevents said further witness trace σ to occur;
- or said further witness trace σ is not a witness trace of the RT-inconsistency of the updated set of subsequent

iterations.

[0089] It should be noted that other issues of the set may be corrected, in addition to or instead of the (RT-)incon-

sistency. For instance, the set may be initially vacuous, and the correcting method 30 may be used to try and correct

this vacuity by modifying the second subset .
[0090] Figure 4 represents the main steps of a preferred embodiment of the correcting method 30, in which an initial

RT-inconsistency is to be corrected while simultaneously ensuring that the updated set ’ is not vacuous.
[0091] As illustrated by figure 4, the correcting method 30 comprises, in addition to the steps discussed in reference
to figure 3, the following steps which are also iterated:

- a step S35 of searching for a timed requirement in the first subset , referred to as vacuous timed requirement,

which cannot be triggered when considering the updated set ’;
- when a vacuous timed requirement is found (reference S35b in figure 4): a step S36 of determining an execution

sequence, referred to as triggering trace, which triggers the vacuous timed requirement when considering the first

subset , and a step S37 of augmenting the set

EP 4 064 057 B1

14

5

10

15

20

25

30

35

40

45

50

55

of constraints based on said triggering trace.

[0092] Hence, the second subset is similarly iteratively modified to produce an updated set ’ at each iteration.

However, it is further checked that no timed requirement of the first subset becomes vacuous (i.e. cannot be triggered)

when considering the updated set ’. If one timed requirement of the first subset becomes vacuous, a triggering
trace is found (which triggers said vacuous timed requirement when considering only the timed requirements of the first

subset), and a new constraint φ is added to the set

of constraints for future iterations.

[0093] It should be noted that, if the first subset itself is vacuous, then it is not possible to correct the set

without modifying the timed requirements of the first subset . In such a case, the execution of the correcting method

30 may stop. The partition of the timed requirements between the first and second subsets and may be modified

to ensure the non-vacuity of the first subset , which comprises the timed requirements that are not to be modified.
[0094] If it is not possible to satisfy all the constraints in the set

(case not considered in figure 4), then the set cannot be completely corrected. If an updated set ’ is found that
is RT-consistent (i.e. no further witness trace found, reference S33a in figure 3), non-vacuous (reference S35a in figure
4) and that satisfies all the constraints in the set

of constraints, then the correcting method 30 returns the updated set ’ which is used to constrain and validate the
operation of the target computer.
[0095] The set

of constraints may be further augmented based on any such triggering trace found for a vacuous timed requirement of

the first subset . Basically, for each new triggering trace σ, a new constraint φ is added to the set

of constraints. Basically, the added constraint φ requires that the modified second subset of subsequent iterations
does not prevent said triggering trace σ to occur. Such a constraint φ ensures that the timed requirement associated to

the triggering trace σ is no longer vacuous in the updated set ’ of subsequent iterations.

EP 4 064 057 B1

15

5

10

15

20

25

30

35

40

45

50

55

[0096] In preferred embodiments, the second subset of timed requirements is modified to obtain an updated set

’ of timed requirements for which each constraint in the set of constraints is satisfied and for which all timed requirements

in the modified second subset can be triggered when considering the updated set ’ of timed requirements. This

ensures that, if a timed requirement of the updated set ’ is vacuous, then it is necessarily a timed requirement of the

subset .
[0097] Also, in preferred embodiments, searching for a witness trace and/or a triggering trace and/or determining a

modified second subset such that the updated set ’ satisfies the set

of constraints uses a Satisfiability Modulo Theories, SMT, solver. Indeed, such SMT solvers are efficient in finding
variable assignments satisfying given constraints. They prove very efficient in bounded model checking, which consists
in checking traces of bounded length, and thus for searching for witness and/or triggering traces of bounded length.

C. Detailed embodiments of the correcting method

[0098] In the sequel, we describe specific preferred embodiments of correcting method 30. It is emphasized that the
present invention is not limited to the below exemplary embodiments. Variants of these embodiments are also within
the scope of the present invention.

[0099] In the present embodiments, we consider in a non-limitative manner that the set corresponds to SUP timed

requirements, and that a subset M of parameters can be modified to correct the set . Also, the set is modified to

further ensure that is minimized. In other words, the goal is to correct the set with
minimal modifications in the allowed subset M. Also, we assume in the sequel, in a non-limitative the manner, that the
correcting method 30 uses SMT solvers and that the traces considered (e.g. witness and/or triggering traces) are
generalized traces.

[0100] Although the set may use arbitrary Boolean parameters, we assume in a non-limitative manner that the
parameters of the subset M are conjunctive formulas. Hence, we thus assume that each Boolean parameter

 is a conjunctive formula and thus has the form F = Λx∈APFx where Fx is a literal. For instance, each Fx
can have three values representing x, ¬x or true. The modification of the subset M is therefore performed by selecting

one of the three values for each literal Fx for x ∈ AP, as well as values for the timing parameters in . Hence,
the parameter F may be expressed as:

[0101] We denote by the set of requirements obtained from by replacing each parameter in M by conjunctive

formulas where each literal is a fresh free variable as described above. A model for defines a new set of timed

requirements obtained from by modifying parameters in the subset M.
[0102] If a given set of requirements is RT-inconsistent, then the SMT solver may return a generalized witness trace.
This means that all concretizations of the returned generalized witness trace are witness traces to RT-inconsistency.
Hence, when e.g. modifying the timed requirements in order to prevent a generalized witness to occur, this implies that
all the concretizations of such a generalized witness trace are to be excluded. Handling generalized traces is advanta-
geous in that the correcting method 30 learns the new constraints with less iterations.
[0103] Observe that if at each step i, σi defines a concrete valuation, then there is a unique execution on any complete
deterministic timed automaton (CDTA). But for a non-concrete execution, there are several corresponding executions

EP 4 064 057 B1

16

5

10

15

20

25

30

35

40

45

50

55

in general. It is possible to write a formula, by using e.g. universal quantifiers, that constrains all concrete executions of
σ to enter a given set of states in a given timed automaton.

[0104] Based on the above, given a set of timed requirements, and R another timed requirement, we may define:

- trigσ(R(M)) = (Φσ(R(M),trig), which corresponds to the formula describing that all concretizations of the generalized
trace σ trigger the timed requirement R;

- , which corresponds to the formula describing that all concretizations of the

generalized trace σ lead to the error states when considering the set ;

- , which corresponds to the formula describing that all concretizations

of the generalized trace σ lead to the accepting states when considering the set ; we will also denote

by ;

- , where a stands for free variables encoding a one-step extension of σ.

[0105] The non-vacuity checking for a timed requirement may be performed by a bounded search for a trace

that triggers R without violating . Non-vacuity checking may be performed in different ways, and we present below
two different examples of checking non-vacuity.

[0106] According to a first example, non-vacuity checking searches for a finite trace triggering R without violating .

For a given set of timed requirements , , and a bound a > 0, we define nonvac (R,) as:

[0107] Thus, the above non-vacuity formula checks the existence of a trace σ of size at most α, satisfying and
such that some prefix triggers R. Note that this is a partial non-vacuity check since the bound α needs to be fixed.

Moreover, even if , it is possible that no infinite extension of σ satisfies R. However, this is independently handled
by RT-consistency checking.
[0108] According to a second example, non-vacuity checking may check whether a timed requirement R can be

triggered infinitely often. For a given set of timed requirements , , and α > 0 , let denote a CDTA

corresponding to . Define as:

[0109] Hence, the non-vacuity formula is true when there is a lasso-shaped execution satisfying

 and triggering R infinitely often.
[0110] Both non-vacuity formulas can be used depending on the context. It might be that some timed requirements
are meant to be triggered only a finite number of times along an execution (e.g. for the initialization phase of the target
computer system), while some others might be naturally required to be triggered infinitely often. Checking nonvac∞ is
computationally more expensive in general for large sets of timed requirements since large bounds α need to be con-

sidered in order to find cycles in the joint state space (that is, in).
[0111] In the present embodiments, we are going to consider finite traces that trigger a given timed requirement R.
Such traces, referred to as "triggering traces", demonstrate the non-vacuity of the set of timed requirements. Such a
triggering trace is easy to compute since the satisfiability of nonvac is witnessed by such a triggering trace. If we use
SMT solvers for non-vacuity checking, such triggering traces can be obtained directly.

EP 4 064 057 B1

17

5

10

15

20

25

30

35

40

45

50

55

[0112] Based on the above, we consider that the first subset contains the timed requirements without any

parameter in M, and the second subset

[0113] is defined as . Let denote the subset of SUP requirements in which the parameters
in M are replaced with conjunctive formulas with a fresh free variable for each literal. Hence, the goal is to compute

values for M and instantiate as , which modifies and replaces the second subset .
corresponds to the updated set of timed requirements.

[0114] Assume that the set is RT-inconsistent and consider an RT-inconsistency witness trace σ. Then, as dis-
cussed above, two different situations may be considered:

- if σ is an RT-inconsistency witness trace in , then, we need to reject σ (i.e. to prevent σ from occurring),

which may be encoded with ;

- if σ is not an RT-inconsistency witness trace in , then must be such that σ is rejected or that it admits some

extension that satisfies , which may be encoded with .

[0115] For any propositional formula Φ, we denote by SAT(Φ) the satisfiability check which returns true or false.
[0116] An exemplary pseudo-code implementation for an exemplary embodiment is given below.

EP 4 064 057 B1

18

5

10

15

20

25

30

35

40

45

50

55

EP 4 064 057 B1

19

5

10

15

20

25

30

35

40

45

50

55

[0117] At each iteration, it is checked whether values can be assigned to M such that the resulting new timed requirement

set satisfies all constraints in

and such that the timed requirements in can all be triggered. If such a model exists, then we consider the

updated set .
[0118] In the above pseudo-code, we compute a minimal model M0 for the subset M, i.e. a model that minimizes the
distance between the updated and original timed requirements. Since all parameters in M are in conjunctive form in the

set , we can easily express the distance between the new and original timed requirements. For F ∈ M, let Fx denote

the value for the literal x in F in the subset , while F’x denotes its new value in the subset . Given a bound dm,

the following constraints bounds the distance of by dm:

[0119] To compute a minimal model M0 for M, we can run a binary search on the bound dm. Using an incremental
solver may render the successive calls more efficient, since between two calls, only the constraint on the upper bound
changes.
[0120] If the updated set is vacuous, then a vacuous timed requirement R is determined. The set

EP 4 064 057 B1

20

5

10

15

20

25

30

35

40

45

50

55

of constraints is augmented based on whether or not the timed requirement R is also vacuous within . If the subset

 is vacuous, this vacuity cannot be resolved. If the subset is not vacuous, then we determine a triggering trace

σ that triggers R while satisfying , and we may add to the set

of constraints

[0121] If the updated set is non-vacuous, then we check the RT-consistency of . If it is RT-consistent,

then we return this updated set . Otherwise, we consider a witness trace σ to the RT-inconsistency.
The set

of constraints is augmented based on whether the witness trace σ demonstrates the RT-inconsistency of , in which

case we add the constraint to the set

of constraints. Otherwise, we add to the set

of constraints.
[0122] It should be noted that, in some cases, the new timed requirements fixing the RT-inconsistency might be

unsatisfactory if they excessively restrict the set of possible execution sequences that satisfy the updated set ’. In
this case, it is possible to further augment the set

of constraints to ensure that additional execution sequences, referred to as "desired traces" are not prevented from

occurring when modifying the second subset . If is a set of timed requirements which is non-vacuous
and RT-consistent, then it is possible to search for a desired trace σ (of given size k), e.g. using a SMT solver, such that

 (here the original set) but . We may then add to the set

of constraints and continue iterating. It is possible to continue until a satisfactory solution is found (e.g. the set of possible
execution sequences is not excessively restricted), or until no such further desired trace σ exists or no M satisfying the set

EP 4 064 057 B1

21

5

10

15

20

25

30

35

40

45

50

55

of constraints exists. Each successful termination of the correcting method 30 yields a non-vacuous and RT-consistent
updated set, so a user can choose one of these.
[0123] In the above pseudocode one can pick one concretization σ’ of the generalized witness trace σ and using

 . This yields a small SMT query which can be solved faster but requires a possibly large number of
iterations since only a small piece of information is learned at each iteration.
[0124] Another approach would consist in using universal quantifiers to define a formula that rejects all concretizations
of the generalized witness trace σ. For a partial valuation v, let σ[v] denote the trace obtained by replacing each x by

v(x) when v(x) is defined. The formula then rejects all concretiza-
tions of the generalized witness trace σ. Using universal quantifiers means that each query of the SMT solver is slower,
although all concretizations are addressed.

References

[0125]

[AD90] Rajeev Alur and David L. Dill. "Automata for modeling real-time systems". In Mike Paterson, editor, Proceed-
ings of the 17th International Colloquium on Automata, Languages and Programming (ICALP’90), volume 443 of
LNCS, pages 322-335. Springer, 1990.
[Bec19] Jan Steffen Becker. "Analyzing consistency of formal requirements". In Proceedings of the 18th International
Workshop on Automated Verification of Critical Systems (AVOCS’18). EASST, 2019.
[PHP11] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. "RT-inconsistency: a new property for real-time
requirements". In Proceedings of the 14th International Conference on Fundamental Approaches to Software En-
gineering (FASE’11), volume 6603 of LNCS. Springer, 2011.

Claims

1. A computer implemented method (30) for correcting the operation of a target computer system, said operation of
the target computer system being constrained by a set of timed requirements, wherein a timed requirement corre-
sponds to constraints, including timing constraints, between outputs of the target computer system and inputs to
said target computer system, wherein an execution sequence of the target computer system, referred to as witness
trace, satisfies a criterion for detecting a conflict between timed requirements of the set of timed requirements,
referred to as inconsistency, wherein the set of timed requirements comprises a first subset and a second subset
of timed requirements,
characterized in that

said method (30) comprises (S31) initializing a set of constraints based on said witness trace, and iterating
steps of:

- (S32) modifying the second subset of timed requirements to obtain an updated set of timed requirements
for which each constraint in the set of constraints is satisfied;
- (S33) searching for a further witness trace of the inconsistency of the updated set of timed requirements;
- when a further witness trace is found: (S34) augmenting the set of constraints based on said further
witness trace;

wherein the operation of the target computer system is considered corrected when no further witness trace is
found for an updated set of timed requirements.

2. Method (30) according to claim 1, comprising iterating steps of

- (S35) searching for a timed requirement in the first subset, referred to as vacuous timed requirement, which
cannot be triggered when considering the updated set of timed requirements;

EP 4 064 057 B1

22

5

10

15

20

25

30

35

40

45

50

55

- when a vacuous timed requirement is found: (S36) determining an execution sequence, referred to as triggering
trace, which triggers the vacuous timed requirement when considering the first subset of timed requirements,
and (S37) augmenting the set of constraints based on said triggering trace;

wherein the operation of the target computer system is considered corrected when no further witness trace and no
vacuous timed requirement is found for an updated set of timed requirements.

3. Method (30) according to claim 2, wherein (S37) augmenting the set of constraints based on a triggering trace
comprises adding a constraint requiring that the modified second subset of timed requirements of subsequent
iterations does not prevent said triggering trace to occur.

4. Method (30) according to any one of the preceding claims, wherein (S34) augmenting the set of constraints based
on a further witness trace of the inconsistency of the first subset of timed requirements comprises adding a constraint
requiring that the modified second subset of timed requirements of subsequent iterations prevents said further
witness trace to occur.

5. Method (30) according to any one of the preceding claims, wherein (S34) augmenting the set of constraints based
on a further witness trace of the inconsistency of the updated set of timed requirements which is not a witness trace
of the inconsistency of the first subset of timed requirements comprises adding a constraint requiring that:

- either the modified second subset of timed requirements of subsequent iterations prevents said further witness
trace to occur;
- or said further witness trace is not a witness trace of the inconsistency of the updated set of timed requirements
of subsequent iterations.

6. Method (30) according to any one of the preceding claims, wherein the operation of a target computer system is
initially constrained by the first subset of timed requirements and correcting the operation of the target computer
system comprises adding the second subset of timed requirements to the first subset of timed requirements.

7. Method (30) according to any one of claims 1 to 5, comprising determining a subset of parameters of the set of
timed requirements based on the witness trace, and determining the first and the second subset based on the subset
of parameters, wherein the second subset is modified by modifying only parameters in said subset of parameters.

8. Method (30) according to claim 7, wherein the second subset is modified such that a distance between any modified
second subset and the initial second subset does not exceed a predetermined maximum distance.

9. Method (30) according to any one of the preceding claims, wherein the second subset of timed requirements is
modified to obtain an updated set of timed requirements for which each constraint in the set of constraints is satisfied
and for which all timed requirements in the modified second subset can be triggered when considering the updated
set of timed requirements.

10. Method (30) according to any one of the preceding claims, comprising augmenting the set of constraints based on
a desired trace that can occur when considering the original set of timed requirements but is prevented from occurring
by an updated set of timed requirements.

11. Method (30) according to any one of the preceding claims, wherein, searching for a witness trace and/or a triggering
trace uses a Satisfiability Modulo Theories, SMT, solver.

12. Method (50) according to any one of the preceding claims, wherein each timed requirement is modeled as a Simplified
Universal Pattern, SUP.

13. Computer program product comprising instructions which, when executed by at least one processor, configure said
at least one processor to carry out a correcting method (30) according to any one of the preceding claims.

14. Computer-readable storage medium comprising instructions which, when executed by at least one processor, con-
figure said at least one processor to carry out a correcting method (30) according to any one of claims 1 to 12.

15. Correcting computer system for correcting the operation of a target computer system, said correcting computer

EP 4 064 057 B1

23

5

10

15

20

25

30

35

40

45

50

55

system comprising at least one processor configured to carry out a correcting method (50) according to any one of
claims 1 to 12.

Patentansprüche

1. Computerimplementiertes Verfahren (30) zum Korrigieren des Betriebs eines Zielcomputersystems, wobei der Be-
trieb des Zielcomputersystems durch einen Satz zeitlich festgelegter Anforderungen beschränkt ist, wobei eine
zeitlich festgelegte Anforderung Beschränkungen, einschließlich Timing-Beschränkungen, zwischen Ausgaben des
Zielcomputersystems und Eingaben an das Zielcomputersystem entspricht, wobei eine Ausführungssequenz des
Zielcomputersystems, welche als eine Nachweisspur bezeichnet wird, ein Kriterium zum Detektieren eines Konflikts
zwischen zeitlich festgelegten Anforderungen des Satzes zeitlich festgelegter Anforderungen erfüllt, welcher als
Inkonsistenz bezeichnet wird, wobei der Satz zeitlich festgelegter Anforderungen einen ersten Untersatz und einen
zweiten Untersatz zeitlich festgelegter Anforderungen umfasst,
dadurch gekennzeichnet, dass

das Verfahren (30) (S31) ein Initialisieren eines Satzes von Beschränkungen auf Grundlage der Nachweisspur
und ein Iterieren der folgenden Schritte umfasst:

- (S32) Modifizieren des zweiten Untersatzes zeitlich festgelegter Anforderungen, um einen aktualisierten
Satz zeitlich festgelegter Anforderungen zu erhalten, für welchen jede Beschränkung in dem Satz von
Beschränkungen erfüllt ist;
- (S33) Suchen nach einer weiteren Nachweisspur der Inkonsistenz des aktualisierten Satzes zeitlich fest-
gelegter Anforderungen;
- wenn eine weitere Nachweisspur gefunden wird: (S34) Erweitern des Satzes von Beschränkungen auf
Grundlage der weiteren Nachweisspur;

wobei der Betrieb des Zielcomputersystems als korrigiert betrachtet wird, wenn für einen aktualisierten Satz
zeitlich festgelegter Anforderungen keine weitere Nachweisspur gefunden wird.

2. Verfahren (30) nach Anspruch 1, umfassend ein Iterieren der folgenden Schritte:

- (S35) Suchen nach einer zeitlich festgelegten Anforderung in dem ersten Untersatz, welche als eine leere
zeitlich festgelegte Anforderung bezeichnet wird, welche nicht getriggert werden kann, wenn der aktualisierte
Satz zeitlich festgelegter Anforderungen betrachtet wird;
- wenn eine leere zeitlich festgelegte Anforderung gefunden wird: (S36) Bestimmen einer Ausführungssequenz,
welche als eine Triggerspur bezeichnet wird, welche die leere zeitlich festgelegte Anforderung triggert, wenn
der erste Untersatz zeitlich festgelegter Anforderungen betrachtet wird, und (S37) Erweitern des Satzes von
Beschränkungen auf Grundlage der Triggerspur;

wobei der Betrieb des Zielcomputersystems als korrigiert betrachtet wird, wenn keine weitere Nachweisspur und
keine weitere leere zeitlich festgelegte Anforderung für einen aktualisierten Satz zeitlich festgelegter Anforderungen
gefunden wird.

3. Verfahren (30) nach Anspruch 2, wobei (S37) das Erweitern des Satzes von Beschränkungen auf Grundlage einer
Triggerspur ein Ergänzen einer Beschränkung umfasst, welche erfordert, dass der modifizierte zweite Untersatz
zeitlich festgelegter Anforderungen aufeinanderfolgender Iterationen nicht verhindert, dass die Triggerspur auftritt.

4. Verfahren (30) nach einem der vorhergehenden Ansprüche, wobei (S34) das Erweitern des Satzes von Beschrän-
kungen auf Grundlage einer weiteren Nachweisspur der Inkonsistenz des ersten Untersatzes zeitlich festgelegter
Anforderungen ein Ergänzen einer Beschränkung umfasst, welche erfordert, dass der modifizierte zweite Untersatz
zeitlich festgelegter Anforderungen aufeinanderfolgender Iterationen verhindert, dass die weitere Nachweisspur
auftritt.

5. Verfahren (30) nach einem der vorhergehenden Ansprüche, wobei (S34) das Erweitern des Satzes von Beschrän-
kungen auf Grundlage einer weiteren Nachweisspur der Inkonsistenz des aktualisierten Satzes zeitlich festgelegter
Anforderungen, welche keine Nachweisspur der Inkonsistenz des ersten Untersatzes zeitlich festgelegter Anforde-
rungen ist, ein Ergänzen einer Beschränkung umfasst, welche erfordert, dass:

EP 4 064 057 B1

24

5

10

15

20

25

30

35

40

45

50

55

- entweder der modifizierte zweite Untersatz zeitlich festgelegter Anforderungen aufeinanderfolgender Iterati-
onen verhindert, dass die weitere Nachweisspur auftritt;
- oder die weitere Nachweisspur keine Nachweisspur der Inkonsistenz des aktualisierten Satzes zeitlich fest-
gelegter Anforderungen aufeinanderfolgender Iterationen ist.

6. Verfahren (30) nach einem der vorhergehenden Ansprüche, wobei der Betrieb eines Zielcomputersystems initial
durch den ersten Untersatz zeitlich festgelegter Anforderungen beschränkt wird und das Korrigieren des Betriebs
des Zielcomputersystems ein Ergänzen des zweiten Untersatzes zeitlich festgelegter Anforderungen zu dem ersten
Untersatz zeitlich festgelegter Anforderungen umfasst.

7. Verfahren (30) nach einem der Ansprüche 1 bis 5, umfassend Bestimmen eines Untersatzes von Parametern des
Satzes zeitlich festgelegter Anforderungen auf Grundlage der Nachweisspur, und Bestimmen des ersten und des
zweiten Untersatzes auf Grundlage des Untersatzes von Parametern, wobei der zweite Untersatz durch Modifizieren
nur von Parametern in dem Untersatz von Parametern modifiziert wird.

8. Verfahren (30) nach Anspruch 7, wobei der zweite Untersatz so modifiziert wird, dass eine Distanz zwischen jegli-
chem modifizierten zweiten Untersatz und dem initialen zweiten Untersatz eine vorbestimmte maximale Distanz
nicht überschreitet.

9. Verfahren (30) nach einem der vorhergehenden Ansprüche, wobei der zweite Untersatz zeitlich festgelegter Anfor-
derungen modifiziert wird, um einen aktualisierten Satz zeitlich festgelegter Anforderungen zu erhalten, für welchen
jede Beschränkung in dem Satz von Beschränkungen erfüllt ist und für welchen alle zeitlich festgelegten Anforde-
rungen in dem modifizierten zweiten Untersatz getriggert werden können, wenn der aktualisierte Satz zeitlich fest-
gelegter Anforderungen betrachtet wird.

10. Verfahren (30) nach einem der vorhergehenden Ansprüche, umfassend Erweitern des Satzes von Beschränkungen
auf Grundlage einer gewünschten Spur, welche auftreten kann, wenn der ursprüngliche Satz zeitlich festgelegter
Anforderungen betrachtet wird, jedoch durch einen aktualisierten Satz zeitlich festgelegter Anforderungen an einem
Auftreten gehindert wird.

11. Verfahren (30) nach einem der vorhergehenden Ansprüche, wobei das Suchen nach einer Nachweisspur und/oder
einer Triggerspur einen Satisfiability-Modulo-Theroies, SMT, -Solver verwendet.

12. Verfahren (50) nach einem der vorhergehenden Ansprüche, wobei jede zeitlich festgelegte Anforderung als ein
vereinfachtes universelles Muster, SUP, modelliert wird.

13. Computerprogrammprodukt, umfassend Anweisungen, welche, wenn durch wenigstens einen Prozessor ausge-
führt, den wenigstens einen Prozessor konfigurieren, ein Korrekturverfahren (30) nach einem der vorhergehenden
Ansprüche auszuführen.

14. Computerlesbares Speichermedium, umfassend Anweisungen, welche, wenn durch wenigstens einen Prozessor
ausgeführt, den wenigstens einen Prozessor konfigurieren, ein Korrekturverfahren (30) nach einem der Ansprüche
1 bis 12 auszuführen.

15. Korrekturcomputersystem zum Korrigieren des Betriebs eines Zielcomputersystems, wobei das Korrekturcompu-
tersystem wenigstens einen Prozessor umfasst, welcher dazu eingerichtet ist, ein Korrekturverfahren (50) nach
einem der Ansprüche 1 bis 12 auszuführen.

Revendications

1. Procédé mis en oeuvre par ordinateur (30) pour corriger le fonctionnement d’un système informatique cible, ledit
fonctionnement du système informatique cible étant contraint par un ensemble d’exigences temporisées, dans
lequel une exigence temporisée correspond à des contraintes, comportant des contraintes de temporisation, entre
des sorties du système informatique cible et des entrées dudit système informatique cible, dans lequel une séquence
d’exécution du système informatique cible, appelée trace témoin, satisfait un critère pour la détection d’un conflit
entre des exigences temporisées de l’ensemble d’exigences temporisées, appelé incohérence, dans lequel l’en-
semble d’exigences temporisées comprend un premier sous-ensemble et un deuxième sous-ensemble d’exigences

EP 4 064 057 B1

25

5

10

15

20

25

30

35

40

45

50

55

temporisées,
caractérisé en ce que

ledit procédé (30) comprend (S31) l’initialisation d’un ensemble de contraintes sur la base de ladite trace témoin,
et l’itération des étapes consistant à :

- (S32) modifier le deuxième sous-ensemble d’exigences temporisées pour obtenir un ensemble mis à jour
d’exigences temporisées pour lesquelles chaque contrainte dans l’ensemble de contraintes est satisfaite ;
- (S33) rechercher une trace témoin supplémentaire de l’incohérence de l’ensemble mis à jour d’exigences
temporisées ;
- lorsqu’une trace témoin supplémentaire est trouvée : (S34) augmenter l’ensemble de contraintes sur la
base de ladite trace témoin supplémentaire ;

dans lequel le fonctionnement du système informatique cible est considéré corrigé lorsqu’aucune trace témoin
supplémentaire n’est trouvée pour un ensemble mis à jour d’exigences temporisées.

2. Procédé (30) selon la revendication 1, comprenant l’itération des étapes consistant à

- (S35) rechercher une exigence temporisée dans le premier sous-ensemble, appelée exigence temporisée
vide, qui ne peut pas être déclenchée lorsque l’on considère l’ensemble mis à jour d’exigences temporisées ;
- lorsqu’une exigence temporisée vide est trouvée : (S36) déterminer une séquence d’exécution, appelée trace
de déclenchement, qui déclenche l’exigence temporisée vide lorsque l’on considère le premier sous-ensemble
d’exigences temporisées, et (S37) augmenter l’ensemble de contraintes sur la base de ladite trace de
déclenchement ;

dans lequel le fonctionnement du système informatique cible est considéré corrigé lorsqu’aucune trace témoin
supplémentaire et aucune l’exigence temporisée vide n’est trouvée pour un ensemble mis à jour d’exigences tem-
porisées.

3. Procédé (30) selon la revendication 2, dans lequel (S37) l’augmentation de l’ensemble de contraintes sur la base
d’une trace de déclenchement comprend l’ajout d’une contrainte nécessitant que le deuxième sous-ensemble modifié
d’exigences temporisées d’itérations ultérieures n’empêche pas ladite trace de déclenchement de se produire.

4. Procédé (30) selon l’une quelconque des revendications précédentes, dans lequel (S34) l’augmentation de l’en-
semble de contraintes sur la base d’une trace témoin supplémentaire de l’incohérence du premier sous-ensemble
d’exigences temporisées comprend l’ajout d’une contrainte nécessitant que le deuxième sous-ensemble modifié
d’exigences temporisées d’itérations ultérieures empêche ladite trace témoin supplémentaire de se produire.

5. Procédé (30) selon l’une quelconque des revendications précédentes, dans lequel (S34) l’augmentation de l’en-
semble de contraintes sur la base d’une trace témoin supplémentaire de l’incohérence de l’ensemble mis à jour
d’exigences temporisées qui n’est pas une trace témoin de l’incohérence du premier sous-ensemble d’exigences
temporisées comprend l’ajout d’une contrainte nécessitant que :

- soit le deuxième sous-ensemble modifié d’exigences temporisées d’itérations ultérieures empêche ladite trace
témoin supplémentaire de se produire ;
- soit ladite trace témoin supplémentaire n’est pas une trace témoin de l’incohérence de l’ensemble mis à jour
d’exigences temporisées d’itérations ultérieures.

6. Procédé (30) selon l’une quelconque des revendications précédentes, dans lequel le fonctionnement d’un système
informatique cible est initialement contraint par le premier sous-ensemble d’exigences temporisées et la correction
du fonctionnement du système informatique cible comprend l’ajout du deuxième sous-ensemble d’exigences tem-
porisées au premier sous-ensemble d’exigences temporisées.

7. Procédé (30) selon l’une quelconque des revendications 1 à 5, comprenant la détermination d’un sous-ensemble
de paramètres de l’ensemble d’exigences temporisées sur la base de la trace témoin, et la détermination du premier
et du deuxième sous-ensemble sur la base du sous-ensemble de paramètres, dans lequel le deuxième sous-
ensemble est modifié uniquement par modification des paramètres dans ledit sous-ensemble de paramètres.

EP 4 064 057 B1

26

5

10

15

20

25

30

35

40

45

50

55

8. Procédé (30) selon la revendication 7, dans lequel le deuxième sous-ensemble est modifié de telle manière qu’une
distance entre tout deuxième sous-ensemble modifié et deuxième sous-ensemble initial ne dépasse pas une distance
maximale prédéterminée.

9. Procédé (30) selon l’une quelconque des revendications précédentes, dans lequel le deuxième sous-ensemble
d’exigences temporisées est modifié pour obtenir un ensemble mis à jour d’exigences temporisées pour lesquelles
chaque contrainte dans l’ensemble de contraintes est satisfaite et pour lesquelles toutes les exigences temporisées
dans le deuxième sous-ensemble modifié peuvent être déclenchées lorsque l’on considère l’ensemble mis à jour
d’exigences temporisées.

10. Procédé (30) selon l’une quelconque des revendications précédentes, comprenant l’augmentation de l’ensemble
de contraintes sur la base d’une trace souhaitée qui peut se produire lorsque l’on considère l’ensemble d’origine
d’exigences temporisées mais est empêchée de se produire par un ensemble mis à jour d’exigences temporisées.

11. Procédé (30) selon l’une quelconque des revendications précédentes, dans lequel, la recherche d’une trace témoin
et/ou d’une trace de déclenchement utilise un solveur de Satisfiability Modulo Theories, SMT.

12. Procédé (50) selon l’une quelconque des revendications précédentes, dans lequel chaque l’exigence temporisée
est modélisée sous la forme d’un modèle universel simplifié, SUP.

13. Produit de programme informatique comprenant des instructions qui, lorsqu’elles sont exécutées par au moins un
processeur, configurent ledit au moins un processeur pour réaliser un procédé de correction (30) selon l’une quel-
conque des revendications précédentes.

14. Support de stockage lisible par ordinateur comprenant des instructions qui, lorsqu’elles sont exécutées par au moins
un processeur, configurent ledit au moins un processeur pour réaliser un procédé de correction (30) selon l’une
quelconque des revendications 1 à 12.

15. Système informatique de correction pour corriger le fonctionnement d’un système informatique cible, ledit système
informatique de correction comprenant au moins un processeur configuré pour réaliser un procédé de correction
(50) selon l’une quelconque des revendications 1 à 12.

EP 4 064 057 B1

27

EP 4 064 057 B1

28

EP 4 064 057 B1

29

EP 4 064 057 B1

30

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description

• JÉRON T. ; MARKEY N. ; MENTRÉ D. ; NOGUCHI
R. ; SANKUR O. Incremental Methods for Checking
Real-Time Consistency. ADVANCES IN INTELLI-
GENT DATA ANALYSIS XIX; [LECTURE NOTES IN
COMPUTER SCIENCE; LECT.NOTES COMPU-
TER, 25 August 2020, ISSN 0302-9743, ISBN
978-3-030-57628-8, 249-264 [0006]

• Formalization and Analysis of Real-Time Require-
ments: A Feasibility Study at BOSCH. POST AMA-
LINDA et al. ICIAP: INTERNATIONAL CONFER-
ENCE ON IMAGE ANALYSIS AND PROCESSING,
17TH INTERNATIONAL CONFERENCE, NAPLES,
ITALY, SEPTEMBER 9-13, 2013. PROCEEDINGS;
[LECTURE NOTES IN COMPUTER SCIENCE;
LECT.NOTES COMPUTER. SPRINGER, 28 Janu-
ary 2012, 225-2 [0007]

• Automata for modeling real-time systems. RAJEEV
ALUR ; DAVID L. DILL. Proceedings of the 17th In-
ternational Colloquium on Automata, Languages and
Programming (ICALP’90). Springer, 1990, vol. 443,
322-335 [0125]

• Analyzing consistency of formal requirements. JAN
STEFFEN BECKER. Proceedings of the 18th Inter-
national Workshop on Automated Verification of Crit-
ical Systems (AVOCS’18). EASST, 2019 [0125]

• RT-inconsistency: a new property for real-time re-
quirements. AMALINDA POST ; JOCHEN
HOENICKE ; ANDREAS PODELSKI. Proceedings
of the 14th International Conference on Fundamental
Approaches to Software Engineering (FASE’11).
Springer, 2011, vol. 6603 [0125]

	bibliography
	description
	claims
	drawings
	cited references

