
Online Test Synthesis From Requirements:

Enhancing Reinforcement Learning

with Game Theory

Ocan Sankur1, Thierry Jéron1, Nicolas Markey1, David Mentré2, and Reiya Noguchi3

1Univ Rennes, Inria, CNRS, Rennes, France, firstname.lastname@inria.fr
2Mitsubishi Electrics R&D Centre Europe, Rennes, France,
initial-of-firstname.lastname@fr.merce.mee.com

3Mitsubishi Electric Corporation, Tokyo, Japan,
lastname.firstname@ah.MitsubishiElectric.co.jp

Abstract

We consider the automatic online synthesis of
black-box test cases from functional requirements
specified as automata for reactive implementa-
tions. The goal of the tester is to reach some given
state, so as to satisfy a coverage criterion, while
monitoring the violation of the requirements. We
develop an approach based on Monte Carlo Tree
Search, which is a classical technique in reinforce-
ment learning for efficiently selecting promising
inputs. Seeing the automata requirements as a
game between the implementation and the tester,
we develop a heuristic by biasing the search to-
wards inputs that are promising in this game. We
experimentally show that our heuristic accelerates
the convergence of the Monte Carlo Tree Search
algorithm, thus improving the performance of
testing.

1 Introduction

Requirement engineering and testing are two
important and related phases in the develop-
ment process. Indeed, test cases are usually
derived from functional specifications and doc-

umented with the requirements they are sup-
posed to check. Several existing tools allow one
to automatically generate test cases from for-
mal functional specifications and/or formal re-
quirements (see e.g., the tools T-VEC [BB96],
TorXakis [TvdL19] or Stimulus [JG16], and sur-
veys [UPL12] and [LLGS18]).This helps the devel-
opment process since the developer can focus on
writing formal specifications or requirements, and
test cases are generated automatically. There are
two main approaches for test generation: black-
box testing focuses on generating tests without
having access to the system’s internals such as
its source code (see e.g., [Bei95]), while white-box
testing generates tests by analyzing its source
code (see e.g., [MBTS04, AO17]).

Black-Box Testing. In this paper, we are in-
terested in automatically synthesizing online test
cases from a set of requirements and an implemen-
tation under test in a black-box setting. By black-
box, we mean that the implementation internal is
unknown to the tester (or at least not used), only
its interaction with her is used. By online, we
mean that the synthesis is essentially performed
during execution, while interacting with the im-
plementation. We consider implementations that

1

ar
X

iv
:2

40
7.

18
99

4v
1

 [
cs

.A
I]

 2
6

Ju
l 2

02
4

firstname.lastname@inria.fr
initial-of-firstname.lastname@fr.merce.mee.com
lastname.firstname@ah.MitsubishiElectric.co.jp
https://www.t-vec.com/
https://torxakis.org/
https://www.3ds.com/products/catia/stimulus

are reactive: these are programs that alternate be-
tween reading an input valuation and writing an
output valuation. This setting is interesting for
modeling synchronous systems, e.g., controllers
for manufacturing systems [Bol15]. The consid-
ered requirements are given as automata recogniz-
ing sequences of valuations of input and output
variables. The conformance of an implementa-
tion to a set of requirements is formalized as the
absence of input-output valuation sequences gen-
erated by the implementation that are rejected
by the requirements automaton.

The goal of the test cases is to drive the imple-
mentation to some particular state or show some
particular behaviour where non-conformance is
suspected to occur. These are described by test
objectives. They are typically derived from cov-
erage criteria, e.g. state or transition coverage,
or written from requirements [?]. The selection
of the test objectives is out of the scope of this
paper; we thus assume that these are given.

There are several black-box testing algorithms
and tools in the literature. The closest to our
approach is TorXakis [TvdL19, Tor] which is a
tool based on the ioco testing theory [Tre96] and
the previous TorX tool [TB03]. It allows the
user to specify the automata-based requirements
reading input-output valuations as well as test
objectives (called test purposes) in a language
based on process algebra, and is able to generate
online tests interacting with a given implemen-
tation. These tests are performed by picking
random input valuations, and observing the out-
puts from the implementation, while checking for
non-conformance. Because tests are performed
using random walks in this approach, deep traces
satisfying the test objective or violating the re-
quirements are hard to find in practice.

Reinforcement Learning for Testing. This
issue has been addressed in many works by inter-
preting the test synthesis in a reinforcement learn-
ing(RL) setting [SB18]. Reinforcement learning
is a set of techniques for computing strategies
that optimize a given reward function based on
interactions of an agent with its environment.

It has been applied to learn strategies for playing
board games such as Chess and Go [SHM+16].
Here the test synthesis is seen as a game between
the tester and the implementation: the former
player selects inputs, and the latter player selects
outputs. Because the implementation is black-
box, the tester is playing an unknown game, but
can discover the game through interactions. Us-
ing a game approach for test synthesis has long
been advocated [Yan04]; and online testing for
interface automata specifications were considered
in [VRC06] using RL.

Because reaching a test objective is a 0/1 prob-
lem (an execution either reaches the objective
and has a reward 1, or does not reach it and has
reward 0), RL algorithms are usually very slow
in finding deep traces. The application of RL to
black-box testing thus requires the use of reward
shaping [NHR99] which consists in assigning in-
termediate rewards to steps before the objective
is reached; these are used to guide the search to
more promising input sequences and can empiri-
cally accelerate convergence. Reward shaping has
been used for testing, e.g., in [KS21] where an
RL algorithm (Q-learning) was used for testing
GUI applications with respect to linear tempo-
ral logic (LTL) specifications; rewards were then
computed based on transformations on the target
LTL formula.

Contributions. Although reinforcement learn-
ing helps one to guide the search towards the test
objective, these methods can still be slow in find-
ing traces satisfying the test objective, especially
when the number of input bits is high, and when
the traces to be found are long.

In this work, we target improving the perfor-
mance of black-box online test algorithms based
on reinforcement learning. More precisely, we
develop heuristics for a Monte Carlo Tree Search
(MCTS) algorithm applied in this setting, based
on a game-theoretic analysis of the requirement
automaton, combined with an appropriate reward
shaping scheme.

Monte-Carlo Tree Search [Cou06] (see also e.g.,
the survey [BPW+12]) is a RL technique to search

2

for good moves in games. It consists in exploring
the available moves randomly, while estimating
the average reward of each newly-explored move
and updating the reward estimates of previously
selected moves. More precisely, MCTS builds a
weighted tree of possible plays of the game, while
the decision of which branch to explore at each
step is based on a random selection appropriately
biased to select unexplored moves but also moves
with high reward estimates. The tree policy is
the policy used for exploring the branches of the
constructed tree, while the roll-out policy is used
to run a long execution to estimate the overall
reward.

Our main contribution is a heuristic for biasing
both the tree policy and the roll-out policy in
MCTS in order to reach test objectives faster,
while maintaining convergence guarantees. The
heuristic is based on a greedy test strategy com-
puted as follows. We adopt the game-theoretic
view and see the testing process as a game played
on the requirement automaton state space. At
any step, when the tester provides an input, we
assume that the implementation can also answer
with any output. This defines a zero-sum game:
the tester has the objective of reaching the test
objective, and the implementation has the ob-
jective of avoiding it. We first consider winning
strategies in this game: if there is a strategy for
the tester which prescribes inputs such that the
test objective is reached no matter what the im-
plementation outputs, then this strategy is guar-
anteed to reach the test objective. However, in
general, there are no winning strategies from all
states. In this case, we compute winning strate-
gies for the tester to reach so-called cooperative
states, from where some output that the imple-
mentation can provide reduces the distance to
the test objective in the requirement automaton.
This is an optimistic strategy: if the implemen-
tation “cooperates”, that is, provides the right
outputs at cooperative states, this guarantees the
reachability of the test objective; but otherwise,
no guarantee is given. The greedy strategy con-
sists in selecting uniformly at random inputs that
are part of a winning strategy if any, or allow the

implementation to cooperate.

Our variant of the MCTS algorithm uses the
standard UCT algorithm [KS06] as a tree pol-
icy, but restricted to those inputs that are part
of the greedy strategy at the first M visits at
each node of the tree; after the M -th visit to a
node, the UCT policy is applied to the set of
all inputs. Moreover, the roll-out policies use
ϵ-greedy strategies, which consists in selecting
inputs uniformly at random with probability ϵ,
and using the greedy strategy with probability
1−ϵ, at each step. This corresponds to restricting
the input space of the tree policy to only those
that appear in the greedy strategy for a bounded
number of steps: this helps the algorithm focus
on most promising inputs rather than starting
to explore randomly all input combinations. In
practice, this helps to guide the search quickly
towards the test objective, or to states that are
nearby. The algorithm does eventually explore
all inputs (after M steps at a node) but at each
newly created node, it again starts trying the
greedy inputs. We also use reward shaping based
on the distance remaining to the test objective
inspired by [CIK+19]: we give a state a high re-
ward if its shortest path distance to the objective
state in the requirement automaton is small.

We implemented the computation of greedy
strategies, and its combination with MCTS.
We present a small case study for which the com-
bination of MCTS with greedy strategies allows
one to reach the test objective, while plain MCTS
or greedy strategies alone fail to find a solution.

Related Works. The notion of cooperative
states have been used before in the setting of
testing. These were used in [HJM18] in the con-
text of offline test synthesis from timed automata,
already inspired by a previous approach of test
generation using games for transition systems in
an untimed context [Ram98]. In [DLLN08a], in
the context of timed systems, the authors rely
on cooperative strategies to synthesize test cases
when the cooperation of the system is required for
winning. However, these yield incomplete testing
methods (a reachable test objective is not guar-

3

anteed to be found), or completeness is obtained
by making strong assumptions on the implemen-
tations; the novelty of our approach is to obtain
a complete method by using these notions in rein-
forcement learning. A discussion on model-based
testing techniques can be found in [VCG+08].

Several test generation tools based on the ioco
conformance relation for input-output labelled
transition systems (IOLTS) have been developed.
Roughly, an implementation ioco-conforms to
its specification if after any of its observed be-
haviour that is also a specification behaviour, the
implementation only produces outputs or quies-
cences that are also possible in the specification.
The tools TGV [JJ05] and TESTOR [MMS18]
generate off-line test cases from formal specifica-
tions in various languages with IOLTS semantics,
driven by test purposes described by automata.
The tools JTorx [Bel10] and TorXakis [Tor] are
improvement of TorX [TB03] and allow to gen-
erate and execute online test cases derived from
various specification languages. In the context
of timed models, Uppaal-TRON [HLM+08] is an
online test generation tool for timed automata
based on the real-time extension rtioco of the
ioco conformance relation.

[MPRS11] uses Q-learning to produce tests for
GUI applications but without a model for the
specification: the objective is to reach a large
number of visually different states. RL-based test-
ing for GUI has attracted significant attention.
[AKKB18] uses Q-learning with the aim of cover-
ing as many states as possible; see also [LPZ+23].
In [RLPS20], reinforcement learning is used to
compute valid inputs for testing programs: these
consist in producing inputs that satisfy the pre-
condition of a program to be tested so that asser-
tions can be checked. [THMT21] uses RL to learn
short synchronizing sequences, where rewards cor-
respond to the size of the powerset of states. In
[PZAdS20], reinforcement learning was used to
test shared memory programs. MCTS has been
used for testing in various settings. In [ABCS20],
it is used for testing video games using rewards
to cover different areas in the game, but with-
out automata specifications. Deep reinforcement

learning has also been used for Android testing;
see e.g. [RMCT21]. [FCP23] combines blackbox
testing and model learning in order to improve
coverage.

Reward shaping for automata-based specifica-
tions has been considered for Monte Carlo Tree
Search. In [CIK+19], the approach is based on
the distance to accepting states of Büchi au-
tomata; and in [VBB+21], the authors collect
statistics on the success for all transitions on the
specification automaton. The latter approach is
not adapted to our case, where the goal is to find
a single successful execution, and not to actually
learn the optimal values at all states.

2 Preliminaries

We first introduce traces that represent observ-
able behaviours of reactive systems, then the
automata models that recognize such traces and
are used to formally specify requirements of such
systems, together with related automata based
notions.

Traces. We fix a set of atomic propositions AP,
partitioned into APin ⊎ APout, that represent
Boolean input- and output variables of the system.
A valuation of AP is an element ν of 2AP determin-
ing the set of atomic propositions which are true
(or equivalently, it is a mapping ν : AP → {⊤,⊥}).
We denote by ν in (respectively νout) the projec-
tions of ν on APin (resp. APout) such that ν =
ν in ⊎ νout. We write B(AP) for the set of Boolean
combinations of atomic propositions in AP. That
a valuation ν satisfies a formula ϕ ∈ B(AP), de-
noted by ν |= ϕ, is defined in the usual way.

We consider reactive systems that work as a
succession of atomic steps: at each step, the en-
vironment first sets an input valuation ν in, then
the system immediately sets an output valua-
tion νout. The valuation observed at this step is
thus ν = ν in ⊎ νout. A trace of the system is a
sequence σ = ν1 · ν2 · · · νn of input and output
valuations.

Internal variables may be used by the system to

4

compute outputs from the inputs and the internal
state, but these are not observable to the outside.

Automata. We use automata to express re-
quirements, and as models for the implementa-
tions under test. When considered as require-
ments, they monitor the system through the
observation of the values of the Boolean vari-
ables. Transitions of automata are guarded with
Boolean constraints on AP that need to be sat-
isfied for the automaton to take that transition.
For convenience, we handle input- and output
valuations separately. Formally,

Definition 2.0.1. An automaton is a tuple A =
⟨S = S in ⊎Sout, sinit,AP, T, F ⟩ where S is a finite
set of states, sinit ∈ S in is the initial state, T ⊆
(S in×B(APin)×Sout)⊎ (Sout×B(APout)×S in) is
a finite set of transitions, and F ⊆ S is the set
of accepting states.

For two states sin and s′in and a valuation ν,
we write sin

ν−→ s′in when there exist a state sout

and transitions (sin, gin, sout) and (sout, gout, s′in)
in T such that ν in |= gin and νout |= gout.

For a trace σ = ν1 ·ν2 · · · νn in (2AP)∗, we write

sin
σ−→ s′in if there are states sin0 , s

in
1 , . . . s

in
n such

that sin0 = sin, sinn = s′in, and for all i ∈ [1, n],

sini−1
νi−→ sini . A trace σ ∈ (2AP)∗ is accepted by A

if sinit
σ−→ s for some s ∈ F . We denote by Tr(A)

the set of accepted traces.
An automaton is input-complete if from any

(reachable) state sin and any valuation ν in ∈ 2AP
in

,
there is a transition (sin, gin, s′out) in T such that
ν in |= gin. It is output-complete if a similar re-
quirement holds for states in Sout and valuations
in νout, and it is complete if it is both input- and
output-complete. An automaton is determinis-
tic when, for any two transitions (s, g1, s1) and
(s, g2, s2) issued from a same source s, if g1 ∧ g2
is satisfiable, then s1 = s2.
In the rest of the paper, we will be mainly

interested in states of S in, since states in Sout

are intermediary states that help us distinguish
input and output valuations. For a state sin and
a valuation ν, we let PostA(s

in, ν) denote the set

of states s′in such that sin
ν−→ s′in, and PreA(s

in, ν)

denote the set of states s′in such that s′in
ν−→ sin.

Notice that for deterministic complete automata,
PostA(s

in, ν) is a singleton.
The set of immediate predecessors PreA(B) of

a set B ⊆ S in, and the set of its immediate suc-
cessors PostA(B) are defined respectively as

PreA(B) =
⋃

sin∈B,ν∈2AP

PreA(s
in, ν),

PostA(B) =
⋃

sin∈B,ν∈2AP

PostA(s
in, ν).

From these sets, one can define the set of states
from which B is reachable (i.e., that are co-
reachable from B), as Pre∗A(B) = lfp(λX.(B ∪
PreA(X))), and the set of states that are
reachable from B, Post∗A(B) = lfp(λX.(B ∪
PostA(X))), where lfp denotes the least-fixpoint
operator. The fixpoint defining Pre∗A(B) is equiv-
alent to

B ∪ PreA(B) ∪ PreA(B ∪ PreA(B))
∪PreA

(
B ∪ PreA(B) ∪ PreA(B ∪ PreA(B))

)
∪ · · ·

This correspond to an iterative computation of
a sequence (Vi)i∈N, starting from V0 = ∅ (which
is why we get the least fixpoint) and such that
Vi+1 = B ∪ PreA(Vi). Observe, by induction
on i, that from any state s in Vi, there is a path
to B within i steps. The sequence (Vi)i∈N is non-
decreasing, and its limit is the set of all states
from which B can be reached: from each state
s ∈ Pre∗A(B), there is a finite trace σ such that
by reading σ from s, one ends in B. Similarly,
for each state s′ ∈ Post∗A(B), there exists a state
s ∈ B and a trace σ such that by reading σ from s,
one ends at s′.
Safety automata form a subclass of automata

having a distinguished set Error ⊆ S in of er-
ror states that are non-accepting and absorbing
(i.e., no transitions leave Error), and comple-
ment the set F of accepting states in S (i.e., F =
S \Error). Those automata describe safety prop-
erties: nothing bad happened as long as Error
is not reached.

5

The product of automata is defined as follows:

Definition 2.0.2. Given automata A1 =
⟨S in

1 ⊎ Sout
1 , sinit,1, AP1, T1, F1⟩ and A2 = ⟨S in

2 ⊎
Sout
2 , sinit,2, AP2, T2, F2⟩, their product A1 ⊗ A2

is an automaton A = ⟨S, sinit, AP, T, F ⟩ where
S = (S in

1 ×S in
2)⊎(Sout

1 ×Sout
2), sinit = (sinit,1, sinit,2),

AP = AP1 ∪ AP2, F = F1 × F2 and the set of
transitions is defined as follows: there is a transi-
tion ((s1, s2), g, (s

′
1, s

′
2)) in T if there are transi-

tions (s1, g1, s
′
1) in T1 and (s2, g2, s

′
2) in T2 with

g = g1 ∧ g2.

Notice that this definition indeed yields an au-
tomaton in the sense of Def. 2.0.1; and that com-
pleteness and determinism are preserved by the
product. Moreover, the product of two safety au-
tomata is a safety automaton: the set of accepting
states is F = F1×F2, so the setError in the prod-
uct automaton is (Error1×S in

2)⊎(S in
1 ×Error2),

and thus inherits absorbance. The product of
automata is commutative and associative, and
can thus be generalized to an arbitrary number
of automata.

We now consider an example of an automaton
that will be used to illustrate other notions we
define later in the paper.

Example 2.0.1. Figure 1 displays an example
of an automaton. For the sake of readability, we
use input- and output letters instead of atomic
propositions. Here, {a, b} are input letters, and
{0, 1} are output letters. This automaton is de-
terministic; moreover, letting t be an Error state
makes it a safety automaton. It could be made
complete by adding looping input-output transi-
tions (similar to the transitions to the bottom left
of s0) on t and o.

The next example shows how an automaton
can be obtained from requirements written for a
simple factory automation system.

Example 2.0.2 (Factory Carriage Example).
We consider a controller program in a factory
automation system depicted in Fig. 2. In this
system, when the carriage is on the right end

(bwdlimit) and receives a cargo on top of it,
the controller program must move the carriage
forward (movefwd) until it reaches the forward
limit (fwdlimit). The controller must then push
the arm for 3 seconds, and it can only back the
carriage up (movebwd) after this duration.

For the sake of this example, we only model the
requirements concerning the first phase, that is,
until the carriage reaches the forward limit. Three
of these requirements on the controller program
are given below.

R1 When the carriage is on its backward limit,
and a cargo is present, then it immediately
moves forwards until reaching the forward
limit.

R2 If the carriage is not already moving forward,
and if no cargo is present or the carriage is
not in the backward limit, then it is an error
to move forward. The carriage must never
be moved forward and backwards at the same
time.

R3 When some cargo is present, and the carriage
is at its forward limit, it should stop moving
forward immediately.

All these three requirements are modelled in the
automaton of Fig. 3. The initial state is s0, and
we distinguish the state err which makes this a
safety automaton. Intuitively, state s2 is reached
when the carriage receives a cargo and brings it
successfully to the forward limit.

3 Testing from requirements

We want to use testing to check whether a system
implementation satisfies its requirements. We
thus formalize a notion of conformance to a set
of requirements.

In the sequel, we use automata to describe
requirements, and as models for implementa-
tions, with different assumptions. We iden-
tify a requirement with its complete determin-
istic safety automaton, and write R for both.

6

s0 s1 o

t

a

b, c
a

b

c

0

0, 10, 1

0

0

1

1

1

Figure 1: Example of a (deterministic) automaton expressing requirements.

Figure 2: The carriage control system example
from [Mit12].

For a set R = {Ri}i∈I of requirements, each spec-
ified by an automaton Ri, we denote by AR the
product automaton ⊗i∈IRi.

Definition 3.0.1. For any requirement R de-
fined by a complete deterministic automaton, and
any finite trace σ, we write σ fails R if run-
ning σ in R from its initial state enters its error
set ErrorR.

For a trace σ and a set of requirements R
we write σ fails R to mean that σ fails AR.
Note the following simple facts, consequence of
the definition of Error states in the product: if
σ fails R then σ fails R for at least one R in R;
given R′ ⊆ R, for any trace σ, if σ fails R′, then
σ fails R.

We want to test a system against a set of
requirements R. We consider a deterministic
system implementation I (the implementation
under test), producing Boolean traces in (2AP)∗.
We assume that this system is a black box that
proceeds as follows: at each step, an input val-

uation in 2AP
in

is provided to the system by the
tester, and the system answers by producing an
output valuation in 2AP

out

(on which the tester has
no control). We make the following assumptions
on the implementation: I behaves as an unknown
finite automaton over AP; it is input-complete,

meaning that any valuation in 2AP
in

can be set
by the tester 1, and it is output-deterministic,
meaning that any state in Sout has exactly one
transition2. Last, we assume that from any input
state of I, it is possible to reset I to the unique
initial state at any time. These properties en-
sure that if one feeds the implementation with
an input sequence from the initial state, then
the system produces a unique output sequence.
We denote by I the class of all such implementa-
tions producing traces in (2AP)∗.

The behaviour of I is characterized by the set
of all traces produced by the interaction between
the tester and the system. Denote by Tr(I) the

1This is not restrictive since an implementation re-
fusing some input valuations can be simulated by an
input-complete implementation that would set a dedi-
cated output variable to true in case of input refusal.

2Notice how output-determinism differs from standard
determinism.

7

s0

err

s1

s2

cargo ∧ bwdlimit

¬cargo ∧ bwdlimit ¬bwdlimit

movefwd

true
movefwd
∨movebwd

¬movefwd
∧¬movebwd

¬fwdlimit

movefwd

fwdlimit

¬movefwd
∧¬movebwd¬movefwd

Figure 3: An automaton modeling requirements R1, R2, R3. For readability, we omitted some
transitions in the figure: from all output states, there is an additional transition guarded by
movebwd ∧ movefwd to err. Moreover, from each of the two rightmost output states, the negation of
the guard of the only leaving transition goes to err as well. For instance, from s1, reading ¬fwdlimit

and then ¬movefwd, we end in err. Note that reading ¬bwdlimit in s0 is also an error since this is not
supposed to happen in this system.

set of traces that can be produced by I.
We now define what it means for an imple-

mentation to conform to a set of requirements:

Definition 3.0.2. A system implementation I ∈
I conforms to a set of requirements R on AP if
for all σ ∈ Tr(I), it is not the case that σ fails R.

Test Objectives. In testing practice, each test
case is related to a particular goal, e.g., derived
from a coverage criterion. We formalise this now.

Definition 3.0.3. Consider a set R of require-
ments, and let SR denote the state space of AR.
A test objective is a set of states O ⊆ S in

AR
.

A trace σ covers a test objective O, if the unique
execution of AR on σ ends in O.

Notice that the more general case where a test
objective is an automaton A with a set of accept-
ing locations Acc can be reduced to this one 3.
Indeed, it suffices to consider the product automa-
ton of the test objective A and the requirement
automaton AR, and consider as objective O the
set of states of the product in which A is in Acc.

The problem that we address in the rest of the
paper is the following:

Definition 3.0.4. The Test Problem

3This kind of automaton is sometimes called test pur-
pose in the literature.

Input: a requirement set R, a test objective O,
and a deterministic implementation I;

Output: a trace of I that covers O, if such a
trace exists.

An algorithm that solves this problem is called a
test algorithm.

A test algorithm is complete if for any input
R, O, and I that contains a trace that covers O,
the algorithm returns a trace covering O. It is
almost-surely complete if in such a case, it returns
a trace covering O with probability 1.

The covering traces we are looking for are thus
traces of I that satisfy a given objective. These
witness the fact that we have met a particular
coverage criterion. While executing the covering
traces of I, the tester will also check whether any
generated trace fails R. It will stop and report
any such case.
Note that one can define some Error states

as test objectives. In this case, the testing pro-
cess will focus on generating traces that attempt
to reach those errors, that is, on finding non-
conformances.
In the next sections, we explain how to auto-

matically synthesize test cases that build such
traces while checking conformance of the imple-
mentation to the set of requirements.

Example 3.0.1. In Example 2.0.2, we consider a
test objective which is the singleton {s2} of Fig. 3.

8

In fact, reaching s2 means that the implementa-
tion under test has made steps that are signifi-
cant with respect to these requirements since this
means that the carriage has successfully brought
the cargo to the forward limit.

4 Baseline Test Algorithms

Consider a set R of requirements, specified
by a deterministic complete automaton AR =
⟨SR, sRinit, AP, TR, FR⟩, and an implementation
whose behaviour could be modelled as an input-
complete, output-deterministic finite automaton
I = ⟨SI , s

I
init, AP, TI , FI⟩. Recall that in our set-

ting, the set R of requirements, thus also its
automaton AR, is known, while the implemen-
tation I is considered to be a black box to the
tester.

Consider a particular test objective O ⊆ S in
AR

.
Let CoReach(AR, O) = Pre∗AR

(O) denote the set
of input states of AR from which O is reachable.

Our aim is to design online testing algorithms
that compute inputs to be given to the implemen-
tation I in order to generate a trace that either
covers O, or detects non-conformance by reach-
ing an Error state (or both if O contains Error
states); notice that since I is output-deterministic,
each such input sequence defines a unique trace
of I. The testing process runs as follows: from
a state sAR of AR and a state sI of I, the test
algorithm returns an input valuation ν in; this in-
put valuation is fed to the implementation, which
returns an output valuation νout and moves to
a new state tI ; the resulting valuation ν in ∪ νout

moves the automaton AR from sAR to a new
state tAR . The process then continues from tAR

and tI , unless we detect that a test objective or
an Error state is reached.

We write AR ⊗ I for the synchronized product
of AR and I: this is a deterministic automaton,
of which we observe only the first component (i.e.,
the part corresponding to AR), while we have
no information and no observation concerning
the second component except from the produced
outputs. Our aim is to build a tester to cover

some objectives in this partially-observable deter-
ministic automaton.
Since we do not know I, each input valua-

tion ν in should be selected only based on the
trace generated so far, and possibly based on
information collected on previous attempts.
Before explaining how we define test algo-

rithms, we introduce some vocabulary to describe
the configuration where the testing process ends.
Assume that we have generated a trace σ by in-
teracting with I from its initial state. Let sσ
denote the state of AR reached after reading σ
from the initial state. Four cases may occur:

• if sσ ∈ O, then σ is a covering trace for O;

• if sσ ∈ ErrorAR , then σ is an error trace;

• if sσ ̸∈ CoReach(AR, O), then σ is inconclu-
sive;

• otherwise, sσ ∈ CoReach(AR, O) \O and σ
is active.

Intuitively, in the first case, we have found the
desired covering trace, and we can stop. In the
second case, we have found a trace failing one of
the requirements ofAR, and we can also stop: the
implementation does not conform to AR. Notice
that these two cases are not exclusive since we
can have O ∩ ErrorAR ̸= ∅. In the third case,
no matter how we extend σ, we will never cover O;
so the tester should stop and start again to look
for another trace by resetting I. In the last case,
σ is active in the sense that it might still be
possible to try to extend σ to reach the objective.

It should be clear that σ being active (last case)
does not mean that O is reachable from the corre-
sponding state (sσ, s

I) of the product AR ⊗ I, as
this depends on the (unknown) implementation I
being considered: states in CoReach(AR, O) are
those for which some implementation in I can
reach O. We illustrate this in the following ex-
ample.

Example 4.0.1. We consider the requirement
expressed by the automaton of Fig. 1, the objec-
tive defined by the singleton O = {o}, and the

9

implementation represented to the left of Fig. 4.
Their product is represented to the right of Fig. 4.
There is a covering trace in this case since the
input sequence ab generates the trace (a0b1) in I1,
and this reaches the state o in AR.

Assume now that I1 is modified so that it out-
puts 1 on input a from sI0, then the product would
go to a state of the form (t, sI0). If t is an Error
state, then the implementation does not conform
to the requirement; if not, then the test is incon-
clusive since o is no longer reachable.

On the other hand, consider an implementation
outputs 0 on any input. Then any trace is an
active trace although the implementation does not
have a covering trace (in fact, the product cannot
reach a state involving o).

We start by formalizing the naive uniform
test approach, and then cast the problem as a
reinforcement-learning problem.

4.1 Naive Uniform Testing

We present a simple test algorithm imple-
mented in tools such as TorXakis [Tor]. Let
CoReachin(AR, O) denote the set of pairs (s, ν in)
where s is a state of AR, and ν in is an input valua-
tion for which there exists some output valuation
νout such that PostAR(s, ν) ∈ CoReach(AR, O),
where ν = ν in ∪ νout. In fact, after observ-
ing trace σ ending in state s of AR, the tester
has no reason to give an input ν in such that
(s, ν in) ̸∈ CoReachin(AR, O): such an input would
lead to a trace that is inconclusive, and the ob-
jective would not be reachable regardless of I.
A very simple test algorithm is the following:

starting from the initial state of the implementa-
tion, we store in s the initial state of AR. As long
as the trace being produced is active, we select
uniformly at random an input valuation among
{ν in | (s, ν in) ∈ CoReachin(AR, O)}. We observe
the output νout given by I, and update s as
PostAR(s, ν in ∪ νout). There are three cases when
this process stops:

• if s ∈ O, then we stop and report the gener-
ated trace as a covering trace for O;

• if s ∈ ErrorAR , we also stop and report a
failure;

• if the current trace is inconclusive, then we
reset I, set s to the initial state of AR, and
start again.

Note that it is possible to generate incon-
clusive traces since AR is not assumed to
be output-deterministic. It is then possible
to have (s, ν in) ∈ CoReachin(AR, O) and for
some νout and ν′out, PostAR(s, ν in ∪ νout) ∈
CoReachin(AR, O) and PostAR(s, ν in ∪ ν′out) ̸∈
CoReachin(AR, O) (see e.g., Fig. 1). Some confor-
mant implementation I can indeed return ν′out,
producing an inconclusive trace.

Let this test algorithm be called uniform. For
any bound K, let uniformK be the uniform test-
ing algorithm in which we stop each run after K
steps, so that the generated traces have length
at most K. This algorithm is almost-surely com-
plete:

Lemma 4.0.1. For each requirement set R, im-
plementation I, and test objective O, there ex-
ists K > 0 such that if O is reachable in AR ⊗ I,
then uniformK finds a covering trace with proba-
bility 1.

Proof. Assume there exists a covering trace σ
in AR ⊗ I, and let K be the length of σ. When
playing uniformK ad infinitum, the testing process
restarts an infinite number of times. At each step,
the algorithm picks each valuation of the input

variables with probability 2−|APin|. So at each
restart, the probability of choosing exactly σ is

2−|APin|·|σ|. Therefore, σ is picked eventually with
probability 1. □

Note that there is no need to fix K. Any algo-
rithm that ensures that K is increased towards
infinity finds a covering trace with probability 1.
Furthermore, the uniform distribution can also
be relaxed: any algorithm that picks each input
of {ν in | (s, ν in) ∈ CoReachin(AR, O)} with prob-
ability at least a fixed value ϵ > 0 also has this
property.

10

I1

sI0

a
b

c

0

1

0

s0, s
I
0 s1, s

I
0 o, sI0

a

b

c

a

b

c

0

01

0

0

1

Figure 4: An implementation I1 and its product with the automaton of Fig. 1

4.2 Testing Based on Reinforce-
ment Learning

The online-testing problem can be seen as a
reinforcement-learning (RL) problem as follows.
The considered system is the implementation I,
seen as a one-player deterministic game. The
goal is to find a sequence of inputs that guides
the system to a given objective. We assign a re-
ward to each trace: a covering trace has reward 0,
other traces have reward 1. Note that we will
consider minimizing the reward for reasons that
will be clear later.

Notice that we do not assign a particular re-
ward to error traces. In fact, we assume that the
goal of the tester is to produce a covering trace,
while monitoring all traces seen on the way for R.
If an error trace is seen, then we simply report it.
Furthermore, it is possible to choose an objective
in ErrorAR in which case the test strategy will
try to reach an error state.

Reinforcement learning is a set of techniques
that can be used to learn strategies that maximize
the reward in games [SB18]. In this paper, we
use Monte Carlo Tree Search [Cou06, KS06].

4.2.1 Monte-Carlo Tree Search.

Monte-Carlo Tree Search (MCTS) is a RL tech-
nique to search for good moves in games. It con-

sists in exploring the available moves randomly,
while estimating the potential of each newly-
explored move and updating the potential of pre-
viously selected moves.

More precisely, MCTS builds a weighted tree of
possible plays of the game iteratively as follows:

Selection: from the root of the tree, select
moves, using a tree policy, until reaching
a node where some move has not been ex-
plored;

Expansion: add a new child corresponding to
that move;

Simulation: simulate a random play, using a
roll-out policy, from that new child;

Propagation: assign the reward of that play to
the new child, and update the rewards of its
ancestors accordingly.

Different tree policies can be used to pick
the successive moves during the selection phase,
based on statistics obtained from previous itera-
tions. We use UCT (Upper Confidence bounds
applied to Trees) [KS06] which is standard in
many applications. At a given node of the tree, if
n denotes the number of total visits to this node,
and ni the number of times the i-th child node is
visited (corresponding to the i-th move from the
parent node), and ri the current average reward

11

of the i-th child, we define the score of the i-th
child as ri+c

√
ln(n)/ni for some constant c. The

UCT policy consists in choosing the child with
the best score. Intuitively, this score is the aver-
age reward ri biased in order to make sure that
each child node is visited frequently enough. In
fact, the second term of the score is only relevant
when ni is small. If the goal is to maximize the
average score, then c > 0, and the UCT policy
picks the child node with the maximal score; if,
as in this work, we want to minimize the reward,
then one chooses c < 0 and the policy picks the
child node with minimal score.

Once an unvisited action has been selected and
the tree has been expanded with a new node,
a roll-out policy is applied to evaluate the po-
tential of that new action, usually by randomly
selecting inputs that form a path from the re-
sulting configuration. This evaluation gives a
first reward to the newly created node, which
is back-propagated to all its predecessors in the
tree; each node of the tree stores statistics from
previous rounds, including the number of visits
and its average reward.

In the limit, the procedure is guaranteed to
provide the optimal reward values for each state
and move. In practice, the procedure can be in-
terrupted at any time (depending on the available
resources devoted to the search), and the current
best moves from all states of the tree provide a
strategy.

In our case, each simulation is bounded by K
steps. Such a bound is necessary since some simu-
lations might never reach the objective, an error,
or an inconclusive state and thus never terminate.
Last, we consider uniformK (from Section 4.1) as
the roll-out policy. Note that choosing the inputs
uniformly in the simulation phase is standard.
Here, we simply improve this by sampling over
inputs that remain in the coreachable set.

4.2.2 Reward Shaping: Accelerating Con-
vergence.

One technique that is used to help reinforcement-
learning algorithms converge faster is reward

shaping [NHR99], which consists in assigning
real-valued rewards to traces, to give more in-
formation than just the binary 0/1. For instance,
if the trace induced a run in AR that became very
close to the objective, then it might be given a bet-
ter (lower) reward than another trace whose run
was very far. The computation of such rewards
based on automata objectives were formalized
in [CIK+19]. We now describe how we apply this
to our setting.

Here AR is used solely to compute rewards of
traces, while the actual testing will be done by
the MCTS algorithm. Let C0 = O, and for i ≥ 1,
define

Ci = PreAR(Ci−1) \ (C0 ∪ . . . ∪ Ci−1).

We have
⋃

i≥0 Ci = CoReach(AR, O). In fact,
each Ci is the set of states that are at distance
i from some state in O (in the sense that AR
contains a run of length i to O).
We consider two ways of assigning rewards

to simulation traces. Let m be maximal such
that Cm ̸= ∅. Let us define Cm+1 = SAR \
CoReach(AR, O), that is, all states that are not
coreachable. We assign each trace σ whose run
in AR ends in sR the reward lastreward(σ) = k
if, and only if, sR ∈ Ck. Notice that this is well
defined because the sets Ci are pairwise-disjoint
and they cover all states. Hence, the closer the
trace to objective O, the smaller its reward. A
reward of 0 means that the state satisfies the
objective.
The second reward assignment considers not

only the last reward, but all rewards seen during
the simulation, as follows. Let r0, r1, r2, . . . , rK−1

denote the sequence of rewards encountered dur-
ing simulation (these are the rewards of the pre-
fixes of the trace σ). If the length of the simula-
tion was less than K, we simply repeat the last
reward to extend this sequence to size K. Then
the reward of the simulation is given by

disc-rewardγ(σ) = rK−1 ·
K−1∑
i=0

γi · ri,

where γ ∈ (0, 1) is a discount factor. Notice
that this value is 0, and minimal, if and only if

12

rK−1 = 0. Furthermore, while rK−1 is the most
important factor, the second factor means that
we favor simulations whose first reward values are
smaller. This can in fact be seen as a weighted
version of lastreward, where the weight is smaller
if the simulation has small rewards in the first
steps.

4.2.3 Basic MCTS Testing Algorithm.

This yields the second testing algorithm we con-
sider which we call basic MCTS. The algorithm is
complete in the following sense since MCTS with
UCT ensures that each node and action in the
tree will be picked infinitely often in the limit.

Lemma 4.0.2. The basic MCTS algorithm is
complete: For each requirement set R, implemen-
tation I, and test objective O, there exists K > 0
such that, if O is reachable in AR ⊗ I, then the
basic MCTS with simulation bound K finds a
covering trace.

Note that this algorithm is not just almost-
surely complete, but also complete. This is be-
cause the UCT policy deterministically guaran-
tees that all nodes of the tree are visited infinitely
often. Thus, when the depth of the tree becomes
large enough, any covering trace will be part of
it, thus will have been executed. However, we do
rely on estimated rewards to guide the search to
ensure faster termination in practice.
The above lemma holds for both reward as-

signments lastreward and disc-rewardγ . Moreover,
as for uniform, it is possible not to fix K, but
increase it slowly towards infinity.

Note that the basic MCTS algorithm is also a
baseline since it can be obtained by combining
known results from the literature; similar algo-
rithms have been considered e.g. [VRC06, KS21].

5 Greedy Strategies and Im-
proved Test Algorithms

In this section, we describe our original test al-
gorithms. We consider a game-theoretic view of

online testing, define particular strategies for the
tester, and show how these can improve the basic
MCTS approach.

Finding a trace of AR that reaches O can be
seen as a turn-based game played in the automa-
ton AR between two players: the tester, and the
system. At each step, the tester provides an input
valuation, and the system responds with an out-
put valuation, and the game moves to a new state
in AR. In this game, the online testing algorithm
defines the strategy used by the tester, while the
system plays a fixed strategy determined by the
implementation, which is however black-box, thus
unknown to the tester.

5.1 Controllable Predecessor and
Successor Operators.

Suppose we are given requirements specified
as the complete deterministic safety automa-
ton AR = ⟨SAR , sAR

init , AP, TAR , FAR⟩ with
ErrorAR = SAR\FAR , and a test objective O ⊆
S in
AR

. We consider the game (AR, O ∪ErrorAR)
played between the tester, playing the role of
the environment, and the system. The objective
of the tester is to reach O or to reveal a non-
conformance (that is, reach ErrorAR); it controls

the input valuations in 2AP
in

, and observes the
output valuations in 2AP

out

chosen by the system.

A basic notion in the study of turn-based games
is that of controllable predecessors. The immedi-
ate controllable predecessors of a set B ⊆ S in

AR
is

the set

CPreAR(B)={s ∈ S in | ∃ν in∈2APin

. ∀νout∈2APout

.
PostAR(s, ν in ∪ νout) ∈ B ∪ErrorAR}.

Thus, from each state s ∈ CPreAR(B), the tester
can select some valuation ν in such that whatever
the output νout returned by the system, we are
guaranteed to either enter a state in B, or exhibit
a non-conformance. We say that the tester can
ensure entering B or reveal a non-conformance
in one step (regardless of the system’s strategy).

We define the set of controllable predecessors
of a subset B as CPre∗AR

(B) = lfp(λX.(B ∪

13

CPreAR(X)). Using the same reasoning as pre-
viously, this least fixpoint defines the set of all
states from which the tester can ensure either
entering B within a finite number of steps, or
reveal a non-conformance, regardless of the sys-
tem’s strategy.

Example 5.0.1. In Figure 5, we
have CPreAR(O) = {s0, s′0} and
CPre∗AR

(O) = {s0, s′0} ∪O.

A strategy of this game is a function

f : Tr(AR) → 22
APin

that associates with each
trace a subset of input valuations, those that
can be applied at the next step after this trace.
A strategy f is said memoryless whenever, for any
two traces σ and σ′ reaching the same state in
AR, it holds f(σ) = f(σ′).
A trace σ = ν1 · ν2 · · · νn is compatible

with a strategy f from a state s if there ex-
ists a sequence of states q0, q1, q2, . . . , qn such

that q0 = s and for all 0 ≤ i < n, qi
νi+1−−−→

qi+1, and ν ini+1 ∈ f(ν1 · · · νi). We write
Outcome(f, s) to denote the set of all traces com-
patible with f from s, also called the outcomes
of f from s.

5.2 Winning and Cooperative
Strategies

For a given set B ⊆ S in, a strategy f for the
tester is B-winning from state s if all its outcomes
from s eventually reach B ∪ErrorAR . A state s
is B-winning if the tester has a winning strat-
egy from s. The set of winning states can be
computed using CPre∗:

Lemma 5.0.1. For all B ⊆ S in, there ex-
ists a strategy f such that from all states s ∈
CPre∗AR

(B), all Outcome(f, s) eventually reach
B ∪ErrorAR .

Proof. Consider the computation of

CPre∗AR
(B) = lfp(λX.(B ∪ CPreAR(X))),

and let C0, C1, . . . , Cn denote the iterates such
that C0 = ∅, and Ci = B ∪ Ci−1 ∪ CPre(Ci−1)

for i ≥ 1. For each state s ∈ CPre∗AR
(B), let is

denote the least index such that s ∈ Ci(B). We
define f(s) = {ν in | ∀νout,PostAR(s, ν

in ∪ νout) ∈
Cis−1 ∪ ErrorAR}. □

The strategy f provided by Lemma 5.0.1 is a
winning strategy in the game (AR, B∪ErrorAR).

One could look for a winning strategy in
(AR, O ∪ ErrorAR) in order to use it as a test
algorithm. This approach was considered in some
works (e.g., in [DLLN08b]). However, in most
cases, CPre∗AR

(O) does not contain the initial
state; so such a strategy cannot be applied from
the beginning. In terms of game theory, this
means that the tester does not have a winning
strategy from the initial state.

Cooperative Steps. For given set B ⊆ S in,
consider PreAR(B), the set of immediate prede-
cessors of B: by definition from these states, there
exists a pair of valuations (ν in, νout) for which the
successor state is in B. From these states the
tester cannot always guarantee reaching B in
one step; however, it can choose an input valua-
tion ν in for which there exists νout which moves
the system into B. In fact, when attempting to
reach B, if the current state is not in CPre∗AR

(B),
then choosing such a ν in is a good choice.

Let us call a strategy f B-cooperative if for all
s ∈ PreAR(B), and all ν in ∈ f(s), there exists νout

such that PostAR(s, ν in ∪ νout) ∈ B.

Example 5.0.2. In Fig. 5, in sc0 the O-
cooperative strategy f is represented by a bold ar-
row. Choosing this input valuation may lead to
O at the next step if the system “cooperates” by
choosing the right output valuation, while choos-
ing the input valuation outside f(s) surely leads
outside O in the next step, for any output valua-
tion.

In the rest of this section, we will combine win-
ning and cooperative strategies to define greedy
strategies, which can be seen as best-effort strate-
gies that can be employed when there are no
winning strategies from the initial state. These
guarantee progress towards O in AR only against

14

some system strategies. We will then show how
to obtain ϵ-greedy strategies that can be applied
against any system strategy, and use these as
heuristics to improve over the basic MCTS test
algorithm.

5.3 Greedy Strategy

Consider W0 = CPre∗AR
(O), which is non-empty

since it contains O. Let f0 be a O-winning strat-
egy given by Lemma 5.0.1. If sinit belongs to W0,
then f0 ensures reaching O ∪ErrorAR from sinit
against all system strategies. In this case, we
stop and return f0 as the greedy strategy.

The interesting and more frequent case is
when sinit ̸∈ W0. In this case, we induc-
tively define an increasing sequence of sets of
states W0,W1, . . . ,Wn and corresponding strate-
gies such that Wn is the set of all coreachable
states.

Consider i ≥ 0, and assume that the sequence
has been defined until index i.

Let Coopi+1 = PreAR(Wi) \ Wi be the set
of immediate predecessors of Wi deprived of
states that have been already seen. Define
fci+1 as a Wi-cooperative strategy. Then, let
Wi+1 = CPre∗AR

(Coopi+1 ∪ Wi), and consider
a corresponding winning strategy fwi+1. Let us de-
note by fi+1 the pointwise union of the strategies
fwi+1 and fci+1: for all s ∈ S in, if s ∈ Coopi+1, then
fi+1(s) = fci+1(s); if s ∈ Wi+1 \ Coopi+1, then
fi+1(s) = fwi+1(s); and fi+1 is defined arbitrarily
otherwise.

We stop this sequence whenever Coopi becomes
empty. Notice that we have

CoReach(AR, O) = Pre∗AR
(O) =

⋃
i

Wi,

and that the sequence (Wi)i is increasing.

The construction thus builds an increasing hi-
erarchy (Wi)i of larger and larger sets, where at
each level i, cooperation is needed in states of
Coopi to get closer to O in this hierarchy. Because
all states of CoReach(AR, O) belong to some Wi,
in particular, if O is reachable from sinit (i.e.,

sinit ∈ CoReach(AR, O)), there exists some in-
dex k such that sinit in Wk. For a state s, we call
the rank of s and note rank(s) the smallest index
i such that s ∈ Wi.
We denote by fgreedy the strategy defined by

fgreedy(s) = frank(s)(s) for all s ∈ CoReach(AR, O);
and arbitrarily for other states. We call this the
greedy strategy.

Notice that none of the winning strategies (fwi
or f0) composing f contains loops. However, since
f is also composed of cooperative strategies, loops
may occur due to outputs reaching states with
higher ranks in the (Wi)i hierarchy. In other
terms, fgreedy does not guarantee reaching O ∪
ErrorAR ; and it may induce infinite loops against
some system strategies.

The construction is illustrated in Fig. 5. States
in S in where the tester plays are represented by
circles, while transient states in Sout where the
system plays are represented by squares. In a
state si in Wi, the strategy fi is illustrated by
bold blue arrows. Black arrows represent those
outputs that either reach a state in a set Wk

with higher rank or reach S \ CoReach(AR, O).
For example, in s0 ∈ W0, the input in bold is
winning since all subsequent outputs reach O.
But the other input is not winning since one
possible output loops back in sc0 thus in W1, and
the other one goes back to some higher rank i.
A different situation is illustrated by sc1 in Coop2:
after some input in the cooperative strategy, one
output may reach W1, but the other one reaches
a state in S \ CoReach(AR, O).
Intuitively, the strategy fgreedy requires mini-

mal cooperation from the system to reach O or
ErrorAR from sinit.

Example 5.0.3. Consider the automaton of
Fig. 1 again. Here we have W0 = {o}, Coop0 =
{s0, s1} while fgreedy(s0) = {a} and fgreedy(s1) =
{b, c}. The implementation given in Fig. 6 admits
a covering trace which starts with (b, 0). However,
because b ̸∈ fgreedy(s0), this trace cannot be found
by the greedy strategy.

As the previous example shows, the greedy
strategy does not always guarantee progress to-

15

O

W2 W1Coop2 Coop1 W0

Coopi+1

s0

Wi+1

Pre*(O)

Wi

si+1

si

sc
1s’i

sc
i

sc’
1

s’’i

s1

s’
1

sc
0

s’0

s0

S \ Pre*(O)

Figure 5: Construction of the (Wi)i hierarchy and cooperative strategies

b 0 a 0 b 0

a,c a,b,c

1 a,b,c

b,c a,c

Figure 6: An implementation which contains the trace (b, 0), (a, 0), (b, 0) covering {o} in the
automaton of Fig. 1. This is the only covering trace.

wards the objective at each step; we rather see it
as a best effort heuristic which might or might not
help reaching the objective. We use the greedy
strategy in different ways to improve online test-
ing as explained next.

5.4 Purely greedy and ϵ-greedy test
algorithms

The greedy strategy can be used to define a ran-
domized test algorithm, called the pure greedy
algorithm, and denoted greedy, as follows. Recall
that after an active trace σ, the automaton AR
is in a state sσ ∈ CoReach(AR, O). In the uni-
form strategy an input ν in is chosen uniformly
in {ν in | (sσ, ν in) ∈ CoReachin(AR, O)}. A simple
modification consists in replacing this choice with
a uniform choice in f(sσ) to restrict the domain

to the transitions selected by the greedy strategy.
If sσ is in Wi for some i, following this strategy
will inevitably lead either to Coopi if i > 0, and
to O if i = 0, or possibly to Error if I is non-
conformant. Once in Coopi, the tester uses fgreedy
because there is a possibility of entering Wi−1;
but the implementation, even if conformant, is
not forced to be cooperative, and may go back to
some Wj with j ≥ i. For K > 0, let greedyK de-
note the test algorithm obtained from greedy by
stopping each run after K steps, and restarting
another run.

The algorithm greedyK may not be almost-
surely complete for any K > 0 as we already saw.
However, we can obtain a almost-surely com-
plete algorithm ϵ-greedy simply by randomizing
between uniform and fgreedy: given 0 < ϵ < 1, this
algorithm uses, at each state sσ, fgreedy(sσ) with

16

probability 1− ϵ; and uniform with probability ϵ.

In fact, if O is reachable in AR⊗ I, say, within
k < K steps, then, at each run, there is a positive
probability that the ϵ-greedyK executes uniform
for k steps, while picking the right inputs, also
with positive probability. Repeating this experi-
ment makes sure that the right sequence will be
chosen eventually with probability 1.

5.5 The Greedy-MCTS Test Algo-
rithm

Here, we explain our main contribution which is
an improvement of the Basic MCTS test algo-
rithm of Section 4.2 using the greedy strategy as
heuristics both in the roll-out- and tree policies.
Our heuristic accelerates convergence: it favors
inputs that tend to get closer to the objective over
those that do not, and if possible, more rarely
use inputs that may lead to inconclusive states.

The first modification we make is using
ϵ-greedyK as the roll-out policy instead of
uniformK , for some given K.

The second modification consists in using the
greedy policy within the tree policy. Fix a
bound M > 0. During the expansion phase,
in a given node whose projection in AR is s,
we restrict the UCT policy to the inputs of the
greedy strategy fgreedy(s) at the first M visits
to that tree node; after the first M visits to a
given node, we fallback to the regular UCT policy,
which covers the whole set of input valuations
{ν in | (sσ, ν in) ∈ CoReachin(AR, O)}. It should
be noted that because the bound M applies sep-
arately to each node, at any moment, there are
always nodes (close to leaves) that have been ex-
plored less than M times at which the tree policy
is restricted to the inputs of the greedy strategy.

Because the restriction to the greedy inputs
only holds for a finite number of visits, this
does not affect the convergence guarantees of the
MCTS algorithm. Our heuristic is intended to
improve the convergence of the test algorithm by
introducing bias in probabilistic choices. In fact,
similar biased UCT scores have been used e.g. in
applications for the board game Go [GS11].

5.6 Non-Deterministic Implemen-
tations

Although we restricted the presentation of the
above algorithms to deterministic implemen-
tations, they all apply to non-deterministic
ones (that is, automata that are neither input-
deterministic nor output-deterministic). If the
implementation is finite-state and purely random-
ized, that is, if it can be modelled by a finite-state
Markov chain, then all algorithms apply with the
same completeness guarantees. On the other
hand, if non-deterministic choices do not follow
probability distributions, or cannot be modelled
by a finite-state Markov chain, then the algo-
rithms do not have completeness guarantees. This
is typically the case if the implementation is ini-
tialized in arbitrary state (e.g., due to states of the
caches) and possible initializations do not follow
any particular probability distribution. As usual
in reinforcement learning, MCTS can still be ap-
plied and might converge or give useful results
even though no theoretical guarantees can be
proven. Thus, all our algorithms can be applied
in practice to non-deterministic implementations.
We leave an empirical evaluation in such cases
for future work.

6 Case Study

6.1 Description of the System

We consider a system controlling a robot moving
in a discrete 2D grid environment made of N=10
rooms placed horizontally, a passageway, each
room being separated from the previous one by a
door. Each room except the first one has a door
to its left, and each room except the last one has
a door to its right. The robot occupies a single
discrete cell at any moment, and the input given
to the system makes the robot move to one of the
four diagonal neighboring cells. More precisely,
the Boolean inputs are APin = {right, up}: the
robot moves right one step if right holds; it moves
left otherwise; it moves upwards if up holds; it
moves downwards otherwise. The doors at all

17

k

room1 room2 room3

. . .

room10

Figure 7: The passageway implementation of the rooms with k = 4. The shaded area is the open
area, and the hatched area is the doorstep area. The thick black lines show the doors.

rooms are initially closed. In order to move to the
next room, the robot must first visit an area called
open, which opens the door, and another area
called doorstep which is made of cells neighboring
the door and the next room. Leaving the open
area makes the door close again. Furthermore,
moving towards a wall or a closed door causes a
collision.

An example of such an implementation is
shown in Fig. 7 where each room is modelled
as a 4x4 grid. The open area here is alternatively
the lowest or the highest row, and the doorstep
is the rightmost column in each of the first nine
rooms. The door at the right of a room is open if,
and only if, the robot is inside the shaded area;
and the robot can actually move to the next room
(it is at the doorstep) if, and only if, it is also
on the hatched area: so it can do so only at the
bottom right cell of the first room; and top right
cell of the second one, etc.

The outputs of the system are the follow-
ing: the identifier of the room the robot is cur-
rently occupying ({room1, . . . , room10}), whether
the robot is in the open and doorstep areas, and
whether it is currently in a collision. Thus, the
implementation does not output the precise posi-
tion of the robot; but only an indication about
its position.

What is described in Figure 7 is one possible
implementation. Our objective is to write ab-
stract requirements that can be used for testing
various implementations. A different implemen-
tation can use rooms of different sizes and shapes,
have additional walls, or (deterministically) mov-
ing obstacles inside rooms, and consider different

dynamics for the moves of the robot.

We considered a requirement automaton that
describes properties of this system, imposing con-
straints both on the environment and on the
program that controls the robot. We enforce that
it is only possible to move to the next room if
the door is open and the robot is at the doorstep;
and that moving right when at doorstep and open,
the next room is entered; while this is not the
case when moving left from such a state. We
also impose that in rooms i with odd i, open
cannot be reached by going up; this means that
it must be on the bottom-most part of the room.
In rooms i with even i, the situation is reversed:
one cannot reach open by going down. Fig. 8
shows a part of the automaton representation
of this requirement corresponding to the robot
being in room i. We are at state m0 when the
robot is not in the open area; at m1 when it is
in the open area but not at doorstep; and at m2

when it is both in the open and doorstep areas.
Intuitively, reaching the next room requires going
from m0 to m2 (either directly, or via m1).

Let us illustrate the inputs chosen by the greedy
strategy here. First, consider the state m1: choos-
ing to go left can either go to error, to m0, or to
m1; but none of the system outputs can make
state move closer to the next room. On the other
hand, going right, possible outcomes are m0, m1,
or m2: therefore, this is a cooperative state (be-
longs to some Coopi in the computation of Sec-
tion 5), and going right belongs to the greedy
strategy. A similar situation arises at state m2:
going right leads possibly to the next room (al-
though not surely due to collision outputs not

18

m0 m1

m2

err

. . .

. . .

roomi−1

¬up
up

open∧¬ds

open

¬open

¬open

left

right

open ∧ ¬ds

open ∧ ¬ds open ∧ ds

ds

right

left

roomi+1

ro
om

i+
1open ∧ ¬ds

open ∧ ds

¬roomi+1

Requirement automaton: Room i

Figure 8: Part of the requirement automaton for the passageway example that corresponds to room
i with odd i ∈ (1, 10). There is a similar structure to the left, and to the right. Here, left is a
shorthand for ¬right; ds is short for doorstep. Some transitions lead directly to input states, without
intermediate output states (such as the transition from m1 to m0): this means that the transition
is independent from the valuations of variables not mentioned on the guard. Some guards and
transitions are omitted for clarity: all transitions that do not mention any variable of the form
roomj are assumed to be guarded by roomi. In fact, this part of the automaton corresponds to the
robot being in room i. From all states fresh transitions guarded by roomi−1 go to the corresponding
state to the left of the present figure. Whenever any other roomj with j ̸= i− 1, i is set to 1, this
leads to Error. Furthermore, from any state, if collision holds, then we move to an absorbing state
called collision (not shown here).

shown on the figure), but going left definitely
cannot make the state move to the next room.
Thus, the greedy strategy chooses to go right but
not left.

To evaluate our test algorithms, we considered
the implementation described above with the fol-
lowing non-conformance: in room 9, when the
door is open, and at doorstep, moving right does
not move the robot to the next room. We con-
sidered the test objective of reaching any cell in
the last room without ever being in a collision.

Note that although our implementation only
has 160 states (16 possible positions in 10 rooms),
finding an execution reaching the last room is par-
ticularly difficult since a collision occurs whenever
the robot moves towards a wall, and this happens
very quickly in a uniform random test.

6.2 Test Algorithm Implementa-
tion

We implemented the test generation algorithm
in Python where requirements are specified as
deterministic finite automata specified as Ver-
ilog modules. These requirement modules are
automatically translated to the AIGER format
using Yosys and ABC), which can be read by
the Abssynthe game solver. We implemented the
greedy strategy computation in Abssynthe, but
also the computation of the predecessor sequence
C0, C1, . . . from Section 4.2.2 to compute rewards.
The testing tool moreover uses the CUDD BDD
library, and pyAIGER to read and execute the
greedy strategy computed by Abssynthe, and to
compute rewards. The tester communicates with
the program under test via standard input and

19

https://github.com/YosysHQ/yosys
https://github.com/berkeley-abc/abc
https://github.com/gaperez64/AbsSynthe
http://vlsi.colorado.edu/~fabio/CUDD/
https://github.com/mvcisback/py-aiger

output.

6.3 Experimental Results

We compared several algorithms on the described
case study. These include the baseline algorithms
uniformK , ϵ-greedyK (with ϵ = 0.25), and the ba-
sic MCTS. We allowed each test algorithm 50
attempts to reveal the bug. At each attempt,
we made 10,000 runs; each run starting from the
initial state and making K = 250 steps. For uni-
form and pure greedy algorithms, this meant
that we made a total number of 500,000 runs,
each making 250 steps. For the basic MCTS,
this meant that we started from scratch 50 times,
and ran 10,000 runs, each with a roll-out of
length 250.

The results of various algorithms on the de-
scribed case study are given in Table 1. All three
baseline algorithms failed at revealing the bug,
and increasing the number of steps to K = 1000
did not change the outcome.

The Greedy-MCTS tester was more success-
ful. We considered two variants. In the first one,
we used the standard UCT tree policy and the
greedy policy for the roll-outs (greedy rollout).
Among the 50 attempts, this approach found a
covering trace in 62.7% of the cases. The bug
was revealed after 4662 runs in average among
successful attempts (each attempt was stopped
whenever a covering trace is found or when 10,000
runs are made). The second variant uses, more-
over, the greedy policy inside the tree for the first
M=30 visits at each node, and the UCT after-
wards (greedy tree & rollout). The success rate
was 100%, with only 1031 runs in average.

7 Conclusion

We presented an algorithm for online testing of re-
active programs with respect to automata-based
requirements based on an improvement of the
Monte-Carlo Tree Search algorithm with heuris-
tics. These heuristics are computed by a game-
theoretic view of testing. While the game point

of view has been explored before, we use it to im-
prove the reinforcement learning approach. Our
preliminary experimental results show that these
heuristics can improve the testing time by guid-
ing the search quickly to relevant states. This is
especially the case when test objectives require
long sequences that have low probability to be
found by uniform random testing.
As future work, we plan to make a system-

atic study of this approach to evaluate its limits
to usability in an industrial context. Targeting
particular applications such as GUI testing (as
[KS21]) is a possibility since the particular forms
of temporal logic requirements might allow one
to derive better heuristics tailored for the appli-
cation at hand.

20

Algorithm Success Rate Average runs
uniformK 0% -
ϵ-greedyK 0% -

Basic MCTS 0% -
MCTS + greedy roll-out 62.7% 4662

MCTS + greedy tree & roll-out 100% 1031

TorXakis 0% -

Table 1: Results of different algorithms on our case study. The success rate is the number of
attempts that revealed the bug; while the average runs is the average number of runs made by each
successful attempt before revealing the bug.

21

References

[ABCS20] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. Enhancing the Monte Carlo tree
search algorithm for video game testing. In 2020 IEEE Conference on Games (CoG),
pages 25–32. IEEE, 2020.

[AKKB18] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. Reinforcement
learning for android GUI testing. In Proceedings of the 9th ACM SIGSOFT International
Workshop on Automating Test Case Design, Selection, and Evaluation, pages 2–8, 2018.

[AO17] Paul Ammann and Jeff Offutt. Introduction to Software Testing Edition 2. Cambridge
University Press, New York, NY, 2017.

[BB96] Mark R Blackburn and Robert D Busser. T-VEC: A tool for developing critical systems.
In Proceedings of 11th Annual Conference on Computer Assurance. COMPASS’96,
pages 237–249. IEEE, 1996.

[Bei95] Boris Beizer. Black-box testing: techniques for functional testing of software and systems.
John Wiley & Sons, Inc., 1995.

[Bel10] Axel Belinfante. Jtorx: A tool for on-line model-driven test derivation and execution.
In International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 266–270. Springer, 2010.

[Bol15] William Bolton. Programmable logic controllers. Newnes, 2015.

[BPW+12] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[CIK+19] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano,
and Sheila A McIlraith. LTL and beyond: Formal languages for reward function
specification in reinforcement learning. In IJCAI, volume 19, pages 6065–6073, 2019.

[Cou06] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer, 2006.

22

[DLLN08a] Alexandre David, Kim Larsen, Shuhao Li, and Brian Nielsen. Cooperative testing of
timed systems. In 4th Workshop on Model Based Testing (MBT’08), volume 220, pages
79–92, 12 2008.

[DLLN08b] Alexandre David, Kim Guldstrand Larsen, Shuhao Li, and Brian Nielsen. A game-
theoretic approach to real-time system testing. In Proceedings of the 2000 Design,
Automation and Test in Europe (DATE’00), pages 486–491. IEEE Comp. Soc. Press,
March 2008.

[FCP23] Roi Fogler, Itay Cohen, and Doron Peled. Accelerating black box testing with light-
weight learning. In Georgiana Caltais and Christian Schilling, editors, Model Checking
Software, pages 103–120, Cham, 2023. Springer Nature Switzerland.

[GS11] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value estimation
in computer go. Artificial Intelligence, 175(11):1856–1875, 2011.

[HJM18] Léo Henry, Thierry Jéron, and Nicolas Markey. Control strategies for off-line testing of
timed systems. In Maŕıa-del-Mar Gallardo and Pedro Merino, editors, Model Checking
Software - 25th International Symposium, SPIN 2018, Malaga, Spain, June 20-22,
2018, Proceedings, volume 10869 of Lecture Notes in Computer Science, pages 171–189.
Springer, 2018.

[HLM+08] Anders Hessel, Kim G Larsen, Marius Mikucionis, Brian Nielsen, Paul Pettersson, and
Arne Skou. Testing real-time systems using uppaal. Formal Methods and Testing: An
Outcome of the FORTEST Network, Revised Selected Papers, pages 77–117, 2008.

[JG16] Bertrand Jeannet and Fabien Gaucher. Debugging embedded systems requirements
with STIMULUS: an automotive case-study. In 8th European Congress on Embedded
Real Time Software and Systems (ERTS 2016), 2016.

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms: A tool for the
automatic synthesis of conformance test cases for non-deterministic reactive systems.
International Journal on Software Tools for Technology Transfer, 7:297–315, 2005.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In Ma-
chine Learning: ECML 2006: 17th European Conference on Machine Learning Berlin,
Germany, September 18-22, 2006 Proceedings 17, pages 282–293. Springer, 2006.

[KS21] Yavuz Köroglu and Alper Sen. Functional test generation from UI test scenarios using
reinforcement learning for android applications. Softw. Test. Verification Reliab., 31(3),
2021.

[LLGS18] Wenbin Li, Franck Le Gall, and Naum Spaseski. A survey on model-based testing tools
for test case generation. In Tools and Methods of Program Analysis: 4th International
Conference, TMPA 2017, Moscow, Russia, March 3-4, 2017, Revised Selected Papers 4,
pages 77–89. Springer, 2018.

[LPZ+23] Zhengwei Lv, Chao Peng, Zhao Zhang, Ting Su, Kai Liu, and Ping Yang. Fastbot2:
Reusable automated model-based GUI testing for android enhanced by reinforcement
learning. In Proceedings of the 37th IEEE/ACM International Conference on Automated

23

Software Engineering, ASE ’22, New York, NY, USA, 2023. Association for Computing
Machinery.

[MBTS04] Glenford J. Myers, Tom Badgett, Todd M Thomas, and Corey Sandler. The art of
software testing, volume 2. Wiley Online Library, 2004.

[Mit12] Mitsubishi Electric Corporation. Mitsubishi programmable controller – Training man-
ual, 2012. https://dl.mitsubishielectric.com/dl/fa/document/manual/school_
text/sh081123eng/sh081123enga.pdf.

[MMS18] Lina Marsso, Radu Mateescu, and Wendelin Serwe. Testor: A modular tool for on-the-fly
conformance test case generation. In Dirk Beyer and Marieke Huisman, editors, Tools
and Algorithms for the Construction and Analysis of Systems, pages 211–228, Cham,
2018. Springer International Publishing.

[MPRS11] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. Autoblacktest:
A tool for automatic black-box testing. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, page 1013–1015, New York, NY, USA,
2011. Association for Computing Machinery.

[NHR99] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Icml, volume 99, pages
278–287. Citeseer, 1999.

[PZAdS20] Nı́colas Pfeifer, Bruno V. Zimpel, Gabriel A. G. Andrade, and Luiz C. V. dos Santos.
A reinforcement learning approach to directed test generation for shared memory
verification. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 538–543, 2020.

[Ram98] Solofo Ramangalahy. Strategies for conformance testing. Technical Report MPI-I-98-010,
Max Planck Institut Für Informatik, May 1998.

[RLPS20] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. Quickly generating
diverse valid test inputs with reinforcement learning. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, pages 1410–1421, 2020.

[RMCT21] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. Deep reinforce-
ment learning for black-box testing of android apps. ACM Trans. Softw. Eng. Methodol.,
2021.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

[TB03] GJ Tretmans and Hendrik Brinksma. Torx: Automated model-based testing. In First
European Conference on Model-Driven Software Engineering, pages 31–43, 2003.

24

https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081123eng/sh081123enga.pdf
https://dl.mitsubishielectric.com/dl/fa/document/manual/school_text/sh081123eng/sh081123enga.pdf

[THMT21] Uraz Cengiz Türker, Robert M. Hierons, Mohammad Reza Mousavi, and Ivan Y. Tyukin.
Efficient state synchronisation in model-based testing through reinforcement learning.
In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 368–380, 2021.

[Tor] Torxakis. https://github.com/torxakis.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence. Softw.
Concepts Tools, 17(3):103–120, 1996.

[TvdL19] Jan Tretmans and Piërre van de Laar. Model-based testing with TorXakis. In Central
European Conference on Information and Intelligent Systems, pages 247–258. Faculty
of Organization and Informatics Varazdin, 2019.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based
testing approaches. Software testing, verification and reliability, 22(5):297–312, 2012.

[VBB+21] Alvaro Velasquez, Brett Bissey, Lior Barak, Andre Beckus, Ismail Alkhouri, Daniel
Melcer, and George Atia. Dynamic automaton-guided reward shaping for Monte Carlo
tree search. Proceedings of the AAAI Conference on Artificial Intelligence, 35(13):12015–
12023, 2021.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram Schulte, Nikolai Till-
mann, and Lev Nachmanson. Model-based testing of object-oriented reactive systems
with Spec Explorer. In Robert M. Hierons, Jonathan P. Bowen, and Mark Harman,
editors, Formal Methods and Testing: An Outcome of the FORTEST Network, Revised
Selected Papers, pages 39–76, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[VRC06] Margus Veanes, Pritam Roy, and Colin Campbell. Online testing with reinforcement
learning. In Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff, editors,
Formal Approaches to Software Testing and Runtime Verification, pages 240–253, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

[Yan04] Mihalis Yannakakis. Testing, optimization, and games. In Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, 2004., pages 78–88, 2004.

25

https://github.com/torxakis

	Introduction
	Preliminaries
	Testing from requirements
	Baseline Test Algorithms
	Naive Uniform Testing
	Testing Based on Reinforcement Learning
	Monte-Carlo Tree Search.
	Reward Shaping: Accelerating Convergence.
	Basic MCTS Testing Algorithm.

	Greedy Strategies and Improved Test Algorithms
	Controllable Predecessor and Successor Operators.
	Winning and Cooperative Strategies
	Greedy Strategy
	Purely greedy and -greedy test algorithms
	The Greedy-MCTS Test Algorithm
	Non-Deterministic Implementations

	Case Study
	Description of the System
	Test Algorithm Implementation
	Experimental Results

	Conclusion

