Component Based Development : a Composition
Oriented Approach

Nicolas Belloir Jean-Michel Bruel
University of Pau — LIUPPA University of Pau — LIUPPA
BP 1155, 64013 Pau CEDEX — France BP 1155, 64013 Pau CEDEX — France
Email: Nicolas.Belloir@univ-pau.fr Email: Jean-Michel.Bruel@univ-pau.fr

Abstract— The growing complexity of Information Systems, of paper is structured as follows: section Il describes sofme
as well as the adaptability and the flexibility constraints they the problems related with composition. Section Il presemt
require, call for for the use of components for their development composition model based on Whole-Part relationship, propos

A dedicated software engineering approach - Component-Based . P . L
Software Engineering (CgBSE)) %asp%merged. Ourpview is that 1NJ & modification of the UML metamodel allowing definition

composition is the critical point of such development. By composi- Of composition properties at conceptual level. We explain i
tion, we mean semantical integration of components. We present particular how our model can be used in existing component

in this article a composition oriented approach for component- pased development methods. Finally, section IV proposes a

based development. Composition is treated by a specific relation composition framework supporting our composition model
based on Whole-Part relationship. This relationship can be P PP 9 b)

characterized by formally specified properties and allows for Il. COMPONENT COMPOSITION IN DEVELOPMENT
constraint structural and dynamic relations between componerd. PROCESS
This relation is realized by a composition framework which we

have developed, consisting by a UML profile implementing the Component integration (called component assembly) is not
composition relationship and a deployment environment ensuring {ha same as component composition. According to [4], iategr
the respect of the composition properties. tion is the “mechanical task of wiring components together”
while composition is “the ability to assign properties te th
whole based on the properties of the parts and the relafjpmsh
In Software composition components are assembled in ord@tween the parts” so that it “supports the possibility of
to form a new system or a higher granularity componerdetermining the properties of assemblies in order to check
Component models, such as CCM or .NET, provide a recogpeir run-time compatibility”. Thus, composition focuses
nized support for the development of such systems. Howewite semantical aspect of assembly. An application built by
software engineering technologies and methods, specificc@mponent integration is not necessarily viable at running
this domain, are not enough. Component-Based Softwai@e. Determining valid component combinations implies-co
Engineering (CBSE) requires more research efforts in thesideration of both architectural and semantical dimerssion
directions [1]. In this context, composition is considerted during component integration.
be a fundamental basis. Indeed, composition can be considwe have defined two kinds of composition relationships:
ered at different level (analysis, design, assembly .. rindu horizontal composition deals with service exchange between
application lifecycle. Previous research works mainlyused components of same granularity. This relationship is thetmo
on composition at assembly level. It is now recognized thased one to integrate componerit&rtical composition con-
considering composition in earlier levels in the applicati cerns relations between a lowesupcomponehtand a higher
lifecycle is a priority in order to design trusted applicais. (composell granularity component. One could refer a com-
Numerous current works as [2] are investigated this way. ppnent composed from subcomponents, or about hierarchical
this context, the formalization of the composition is rgallcomposition (as Fractal [5] for example). A component uses
important. Design technologies lack dedicated and well fathe services of its subcomponents in order to provide itself
malized constructions. In particular, UML, which is tlile more complex services. During deployment, a component is
facto modelling standard, does not provide features allowirgnfigured in order to be adapted to its new environment. Its
to design CBSE concepts. The latest version of this languagigocomponents can be recursively configured but this config-
(2.0) is more suitable for CBSE but retains many incoherenagration must be managed by the component itself. Component
in semantics of the CBSE concepts. provided services can be implemented by the componert itsel
Based on our on-going research on component composi-by one of the subcomponents, or by a combinaison of both
tion [3], this paper describes a development approach usicgmponent and subcomponents functionalities. Incremgnti
a composition model to formalize composition relationshipcoupling between components is one of the negative conse-
and a composition framework allowing design, developmeqgtiences of vertical composition, depends of the manner in
and management of composition relationships. The remaindehich the composition link is implemented. However, this

I. INTRODUCTION

approach allows us to organize application architecture its implementation across the development processes unsed i
well-identified groups and so reduce application compjexitcomponent-based development, as we show it in the following
Replacing one subcomponent may only have a direct impaetctions.
on the component containing it. At conceptual level, consid
ering composition allows better specification of component N _)
relationships, using specific properties such as depegdefle A composition model based on Whole-Part Relationship
between components. It is particularly important, for amste, In previous work [15], Whole-Part Relationship was used
for components adaptation [6]. Composition design is eves a semantical basis to characterize UML aggregation and
more important with black-box components, since they canmmmposition, in oriented-object design. We have systaralyi
be adapted by definition. So, it is necessary to determine tlewiewed the properties identified in [15]. We have studied
composition properties to improve the compatibility betwe both the value of each property in the component world
components at runtime [4]. and the relationships among this properties. Bagymmetry

At conceptual level, some studies try to better define sat instance level and antisymmetry at type level properties
mantics of vertical composition. For instance, iemposite are primary properties: all composition relationships mus
pattern [7] organizes entities to be designed under hieigat respect these properties. The remainder consists of a set
structure in which entities and compositions of entitiee aof characterization properties which allows the derivataf
treated at the same level. Another approach uses desipecialized types of composition relationships. Moreower
contracts [8] to specify interaction between componenke Tthink that UML composition and aggregation relationships
AccoRbDproject [9] has defined principles which allow for theare not enough to design all possible combinations at the
building of component software architectures based on baitchitectural level. Indeed, UML standatdmposition rela-
components and contracts concepts. The formal method cdinship deals witlencapsulation andunshareability properties
munity has also studied composition [10]. Formal approachand aggregation with non encapsulation andshareability [15].
offer a precise semantics but are less accessible. On tke oilVe propose to define four composition relationships, athgwi
hand, graphical notations such as UML are often criticized lmore precise design at architectural design. Tab | shovgethe
the scientific community because of their “lack” of semamticfour relationships and their characterization properties
However, they offer a readily approachable formalism, well
known by the industry, which has proved its usefulness il

IIl. A COMPOSITION MODEL

software development [11]. Using both approaches provides 5 gg IS £5
. . . = o= [=1 {=re=1

better specification. Some approaches propose using alforn gg 2 g 55 2 S
method with a graphical notation to solve this problem. Ou ?E S E 2] <g 5&2
proposition is inverse. We want to determine if we can improv © - ©
the semantics of semi-formal approaches by constrainieig th stat. | dyn. | stat. [dyn. [sfat. | dyn. | stat. [dyn.
syntax using languages such OCL [12]. UML is the mos| Sncapsulation}] yes | yes | yes | ves | no | no | no | no

. R shareability no no yes | yes no no yes | yes
used semi-formal approach in CBSE and uses the OCL form[—separability 7] no | yes | no | yes | no | yes | no | yes

language to describe it semantics. We apply to UML ou|_Mmutability

. . . lifecycle 1 4 1 4 9 9 9 9
work on the improvement of the semantics of the compositio| gependency
relationship at conceptual level. (case number)
When speaking about component-based development meth- TABLE |
ods, it is necessary to differentiate between desgnreuse DIFFERENT KINDS OF COMPOSITION RELATIONSHIP

and desigrby reuse. Our work, even if dedicated to a transver-

sal problem, is more concerned with design by reuse,

building application by composition of reusable compogent)

composition. In such process, we encounter the same lackBofAPPlication to UML

consideration as in component composition. Methods generOur model is based on UML 1.x, waiting for a stable
ally focus more on components themselves or on relatiosshilease of UML 2.0. Indeed, from a notational point of view,
between components rather than the precise semantics WL 2 provides a pertinent response to the weakness of
these relationshipsThey often use UML as design suppdaML 1.x [16]. However, we think that these improvements
In [13], composition is only mentioned at assembly levelre not enough. Our approach could reuse the notational
and there is no precise clarification on this topic. In thenprovements but if we consider the specification of thedink
OPEN [14] proposition, hierarchical composition is trehtebetween a Composite and its Parts, our profile remains always
with the concept oContainment. It is limited to a few aspects a valid and indispensable approach. The concept of congposit
of the possibilities offered by composition relationshipack can be translated asRackagingComponent and a Part can be

of composition semantics can also be encountered in desigewed as aBasicComponent.

graphical support as well as in development methods. ForThe weakness of UML 1.5 are listed here : support to com-
this reason our work fundamentally addresses simultaneqaent assembly, concept of plug-substitutability, Sjstion
design support and methods. However, we do not negleftcomponent interaction patterns, design of the component

runtime context, definition of profiles for specific architgal The four kinds of composition relationship are included
models. The new UML standard responds partially to these éx-the metamodel with four metaclasses. Each one inherits
igences. However, we believe that it doesn’t respond to the fifrom Vertical Component Relationship. Figure 2 shows this
point which was linked to composition [17]: (i)improvemenpart of the metamodel. We have translated the properties as
of the notation semantics (specially of the associations) stereotypes. They express specific value of the metaa#sbu
support component based development; (ii) better support &ind allow to specialize metaclasses from stereotypes salue
interfaces and (iii) new protocols for interface formatima. All relationships must implement the primary propertieatth
Because of the lack of experience feedback, we have @ae defined in th&erticalComponentRelationship metaclass.

veloped our private heuristics about using these new casicep Vertical

. . ComponentRelationship
(see also [18]) and we preferred to focusing amyregation TS
and composition relationships rather than on new concepts as T
composite structures because of their lack of precise semantics ZF
[19]. Our proposition to modify the UML metamodel is based {disjoint}
on a new abstract metatype representing the composition
relationship between two components and describes a design

concept linked to a particular type ofassifier. It makes more Lightweight Strong. Tghweint Stong
complex the UML language and lowers it genericity. HOWeVeT, | <awapiasis | | <eeapumeas | | Adoregaion | | Aggregation
this branch of our model will eventually be able to be ingibrte —tehanaz | | <oobaunshang> | = - - -
in a stable version of UML 2.0 as a generalization of aFig- 2. Representation of the different kinds of compositielationship
generic relationship. We think that a specific relationsioip
component composition is very important in order to support The composition properties have been translated in OCL
a more intense usage of this paradigm. rules in [15]. The semantics of the composition properties
%l in the component world is globally the same. The_ OoCL
rules of our metamodel are only contextual adaptations of
the previous OCL rules. In order to illustrate an OCL rule,
disiomnt the following one translate thiereflexivity property which is
classifier] 1. necessary to specifygsymmetry at instance level:

Classifier
(o '

Complnstance
0..* | isComplnstOf 2

Component
Relationship
i

Association

context VerticalComponentRelationshipnv
Irreflexivite :
wholeMember. complinstaneeforAll (w | w.ocllsKindOf
(partMember) implies not w. part—includes (w))

disjoint . 3 partMember . complinstaneeforAll (p | p.ocllsKindOf(
1) wholeMember) implies not p.whole=>includes(p))
Horizontal Vertical wholeMember |+ | isCompOf
Component Component Component ff=—
Relationship Relationship || * 1 . .
partMember C. Using composition model

The most frequently quoted disadvantage is the lack of
support for the analysis and the validation of component-com
positions, both at structural and behavioral level. Wedweli

Figure 1 shows our metamodel. The new metaclasses ahdt the reason is the lack of precise semantics in compositi
the added links are in dark grey. The new abstract metaclasktionships. Our approach does not seek to generate a new
Component Relationship represents all kinds of relationshipmethod, but rather to improve, by both formalization andsoo
between components. The vertical and horizontal relatigss construction, support for essential problem of compaositid
are respectively represented by thertical Component Re- is however necessary to further explain the use of our model,
lationship and theHorizontal Component Relationship meta- and we chose to speak about both the cycle of component
classes. These two metaclasses are disjointed and implenmeiented development used with UML [13].
the Component Relationship metaclass. Component oriented development processes generally pro-

In contrast to the first version of our metamodel [3], theide little assistance in the verification of the conformity
characterization of thevhole or thePart component notion is of implementation to its specifications. For instance, ie th
translated by the componerdle in the relationship between Cheesman & Daniels approachiNIL Componenis assem-
association links and thé&/ertical Component Relationship bly description occupies just one page. And similarly for
metaclass. ThénstanceSpecification metaclass is specializeddeployment in runtime environment [13, p. 162-164]. The
in the Complnstance metaclass in order to keep an existingontribution of our model to this process focuses precisely
UML 1.x notion that has disappeared in UML 2.0. Then providing support in these critical activities. By rainf-
composition properties identified in the Tab | characterizag both specification of components and their architegture
the Vertical Component Relationship. Optional properties are through the structural and behavioral composition refatio
included as its attributes. ships, we help the developer in this particular stage of the

Fig. 1. New metaclasses for the composition relationship

Business requirements

with types of components. The Components Instance Dia-

| _ Technical _ — — Components- — ; ! <<WPCPComplnstance>>. Composition relationships are

- {Requirements | - - - - - __________ | gram ins_tanFiates the first diagram and allows architecture
| ; Existing | design with instances of components. Components and com-
| ! assets : ponents instances are translated by the stereotypes tinheri
| Business | mo—--—---to———————— - e ing from the Class metaclassi<<WPCPComponent>> and

|

|

|
concept models|
|
I

| constraints | | |

e Y v i Y I VY v translated by the<c<VCR>> (Vertical Component Relation-
C;je@(_)@ ship), <<SCOMP>> (Strong Composition)<<LCOMP>>
models | (Lightweight Composition),<<SAGG>> (Strong Aggrega-
| I_ _ Component specifications ' _ _ (’ tion) and<<LAGG>> (Lightweight Aggregation) stereotypes
| and architectures \ that are specializations of thRelationship relationship. The
L %gl <<Whole>> and<<Part>> stereotypes characterize the two

ends of the relationship. Tagged values represent mét#ts

of the metamodel. In our model, only tiverticalComponent-

I@l Relgtionship _metaclass, an_d_ those inh_eriting from it, have
attributes. Finally, composition properties are exprésbg

tagged values.

The profile provides some scripts, based on the composition
properties, used to verify the semantics of models. These
scripts were realized in the inn@bjecteeringanguage lan-
lifecycle (cf. Figure 3 — bold part). Our model clearly dealguage, because the software does not allow to implement OCL
with the management of composition relationships betweenles. We translated the OCL constraints about composition
components, from advanced design to implementation. properties in thel language. For example, the following code

verifies that the relationship is a binary relationship:
IV. A COMPOSITION FRAMEWORK 1

Fig. 3. “UML Components” development cycle [13, p. 27]

boolean Association::checkRolesOfRelation ({
. X . . 2 | // Check relationship size
In this section, we present our composition oriented framet if (ConnectionAssociationEnd. size != 2}

work which provides concrete arguments supporting what v StdErr write ({ERROR on ", Name, © refationship- i
X X X . T omposition relationship must be binary : ", N

have just enunciated, showing the practicability and usefs ;

of our model. It was elaborated from two ideas: (i) focusi@g

on composition during all development cycle is important,

and (ii) one of the problems related to the introduction of 2) lllustration of WPCP: We illustrate here the use of

new notions at model level is that these notions seldogy, profile with the coffee machine case study. The coffee
have a direct translation into programming abstractiot® T 5 hine is composed of a drink maker and a coiner. It also
engineer in charge of the realization of models must theﬂaefggl1

return false}
return true;}

JIIEE) - ovides an electronic purse. Money is added by the coiner.
arbitrarily choose a means of implementation for each modglis example shows the combination of three composition
concept with existent programming abstractions. Our fFamPeIationships: COFFEEMACHINE - Coiner, COFFEEMACHINE -

work attempts to address these constraints. It is ComposaU f &y saxer and E-Money - Coiner (we use capital letters for
both a UML proﬂlg, mtegratmg our cpmposﬂmn mlodel, an hole). In the component type diagram, we created four com-
a deP'OY!“e”t en_vwonr_nent, |_ntegrat|ng_ the paradigm of ﬂE)(?)nents:CoffeeMachine, Coiner, DrinkMaker and E-Money.
composition relationship previously defined. We then created the relationships between these components
by drawing associations between components. We set the
stereotype corresponding to the desired kind of relatipnsh
A UML profile [20] allows the adaptation of the semanwith the properties window. Figure 4 shows a screen capture
tics of UML without changing the metamodel, with well-of the realized model. When the type model is specified, the
defined extension mechanisms, consisting of the conceptsdesigner would run a script to verify validity of the realize
stereotype, of tagged value and of constraint. We use these model against the composition model.
mechanisms to implement our composition model. We havewhen the component type diagram is validated, the designer
developed our profile with therofile Buildermodule ofOb- specifies the application with component instances reajizi
jecteering[21], an UML modeler. In our opinion, it is the only the component instance diagram, and verifies its conformity
software providing support for UML profiles development. with the component type diagram. Firstly, the designer must
1) Description of the profile:Our profile, calledWPCP create components instances. The number of instancesdiepen
(Whole Part Composition Profile), allows to specify applief the specified relationships in the corresponding compo-
cation in terms of both type and instance of componentsent type diagram. For example, the relationship between
Thus, we use two kinds of specific class diagrams. Tl@offeeMachine and Coiner is a SCOMP. It implies the en-
Components Type Diagram describes the architecture desggpsulation and global exclusiveness properties. Howéver

A. A UML composition profile

the concepts expressed at model level. From this observa-
tion, we developed a composition environment called Whole-

<<WPCPComponent>>

<<SCOMP>> CoffeeMachine

(isSopmaniaise) <<Wholes o o Part Composition Environment (WPCE), allowing both Java
isMutable(false) {isEncapsuled(irue) components and their relationships management, based on
lifeDependency(1) isGlobalShared(false) B . . .
isEncapsuled(true) isLocaiShared(false) postulates enunciated in the previous section, and on ou¥ co
i lfebependency(1) } position model on the other hand. A specific environment for
1 \<Parss composition allows am priori verification of the compliance
eparn WP CPComponanion of the code facing its design models. Indeed, if a compasitio
1 ccpars Coiner model declares that composition has one property, and if
e monent> Wholes 1 the composition environment allows the developer directly
<<LAGG>> implement at assembly level this property, then the respiect
<<WPCPComponent>> BK-C . . . ey .
E-Money (isEncapsuled(ialse) this property is ensured by c_ieflnmon through the environine
isGlobalShared(rue) } In a pure formal approach, it would be necessary to prove the

validity of such property.

1) A Java composition environment for a rigorous devel-
opment: WPCE is using the JMX [22] technology allowing
management of Java components, called MBeans (Managed
Beans). JMX permits connection of a Web browser to an

<<WPCPCompinstance>> Mbeans server which provides some Web pages from which it
{refere;i‘;g:?g;;:e";achme)} is possible to manage MBeans by accessing their management
interfaces. The JMX relation service defines classes atigwi
cescomd the construction of relationships between MBeans compo-
‘cMC Part>> nents, and centralizes all the operations on these restijps
{referedType(CI1-C)} to support their consistency. The operations can be made
<<WPCPCompinsmnce> <<WPCPCompinstance> accessible through a Web browser with any other MBean.
:DrinkMaker Coinerd:Coiner Our proposition firstly involved transforming a component

Fig. 4. The component type diagram generated by the WPCP profile

<Whole>> <<Whole>>

<<SCOMP>>
:CM-DM
{ referedType(CM-DM) }

<<Part>>

{referedType(Drinkiaken) {referedType(Comen) in a MBean component. Then, we changed the JMX relation
service so that it offers the specification of composition
P — propert_ies. Designed architecture allows us to quic_kly a_nd

<<WPC:';_Cr:2:1F:;5tance> <<Whole>> <<Parp L o-Coiner ea3|ly |m_p_lem_ent the sub-types of f:omposmon relatiopshi
(referedType(E-Money)} <cHAsG>> {referedType(Coinen)} By simplification, we employ the brief names of these sub-

types. The offered implementation follows a similar model
to specialize these relationships. Properties are triauslay
interfaces. Classes that implement the sub-types of campos
Fig. 5. The component instance diagram generated by the WR@iepr tion relationships extend all the relationship properti€ke
following code illustrates this for theCOMP class:

public class SCOMP extends WholePart implements

{ referedType(E-C) }

1

. . . . SCOMPMBean {
E-Money component also has a relationship with tbeiner 2 public SCOMP(...) throws JMException {
component. Thus, the global exclusiveness property impﬂe 1 super(...);

two instances of th€oiner component: oneQoinerl:Coiner)

has a relationship with the instance ObffeeMachine, the Thjs code is very simple. Here, only constructor parameters
other Coiner2:Coiner) has a relationship with the instance oty nidden. The code is similar for all sub-types. The dif-

E-Money. After the instances specification, the designer Muglences between sub-types are only located in the MBean
draw the relationships between the instances. Figure 58B0Wnterface that they implement. This interface is constitut

screen capture of the generated diagram. When the compoRgdihy the interfaces of the properties characterizing theety
instance diagram is finished, it is necessary to verify with ihe relationship.

J language scripts its compliance with the corresponding

. . ; . 2) lllustration: We illustrate the use of our environment
component type diagram (Objecteering tool has no dynamthh reference to the coffee machine case study. In order
verification) and its specified composition properties.

to present a relevant example, we have chosen here to set
the CorFEEMACHINE - Coinerrelationship globally unshareable
and not encapsulated by tildeffeeMachine. According to the

In practice, conformity between the developed software andture of the property, the environment performs a negative
its corresponding specification is unfortunately not syste or positive checking: either the environment vindicates th
atically guaranteed. One of the reasons is that deploymgmbperty of the relationship itself (by implementationjda
environments do not provide means to directly implement all that case the property is assumed to be proven, or the

B. A deployment environment for composition

environment proves that the property of the relationship &pression of composition in UML and contributed to specify
consistent with already defined relationships, and in thgeat its semantics, that is to say to constrain its syntax [11].
prohibits this relation if a contradiction is found. We Bluate We are exploring two perspectives of these studies. The
a violation of the unshareability between thenkMaker and first one consists of inserting into our approach the use of
the CoffeeMachine components. Let consider there are onlthe Fractal component model [5] which allows hierarchical
two instances ofcoffeeMachine. One has a relationship with compositions. It is built on implicit properties among wiic
Coiner and DrinkMaker. The second has no relationship wittsome are comparatively close to ours. On the other hand, we
any component. One tries to instantiate a new relationshipe trying to automate our composition approach by using
between theDrinkMaker component, already used by themodels transformation principles. The idea is to generrat® f
first CoffeeMachine component. The environment detects ththe conceptual diagrams independent of any technological
violation of the unshareability property and starts an pkioa. support, the code skeleton of the application in the specific
composition environment.
C. Toward automatic model transformation from profile to

. . REFERENCES
composition environment

[1] High Confidence Software and Systems Coordinating Grditigh
Even if the previous composition environment allows to confidence software and systems research needs,” Tech. jRepery

: s : : 2001. [Online]. Available: http://www.ccic.gov/pubsdex.html
directly express composition properties, most of the fmaﬂz] 3. DorEg an d] S. Yang, “Toevar ds Trustegd Cpomposition in Saftw

architecture is based on JMX and is globally repetitive.uatt Design,” inProc. of the Eighth IEEE Int. Symposium on High Assurance
research trends seek to automatically generate specifielmod Systems Engineering (HASE'0Zampa, USA, 2004.

! : : :] N. Belloir, J.-M. Bruel, and F. Barbier, “Whole-Part Rétnships for
for the final architecture. In this context, we are workingoom Software Component Combination,” Rroceedings of the 29th Euromi-

framework to automatically transform realized compositio cro Conference on Component-Based Software EngineeringEEE
diagrams, that are independent of any technical support, in Computer Society Press, Sept. 2003, pp. 86-91.

. . : ; « [4] J. A. Stafford and K. Wallnau, “Component composition and i
specific platform composition diagram. Thus, this specifi tegration,” in Building reliable component-based software systems

composition diagram can be finally transformed into code |. Crkovic and M. Larsson, Eds. Artech House Publisher€220
skeleton. This approach is influenced by the Model-Driven pp. 179-191.

: : 5] E. Bruneton, T. Coupaye, and J. B. Stefani, “Recursivd dgnamic
Engineering (MDE) approach promOIed by the OMG [23]' We[software composition with sharing,” iBeventh International Workshop

firstly specified and realized a profile allowing the expressi on Component-Oriented Programming (WCOPG2plaga, June 2002.
of a WPCE architecture. Secondly, we identified transfori6] P.K.McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. @e"Com-

: : i ; posing Adaptive Software[EEE Transactions on Software Engineering
mation rules for translating composition models into WPCE vol. 37, no. 7, pp. 56-64, July 2004,

composition models. Thus, we implemented scripts prefom'[ﬁ’] E. Gamma, R. Helm, R. Johnson, and J. Vlissidgssign Patterns :
ing this transformation, and hence validates all compmrsiti Element of Reusable Object-Oriented Softwaseddison-Wesley, 1995.

- . - - ; [8] B. Meyer, Object-Oriented Software ConstructiorPrentice Hall, 1997.
properties. Thirdly, we implemented scripts generating \EPC [9] “Accord Project,” http://www.infres.enst.fr/projgtaccord/.

code skeleton. Because of the limited place of the paper, we] J. R. Kinitry, “Semantic Component Composition,” Rroceedings of
do not describe more precisely this approach here. the ACM SIGPLAN/SIGSOFT Conference on Generative Progragim
and Component Engineering (GPCE’QZ)ct., 6-8 2002.
[11] D. Harel and B. Rumpe, “Meaningful Modeling : What's thensmtics
V. CONCLUSION of "Semantics” ?"IEEE Computervol. 37, no. 10, pp. 64-72, 2004.
. . . . [12] OMG, “Object Constraint Language Specification v1Qbject Man-
In CBSE, the composition concept is central since it charac-" agement Group,” OMG document, Sept. 1997.

terizes the rules of assembly between components. HoweV&}] J. Cheesman and J. Daniel$ML Components — A Simple Process for

. . . P . Specifying Component-Based Softwardddison-Wesley, 2001.
it is often considered too late in the appllcanon “fecydle [14] D. Firesmith, B. Henderson-Sellers, and |. Grahdmen Modeling

this context, we have presented an approach that focusses onLanguage - Reference ManualCambridge University Press, 1998.
composition along all the development lifecycle. Our apto [15] F. Barbier, B. Henderson-Sellers, A. L. Parc-Lacagrednd J.-M. Bruel,

. - . “Formalization of the Whole-Part Relationship in the Unifieddi&ling
uses both a UML metamodel mtroducmg a new vertical Language,lEEE Transactions on Software Engineeringl. 29, no. 5,

composition relationship devoted to components commusiti pp. 459-470, May 2003.

and some composition properties formalized in OCL. We hal#$] C. Bock, “UML 2 Composition Model,Journal of Object Technology

il : : - vol. 3, no. 10, Oct. 2004.
shown the feasibility of this approach by implementing a eom, ,, + Weigert, “Uml 2.0 rfi response overview.

position framework based on two tools: a UML profile for the ~ hitp://iwww.omg.org/docs/ad/00-01-07.ppt, 1999.
conceptual level and a composition deployment environmd#g] S. W. Ambler, “The official agile modeling site — the diagrs of uml

] . 2, Available at http://www.agilemodeling.com, 2003.
for the software level. Both tools implement the compoa|t|0[19] J-M. Bruel and I. Ober, “Uml 2.0 composition suppofudia Journal

properties of the composition model as executable conssrai vol. LI, no. 1, pp. 79-99, june 2006.

They guarantee respect of these constraints by both thgrde$?0] OMG, “White Paper on the Profile mechanism - version 1.0fjeot

. P Management Group,” OMG document, Apr. 1999.
models and the final appllcatlon.] Softeam, “Objecteering software,” Available at

. . . C[21
Our work is consistent with the actual trends that give http://www.objecteering.com/.
more and more significance to models in the development[fl S- Microsystems, “Java management extension,” Availatde
licati Iti lies th f . hical | http://java.sun.com/products/JavaManagement/.
?pp 'Cja ions. it implhies the USQ Y (seml-)grap'lca azmg;es [23] J. Bézivin and O. Gerb, “Towards a Precise Definition of the
in which the elements of notation have a precise meaning. In' OMG/MDA Framework,” in Proceedings of the Conference on Au-

this context, we worked to increase significantly the powfer o tomatonous Software Engineering (ASE'Olipv. 2001.

