
Component Based Development : a Composition
Oriented Approach

Nicolas Belloir
University of Pau – LIUPPA

BP 1155, 64013 Pau CEDEX – France
Email: Nicolas.Belloir@univ-pau.fr

Jean-Michel Bruel
University of Pau – LIUPPA

BP 1155, 64013 Pau CEDEX – France
Email: Jean-Michel.Bruel@univ-pau.fr

Abstract— The growing complexity of Information Systems,
as well as the adaptability and the flexibility constraints they
require, call for for the use of components for their development.
A dedicated software engineering approach - Component-Based
Software Engineering (CBSE) - has emerged. Our view is that
composition is the critical point of such development. By composi-
tion, we mean semantical integration of components. We present
in this article a composition oriented approach for component-
based development. Composition is treated by a specific relation
based on Whole-Part relationship. This relationship can be
characterized by formally specified properties and allows for
constraint structural and dynamic relations between components.
This relation is realized by a composition framework which we
have developed, consisting by a UML profile implementing the
composition relationship and a deployment environment ensuring
the respect of the composition properties.

I. I NTRODUCTION

In Software composition components are assembled in order
to form a new system or a higher granularity component.
Component models, such as CCM or .NET, provide a recog-
nized support for the development of such systems. However,
software engineering technologies and methods, specific to
this domain, are not enough. Component-Based Software
Engineering (CBSE) requires more research efforts in theses
directions [1]. In this context, composition is consideredto
be a fundamental basis. Indeed, composition can be consid-
ered at different level (analysis, design, assembly . . .) during
application lifecycle. Previous research works mainly focused
on composition at assembly level. It is now recognized that
considering composition in earlier levels in the application
lifecycle is a priority in order to design trusted applications.
Numerous current works as [2] are investigated this way. In
this context, the formalization of the composition is really
important. Design technologies lack dedicated and well for-
malized constructions. In particular, UML, which is thede
facto modelling standard, does not provide features allowing
to design CBSE concepts. The latest version of this language
(2.0) is more suitable for CBSE but retains many incoherences
in semantics of the CBSE concepts.

Based on our on-going research on component composi-
tion [3], this paper describes a development approach using
a composition model to formalize composition relationships
and a composition framework allowing design, development
and management of composition relationships. The remainder

of paper is structured as follows: section II describes someof
the problems related with composition. Section III presents a
composition model based on Whole-Part relationship, propos-
ing a modification of the UML metamodel allowing definition
of composition properties at conceptual level. We explain in
particular how our model can be used in existing component
based development methods. Finally, section IV proposes a
composition framework supporting our composition model.

II. COMPONENT COMPOSITION IN DEVELOPMENT

PROCESS

Component integration (called component assembly) is not
the same as component composition. According to [4], integra-
tion is the “mechanical task of wiring components together”
while composition is “the ability to assign properties to the
whole based on the properties of the parts and the relationships
between the parts” so that it “supports the possibility of
determining the properties of assemblies in order to check
their run-time compatibility”. Thus, composition focuseson
the semantical aspect of assembly. An application built by
component integration is not necessarily viable at running
time. Determining valid component combinations implies con-
sideration of both architectural and semantical dimensions
during component integration.

We have defined two kinds of composition relationships:
horizontal composition deals with service exchange between
components of same granularity. This relationship is the most
used one to integrate components.Vertical composition con-
cerns relations between a lower (subcomponent) and a higher
(composed) granularity component. One could refer a com-
ponent composed from subcomponents, or about hierarchical
composition (as Fractal [5] for example). A component uses
the services of its subcomponents in order to provide itself
more complex services. During deployment, a component is
configured in order to be adapted to its new environment. Its
subcomponents can be recursively configured but this config-
uration must be managed by the component itself. Component
provided services can be implemented by the component itself,
or by one of the subcomponents, or by a combinaison of both
component and subcomponents functionalities. Incrementing
coupling between components is one of the negative conse-
quences of vertical composition, depends of the manner in
which the composition link is implemented. However, this

approach allows us to organize application architecture in
well-identified groups and so reduce application complexity.
Replacing one subcomponent may only have a direct impact
on the component containing it. At conceptual level, consid-
ering composition allows better specification of component
relationships, using specific properties such as dependency
between components. It is particularly important, for instance,
for components adaptation [6]. Composition design is even
more important with black-box components, since they cannot
be adapted by definition. So, it is necessary to determine the
composition properties to improve the compatibility between
components at runtime [4].

At conceptual level, some studies try to better define se-
mantics of vertical composition. For instance, theComposite
pattern [7] organizes entities to be designed under hierarchical
structure in which entities and compositions of entities are
treated at the same level. Another approach uses design
contracts [8] to specify interaction between components. The
ACCORDproject [9] has defined principles which allow for the
building of component software architectures based on both
components and contracts concepts. The formal method com-
munity has also studied composition [10]. Formal approaches
offer a precise semantics but are less accessible. On the other
hand, graphical notations such as UML are often criticized by
the scientific community because of their “lack” of semantics.
However, they offer a readily approachable formalism, well-
known by the industry, which has proved its usefulness in
software development [11]. Using both approaches providesa
better specification. Some approaches propose using a formal
method with a graphical notation to solve this problem. Our
proposition is inverse. We want to determine if we can improve
the semantics of semi-formal approaches by constraining their
syntax using languages such OCL [12]. UML is the most
used semi-formal approach in CBSE and uses the OCL formal
language to describe it semantics. We apply to UML our
work on the improvement of the semantics of the composition
relationship at conceptual level.

When speaking about component-based development meth-
ods, it is necessary to differentiate between designfor reuse
and designby reuse. Our work, even if dedicated to a transver-
sal problem, is more concerned with design by reuse,i.e.
building application by composition of reusable components
composition. In such process, we encounter the same lack of
consideration as in component composition. Methods gener-
ally focus more on components themselves or on relationships
between components rather than the precise semantics for
these relationshipsThey often use UML as design support.
In [13], composition is only mentioned at assembly level
and there is no precise clarification on this topic. In the
OPEN [14] proposition, hierarchical composition is treated
with the concept ofContainment. It is limited to a few aspects
of the possibilities offered by composition relationships. Lack
of composition semantics can also be encountered in design
graphical support as well as in development methods. For
this reason our work fundamentally addresses simultaneous
design support and methods. However, we do not neglect

its implementation across the development processes used in
component-based development, as we show it in the following
sections.

III. A COMPOSITION MODEL

A. A composition model based on Whole-Part Relationship

In previous work [15], Whole-Part Relationship was used
as a semantical basis to characterize UML aggregation and
composition, in oriented-object design. We have systematically
reviewed the properties identified in [15]. We have studied
both the value of each property in the component world
and the relationships among this properties. Bothasymmetry
at instance level and antisymmetry at type level properties
are primary properties: all composition relationships must
respect these properties. The remainder consists of a set
of characterization properties which allows the derivation of
specialized types of composition relationships. Moreover, we
think that UML composition and aggregation relationships
are not enough to design all possible combinations at the
architectural level. Indeed, UML standardcomposition rela-
tionship deals withencapsulation andunshareability properties
andaggregation with non encapsulation andshareability [15].
We propose to define four composition relationships, allowing
more precise design at architectural design. Tab I shows these
four relationships and their characterization properties.

S
tr

on
g

C
om

po
si

tio
n

Li
gh

tw
ei

gh
t

C
om

po
si

tio
n

S
tr

on
g

A
gg

re
ga

tio
n

Li
gh

tw
ei

gh
t

A
gg

re
ga

tio
n

stat. dyn. stat. dyn. stat. dyn. stat. dyn.

encapsulation yes yes yes yes no no no no
shareability no no yes yes no no yes yes
separability /
mutability

no yes no yes no yes no yes

lifecycle
dependency
(case number)

1 4 1 4 9 9 9 9

TABLE I

DIFFERENT KINDS OF COMPOSITION RELATIONSHIP

B. Application to UML

Our model is based on UML 1.x, waiting for a stable
release of UML 2.0. Indeed, from a notational point of view,
UML 2 provides a pertinent response to the weakness of
UML 1.x [16]. However, we think that these improvements
are not enough. Our approach could reuse the notational
improvements but if we consider the specification of the links
between a Composite and its Parts, our profile remains always
a valid and indispensable approach. The concept of composite
can be translated as aPackagingComponent and a Part can be
viewed as aBasicComponent.

The weakness of UML 1.5 are listed here : support to com-
ponent assembly, concept of plug-substitutability, specification
of component interaction patterns, design of the component

runtime context, definition of profiles for specific architectural
models. The new UML standard responds partially to these ex-
igences. However, we believe that it doesn’t respond to the first
point which was linked to composition [17] : (i)improvement
of the notation semantics (specially of the associations) to
support component based development ; (ii) better support for
interfaces and (iii) new protocols for interface formalization.

Because of the lack of experience feedback, we have de-
veloped our private heuristics about using these new concepts
(see also [18]) and we preferred to focusing onaggregation
andcomposition relationships rather than on new concepts as
composite structures because of their lack of precise semantics
[19]. Our proposition to modify the UML metamodel is based
on a new abstract metatype representing the composition
relationship between two components and describes a design
concept linked to a particular type ofclassifier. It makes more
complex the UML language and lowers it genericity. However,
this branch of our model will eventually be able to be inserted
in a stable version of UML 2.0 as a generalization of a
generic relationship. We think that a specific relationshipfor
component composition is very important in order to support
a more intense usage of this paradigm.

Relationship

AssociationComponent
Relationship

Horizontal
Component
Relationship

Vertical
Component
Relationship

disjoint

disjoint

Component

partMember

1*

wholeMember

1*

Classifier

Instance
Specification

classifier 1..*

CompInstance

0..*

1..*

isCompInstOf

isCompOf

Fig. 1. New metaclasses for the composition relationship

Figure 1 shows our metamodel. The new metaclasses and
the added links are in dark grey. The new abstract metaclass
Component Relationship represents all kinds of relationship
between components. The vertical and horizontal relationships
are respectively represented by theVertical Component Re-
lationship and theHorizontal Component Relationship meta-
classes. These two metaclasses are disjointed and implement
the Component Relationship metaclass.

In contrast to the first version of our metamodel [3], the
characterization of theWhole or thePart component notion is
translated by the componentrole in the relationship between
association links and theVertical Component Relationship
metaclass. TheInstanceSpecification metaclass is specialized
in the CompInstance metaclass in order to keep an existing
UML 1.x notion that has disappeared in UML 2.0. The
composition properties identified in the Tab I characterize
the Vertical Component Relationship. Optional properties are
included as its attributes.

The four kinds of composition relationship are included
in the metamodel with four metaclasses. Each one inherits
from Vertical Component Relationship. Figure 2 shows this
part of the metamodel. We have translated the properties as
stereotypes. They express specific value of the metaattributes
and allow to specialize metaclasses from stereotypes values.
All relationships must implement the primary properties that
are defined in theVerticalComponentRelationship metaclass.

Vertical
ComponentRelationship

≪binary≫
≪instance-asymmetry≫
≪type-antisymmetry≫

Lightweight
Composition

≪encapsulated≫
≪global-sharing≫

Strong
Composition

≪encapsulated≫
≪global-unsharing≫

Lightweight
Aggregation

≪global-sharing≫

Strong
Aggregation

≪global-unsharing≫

{disjoint}

Fig. 2. Representation of the different kinds of compositionrelationship

The composition properties have been translated in OCL
rules in [15]. The semantics of the composition properties
in the component world is globally the same. The OCL
rules of our metamodel are only contextual adaptations of
the previous OCL rules. In order to illustrate an OCL rule,
the following one translate theirreflexivity property which is
necessary to specifyasymmetry at instance level:

1 con tex t V e r t i c a l C o m p o n e n t R e l a t i o n s h i pinv
I r r e f l e x i v i t e :

2 wholeMember . compIns tance−>f o r A l l (w | w. oc l I sK indOf
(partMember) i m p l i e s not w. p a r t−>i n c l u d e s (w))

3 partMember . compIns tance−>f o r A l l (p | p . oc l I sK indOf (
wholeMember) i m p l i e s not p . whole−>i n c l u d e s (p))

C. Using composition model

The most frequently quoted disadvantage is the lack of
support for the analysis and the validation of component com-
positions, both at structural and behavioral level. We believe
that the reason is the lack of precise semantics in composition
relationships. Our approach does not seek to generate a new
method, but rather to improve, by both formalization and tools
construction, support for essential problem of composition. It
is however necessary to further explain the use of our model,
and we chose to speak about both the cycle of component
oriented development used with UML [13].

Component oriented development processes generally pro-
vide little assistance in the verification of the conformity
of implementation to its specifications. For instance, in the
Cheesman & Daniels approach (UML Components), assem-
bly description occupies just one page. And similarly for
deployment in runtime environment [13, p. 162-164]. The
contribution of our model to this process focuses precisely
on providing support in these critical activities. By reinforc-
ing both specification of components and their architecture,
through the structural and behavioral composition relation-
ships, we help the developer in this particular stage of the

Requirements

Specification

Business

concept models

Provisionning Assembly

Test

Deployment

Use Case

models

Use

Case

models

Technical

constraints
Components

Existing

assets

Business requirements

Component specifications

and architectures

Fig. 3. “UML Components” development cycle [13, p. 27]

lifecycle (cf. Figure 3 – bold part). Our model clearly deals
with the management of composition relationships between
components, from advanced design to implementation.

IV. A COMPOSITION FRAMEWORK

In this section, we present our composition oriented frame-
work which provides concrete arguments supporting what we
have just enunciated, showing the practicability and usefulness
of our model. It was elaborated from two ideas: (i) focusing
on composition during all development cycle is important,
and (ii) one of the problems related to the introduction of
new notions at model level is that these notions seldom
have a direct translation into programming abstractions. The
engineer in charge of the realization of models must therefore
arbitrarily choose a means of implementation for each model
concept with existent programming abstractions. Our frame-
work attempts to address these constraints. It is composed from
both a UML profile, integrating our composition model, and
a deployment environment, integrating the paradigm of the
composition relationship previously defined.

A. A UML composition profile

A UML profile [20] allows the adaptation of the seman-
tics of UML without changing the metamodel, with well-
defined extension mechanisms, consisting of the concepts of
stereotype, of tagged value and of constraint. We use these
mechanisms to implement our composition model. We have
developed our profile with theProfile Builder module ofOb-
jecteering[21], an UML modeler. In our opinion, it is the only
software providing support for UML profiles development.

1) Description of the profile:Our profile, calledWPCP
(Whole Part Composition Profile), allows to specify appli-
cation in terms of both type and instance of components.
Thus, we use two kinds of specific class diagrams. The
Components Type Diagram describes the architecture design

with types of components. The Components Instance Dia-
gram instantiates the first diagram and allows architecture
design with instances of components. Components and com-
ponents instances are translated by the stereotypes inherit-
ing from the Class metaclass:<<WPCPComponent>> and
<<WPCPCompInstance>>. Composition relationships are
translated by the<<VCR>> (Vertical Component Relation-
ship), <<SCOMP>> (Strong Composition),<<LCOMP>>

(Lightweight Composition),<<SAGG>> (Strong Aggrega-
tion) and<<LAGG>> (Lightweight Aggregation) stereotypes
that are specializations of theRelationship relationship. The
<<Whole>> and<<Part>> stereotypes characterize the two
ends of the relationship. Tagged values represent metattributes
of the metamodel. In our model, only theVerticalComponent-
Relationship metaclass, and those inheriting from it, have
attributes. Finally, composition properties are expressed by
tagged values.

The profile provides some scripts, based on the composition
properties, used to verify the semantics of models. These
scripts were realized in the innerObjecteeringlanguage,J lan-
guage, because the software does not allow to implement OCL
rules. We translated the OCL constraints about composition
properties in theJ language. For example, the following code
verifies that the relationship is a binary relationship:

1 boolean A s s o c i a t i o n : : c h e c k R o l e s O f R e l a t i o n (){
2 / / Check r e l a t i o n s h i p s i z e
3 i f (Connec t i onAssoc ia t i onEnd . s i z e != 2){
4 S t d E r r .wr i te (”ERROR on ” , Name , ” r e l a t i o n s h i p− A

Compos i t ion r e l a t i o n s h i p must be b i n a r y : ” , NL)
;

5 r e t u r n f a l s e ;}
6 r e t u r n t r u e ; }

2) Illustration of WPCP: We illustrate here the use of
our profile with the coffee machine case study. The coffee
machine is composed of a drink maker and a coiner. It also
provides an electronic purse. Money is added by the coiner.
This example shows the combination of three composition
relationships: COFFEEMACHINE - Coiner, COFFEEMACHINE -
DrinkMaker and E-MONEY - Coiner (we use capital letters for
Whole). In the component type diagram, we created four com-
ponents:CoffeeMachine, Coiner , DrinkMaker and E-Money .
We then created the relationships between these components
by drawing associations between components. We set the
stereotype corresponding to the desired kind of relationship
with the properties window. Figure 4 shows a screen capture
of the realized model. When the type model is specified, the
designer would run a script to verify validity of the realized
model against the composition model.

When the component type diagram is validated, the designer
specifies the application with component instances realizing
the component instance diagram, and verifies its conformity
with the component type diagram. Firstly, the designer must
create components instances. The number of instances depends
of the specified relationships in the corresponding compo-
nent type diagram. For example, the relationship between
CoffeeMachine and Coiner is a SCOMP. It implies the en-
capsulation and global exclusiveness properties. However, the

<<WPCPComponent>>

CoffeeMachine

<<WPCPComponent>>

Coiner

<<WPCPComponent>>

DrinkMaker

<<WPCPComponent>>

E-Money

<<SCOMP>>

CM-C

{ isEncapsuled(true)

isGlobalShared(false)

isLocalShared(false)

lifeDependency(1) }

<<Whole>>

<<Part>>1

<<SCOMP>>

CM-DM

{ isSeparable(false)

isMutable(false)

lifeDependency(1)

isEncapsuled(true)

isGlobalShared(false)

isLocalShared(false) }

<<Whole>>

<<Part>>
1

<<LAGG>>

BK-C

{ isEncapsuled(false)

isGlobalShared(true) }

<<Whole>>

<<Part>>

1

Fig. 4. The component type diagram generated by the WPCP profile

<<WPCPCompInstance>>

{referedType(CoffeeMachine)}

:CoffeeMachine

<<WPCPCompInstance>>

{referedType(DrinkMaker)}

:DrinkMaker
<<WPCPCompInstance>>

{referedType(Coiner)}

Coiner1:Coiner

<<WPCPCompInstance>>

{referedType(E-Money)}

:E-money

<<WPCPCompInstance>>

{referedType(Coiner)}

Coiner2:Coiner

<<SCOMP>>

:CM-DM

{ referedType(CM-DM) }

<<Whole>>

<<Part>>

<<SCOMP>>

:CM-C

{ referedType(CM-C) }

<<Whole>>

<<Part>>

<<LAGG>>

:E-C

{ referedType(E-C) }

<<Whole>> <<Part>>

Fig. 5. The component instance diagram generated by the WPCP profile

E-Money component also has a relationship with theCoiner
component. Thus, the global exclusiveness property implies
two instances of theCoiner component: one (Coiner1:Coiner)
has a relationship with the instance ofCoffeeMachine, the
other (Coiner2:Coiner) has a relationship with the instance of
E-Money . After the instances specification, the designer must
draw the relationships between the instances. Figure 5 shows a
screen capture of the generated diagram. When the component
instance diagram is finished, it is necessary to verify with
J language scripts its compliance with the corresponding
component type diagram (Objecteering tool has no dynamic
verification) and its specified composition properties.

B. A deployment environment for composition

In practice, conformity between the developed software and
its corresponding specification is unfortunately not system-
atically guaranteed. One of the reasons is that deployment
environments do not provide means to directly implement all

the concepts expressed at model level. From this observa-
tion, we developed a composition environment called Whole-
Part Composition Environment (WPCE), allowing both Java
components and their relationships management, based on
postulates enunciated in the previous section, and on our com-
position model on the other hand. A specific environment for
composition allows ana priori verification of the compliance
of the code facing its design models. Indeed, if a composition
model declares that composition has one property, and if
the composition environment allows the developer directly
implement at assembly level this property, then the respectof
this property is ensured by definition through the environment.
In a pure formal approach, it would be necessary to prove the
validity of such property.

1) A Java composition environment for a rigorous devel-
opment: WPCE is using the JMX [22] technology allowing
management of Java components, called MBeans (Managed
Beans). JMX permits connection of a Web browser to an
Mbeans server which provides some Web pages from which it
is possible to manage MBeans by accessing their management
interfaces. The JMX relation service defines classes allowing
the construction of relationships between MBeans compo-
nents, and centralizes all the operations on these relationships
to support their consistency. The operations can be made
accessible through a Web browser with any other MBean.

Our proposition firstly involved transforming a component
in a MBean component. Then, we changed the JMX relation
service so that it offers the specification of composition
properties. Designed architecture allows us to quickly and
easily implement the sub-types of composition relationship.
By simplification, we employ the brief names of these sub-
types. The offered implementation follows a similar model
to specialize these relationships. Properties are translated by
interfaces. Classes that implement the sub-types of composi-
tion relationships extend all the relationship properties. The
following code illustrates this for theSCOMP class:

1 pub l i c c l a s s SCOMP ex tends WholePar t implements
SCOMPMBean{

2 pub l i c SCOMP (. . .) throws JMExcept ion {
3 super (. . .) ;
4 }}

This code is very simple. Here, only constructor parameters
are hidden. The code is similar for all sub-types. The dif-
ferences between sub-types are only located in the MBean
interface that they implement. This interface is constituted
from the interfaces of the properties characterizing the type
of the relationship.

2) Illustration: We illustrate the use of our environment
with reference to the coffee machine case study. In order
to present a relevant example, we have chosen here to set
the COFFEEMACHINE - Coiner relationship globally unshareable
and not encapsulated by theCoffeeMachine. According to the
nature of the property, the environment performs a negative
or positive checking : either the environment vindicates the
property of the relationship itself (by implementation), and
in that case the property is assumed to be proven, or the

environment proves that the property of the relationship is
consistent with already defined relationships, and in this case it
prohibits this relation if a contradiction is found. We illustrate
a violation of the unshareability between theDrinkMaker and
the CoffeeMachine components. Let consider there are only
two instances ofCoffeeMachine. One has a relationship with
Coiner and DrinkMaker . The second has no relationship with
any component. One tries to instantiate a new relationship
between theDrinkMaker component, already used by the
first CoffeeMachine component. The environment detects the
violation of the unshareability property and starts an exception.

C. Toward automatic model transformation from profile to
composition environment

Even if the previous composition environment allows to
directly express composition properties, most of the final
architecture is based on JMX and is globally repetitive. Actual
research trends seek to automatically generate specific model
for the final architecture. In this context, we are working onour
framework to automatically transform realized composition
diagrams, that are independent of any technical support, in
specific platform composition diagram. Thus, this specific
composition diagram can be finally transformed into code
skeleton. This approach is influenced by the Model-Driven
Engineering (MDE) approach promoted by the OMG [23]. We
firstly specified and realized a profile allowing the expression
of a WPCE architecture. Secondly, we identified transfor-
mation rules for translating composition models into WPCE
composition models. Thus, we implemented scripts preform-
ing this transformation, and hence validates all composition
properties. Thirdly, we implemented scripts generating WPCE
code skeleton. Because of the limited place of the paper, we
do not describe more precisely this approach here.

V. CONCLUSION

In CBSE, the composition concept is central since it charac-
terizes the rules of assembly between components. However,
it is often considered too late in the application lifecycle. In
this context, we have presented an approach that focusses on
composition along all the development lifecycle. Our approach
uses both a UML metamodel introducing a new vertical
composition relationship devoted to components composition
and some composition properties formalized in OCL. We have
shown the feasibility of this approach by implementing a com-
position framework based on two tools: a UML profile for the
conceptual level and a composition deployment environment
for the software level. Both tools implement the composition
properties of the composition model as executable constraints.
They guarantee respect of these constraints by both the design
models and the final application.

Our work is consistent with the actual trends that give
more and more significance to models in the development of
applications. It implies the use of (semi-)graphical languages
in which the elements of notation have a precise meaning. In
this context, we worked to increase significantly the power of

expression of composition in UML and contributed to specify
its semantics, that is to say to constrain its syntax [11].

We are exploring two perspectives of these studies. The
first one consists of inserting into our approach the use of
the Fractal component model [5] which allows hierarchical
compositions. It is built on implicit properties among which
some are comparatively close to ours. On the other hand, we
are trying to automate our composition approach by using
models transformation principles. The idea is to generate from
the conceptual diagrams independent of any technological
support, the code skeleton of the application in the specific
composition environment.

REFERENCES

[1] High Confidence Software and Systems Coordinating Group,“High
confidence software and systems research needs,” Tech. Rep.,january
2001. [Online]. Available: http://www.ccic.gov/pubs/index.html

[2] J. Dong and S. Yang, “Towards Trusted Composition in Software
Design,” inProc. of the Eighth IEEE Int. Symposium on High Assurance
Systems Engineering (HASE’04), Tampa, USA, 2004.

[3] N. Belloir, J.-M. Bruel, and F. Barbier, “Whole-Part Relationships for
Software Component Combination,” inProceedings of the 29th Euromi-
cro Conference on Component-Based Software Engineering. IEEE
Computer Society Press, Sept. 2003, pp. 86–91.

[4] J. A. Stafford and K. Wallnau, “Component composition and in-
tegration,” in Building reliable component-based software systems,
I. Crnkovic and M. Larsson, Eds. Artech House Publishers, 2002,
pp. 179–191.

[5] E. Bruneton, T. Coupaye, and J. B. Stefani, “Recursive and dynamic
software composition with sharing,” inSeventh International Workshop
on Component-Oriented Programming (WCOP02), Malaga, June 2002.

[6] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Com-
posing Adaptive Software,”IEEE Transactions on Software Engineering,
vol. 37, no. 7, pp. 56–64, July 2004.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns :
Element of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[8] B. Meyer,Object-Oriented Software Construction. Prentice Hall, 1997.
[9] “Accord Project,” http://www.infres.enst.fr/projets/accord/.

[10] J. R. Kinitry, “Semantic Component Composition,” inProceedings of
the ACM SIGPLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE’02), Oct., 6-8 2002.

[11] D. Harel and B. Rumpe, “Meaningful Modeling : What’s the Semantics
of ”Semantics” ?”IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004.

[12] OMG, “Object Constraint Language Specification v.1.1,” Object Man-
agement Group,” OMG document, Sept. 1997.

[13] J. Cheesman and J. Daniels,UML Components – A Simple Process for
Specifying Component-Based Software. Addison-Wesley, 2001.

[14] D. Firesmith, B. Henderson-Sellers, and I. Graham,Open Modeling
Language - Reference Manual. Cambridge University Press, 1998.

[15] F. Barbier, B. Henderson-Sellers, A. L. Parc-Lacayrelle, and J.-M. Bruel,
“Formalization of the Whole-Part Relationship in the Unified Modeling
Language,”IEEE Transactions on Software Engineering, vol. 29, no. 5,
pp. 459–470, May 2003.

[16] C. Bock, “UML 2 Composition Model,”Journal of Object Technology,
vol. 3, no. 10, Oct. 2004.

[17] T. Weigert, “Uml 2.0 rfi response overview,”
http://www.omg.org/docs/ad/00-01-07.ppt, 1999.

[18] S. W. Ambler, “The official agile modeling site – the diagrams of uml
2,” Available at http://www.agilemodeling.com, 2003.

[19] J.-M. Bruel and I. Ober, “Uml 2.0 composition support,”Studia Journal,
vol. LI, no. 1, pp. 79–99, june 2006.

[20] OMG, “White Paper on the Profile mechanism - version 1.0,” Object
Management Group,” OMG document, Apr. 1999.

[21] Softeam, “Objecteering software,” Available at
http://www.objecteering.com/.

[22] S. Microsystems, “Java management extension,” Availableat
http://java.sun.com/products/JavaManagement/.

[23] J. Bézivin and O. Gerb́e, “Towards a Precise Definition of the
OMG/MDA Framework,” in Proceedings of the Conference on Au-
tomatonous Software Engineering (ASE’01), Nov. 2001.

