
Incorporation of test functionality into
software components

Franck Barbier, Nicolas Belloir and Jean-Michel Bruel

LIUPPA, Université de Pau et des Pays de l'Adour
BP1155, F-064013 Pau cedex, France

{barbier, belloir, bruel}@univ-pau.fr,
URL: http://liuppa.univ-pau.fr

Abstract. COTS components trustworthiness is a key issue to be ad-
dressed within the �eld of component-based software engineering. This
problem relies on the duality between development and deployment.
COTS components vendors may prove varied properties for their compo-
nents but purchasers may want to validate these properties in di�erent
execution environments. Built-In Test is thus the ability to endow compo-
nents with extra functionality in order to develop in-situ tests. This paper
stresses a Java library that supports Built-In Contract Testing. Complex
component behaviors are ruled and observed based on states and reactiv-
ity to client requests. A large component consisting in a Programmable
Thermostat illustrates the Built-In Contract Testing technology and the
o�ered Java library.

1 Introduction
Component-based software engineering (CBSE) is currently the most recom-
mended technique in terms of reuse and of reduction of development costs. The
development of applications in this context is based on the principle of composi-
tion of components interacting together. In particular, this composition is carried
out by connecting component interfaces that provide services, with clients re-
quiring these services. However, composition of components remains syntactical
and thus raises many problems. Among possible investigations, let us mention
semantic interoperability [1], composability [2], prediction of assembly behaviors
[3].

Experience shows that, whatever the level of certi�cation/quality of service
announced by a component, it is fundamental to give to its customers the possi-
bility of testing it in situation in its new environment (which is called �run-time
testing" in the remainder of this paper). In this context, it is necessary for a
component to be able to show that it behaves according to its speci�cation in
the �nal phase of development (contract testing), or in the phase of deployment
(quality of service testing). In this purpose, we have developed a Java library that
implements these principles. In order to attenuate component integration, we ad-
vocate a special design technique for COTS components based on complex state
machines (vendors side) and/or some customisation (users side) that adapts and

allows to plug a given COTS component into our library. One recurrent feature
of COTS components is the obstacle to access source code. In the Java context,
we thus use the re�ection capabilities of this language to permit dynamic access
at run-time to internal properties. Test protocols are especially written once for
all and greatly help the way COTS components may be acquired, assessed and
�nally (re)used.

We present in this article the main orientations of our approach, and we illus-
trate the use of our library. Thus, in section 2 we present the general context of
components testing. Our approach is illustrated by means of a concrete example
in section 3. Finally we conclude in section 4 and present some perspectives.

2 Component testing

As for electronic components, software components �are integrated" in software
architectures without modi�cation. In some extreme cases, components can even
be incorporated into applications at run-time (such as in CORBA platforms).
This kind of development results in increasing the importance of the assembling
and the validation phases compared to the implementation phase. The devel-
oper thus builds the tests that are suitable for unit testing. The customer, on
the other hand, generally does not test the component itself (it is supposed to be
validated, even certi�ed, by the supplier) [4]. It is nevertheless essential to test
its integration in real execution contexts (e.g., communication with other com-
ponents, appropriateness of interfaces, fault tolerance, conformance to speci�ed
behavior). Thus we are not actually and directly interested in testing a compo-
nent. We want to provide the component with a certain degree of functionality
allowing to assess its behavior in its deployment environment.

Previous works in the �eld of Built-In Test (BIT) rather deal with self-test
[5] (i.e., automatic triggering of tests), or with the improvement of tests set
de�nition [6]. Approaches close to ours is that in [7]. They de�ne the notion
of testable component that supports remote testing based on a generic testing
interface and an architectural model. We enhance such an approach in dealing
with the deep and detailed internal behavior of components within tests, allowing
contract and quality of service testing.

2.1 Built-In Contract Testing

We consider a COTS component as an aggregate of sub-components that are
implementations of several operations that it provides. In Java, such a compo-
nent is realized through a class that possesses �elds whose type is that of these
sub-components, recursively. Figure 1 describes the micro-architecture in which
an anonymous COTS component is connected with the prede�ned classes of our
library. A BIT component is built such that it �acquires" all of the properties
of �Component". In Figure 1, a UML dependency is used in order to defer the
choice of an adequate programming mechanism (inheritance is often useful). The
BIT testability contract interface, detailed in section 3, is a set of operations that

2

are systematically used within BIT test case, itself systematically used by BIT
tester. BIT test case is a Java class that has frozen test protocols, namely �ini-
tialize the test", establish �execution conditions", �get results and/or failures"
and ��nalize the test". Any BIT component may customize (i.e. override) these
basic actions in taking care, opportunistically, of the property values of �Compo-
nent". BIT tester allows to develop test scenarios: sequences, expected results,
aborting/completion policies, etc. A great bene�t of this approach is that most
of the test stu� is not dependent upon the speci�city of the evaluated COTS
component. For instance, competing components that may be bought in order
to satisfy very special requirements, can be compared based on the same test
framework. Moreover, the test stu� is actually built in �BIT component". BIT
component (instead of Component) may be deployed in order to measure the
quality of service at run-time. Notice however that in this case, one has to pay
attention to performance and resource burden: BIT component creates some
overload compared to Component. A drawback of our approach is that sub-
components are fully encapsulated entities, and as such, analysis and diagnoses
are di�cult to determine at a deep level of aggregation. We have thus extend
the library to cope with nested and concurrent states of components, in order
to supply a better access to the internal of a component.

Fig. 1. Dependencies in Built-In Contract Testing

2.2 State-based contract testing

Figure 2 shows an extended interface called State-based BIT testability contract
from which a BIT component can be linked to. The white arrows with dotted
line is the Java �implementation" relation between classes and interfaces. This
second way of running Built-In Contract Testing is more coercive in the sense

3

that a state machine is need for the tested COTS component. While such a
speci�cation is common in real-time systems for instance, one cannot always
expect that. Some reengineering work is thus sometimes required to extract a
behavioral speci�cation from an existing component.

Fig. 2. Extension of the BIT/J library for state-based contract testing

3 A concrete example of the BIT/J library usage

In order to show the applicability of the concepts presented above, we �rst
present a Programmable Thermostat component. Next, we discuss the construc-
tion of the corresponding BIT component, while insisting on a precise step-by-
step process.

3.1 The BIT/J library

Figure 3 is a complete overview of the BIT/J library. Built-In Test can �rst be
simply carried out by means of the three main elements named BIT testability
contract, BIT test case and BIT tester. In this case, BIT just copes with as-
sessment of computation results, execution environment and faults. In the more
complicated case, three equivalent state-oriented facilities are required: State-
based BIT testability contract, State-based BIT test case and State-based BIT
tester. Since these three last one use Harel's formalism called Statecharts [8], a
underlying sub-library (�Statecharts" package: top, left of Figure 3) is reused
(i.e. Statechart and Statechart monitor). BIT state and BIT state monitor are
contextual specializations of the sub-library in order to create a connection with

4

State-based BIT testability contract, State-based BIT test case and State-based
BIT tester.

Fig. 3. Architecture of the BIT/J library

3.2 The Programmable Thermostat Component

We give here the speci�cation of the interface provided by a Programmable Ther-
mostat component (see Figure 4). The operations in the interface are requested
by clients. They mask the inside of the Programmable Thermostat component.
Traditional testing is thus con�ned to activating operations while intermediate
hidden results, states and possible faults have to be known to assess deployement
compliance.

3.3 The BIT implementation of the Programmable Thermostat
Component

The realization of a BIT component and its evaluation occur within four phases.
The �rst one can have di�erent shapes according to the component nature:
whether it was derived �from scratch", i.e. conceived since the beginning as a BIT
component, or whether it was built from an existing component. Our method
�rst consists in linking the BIT part to the original component. The second step
consists in implementing the behavioral speci�cation in the BIT part. The third
step consists in providing an implementation for the interface relating to the
standard testability contracts. Lastly, at the time of the fourth step, a given
customer of the BIT component de�nes speci�c test cases handled by testers.

5

Fig. 4. Programmable Thermostat interface

Step 1 - linking the BIT part to the original component. There are
several ways for bounding a component to its BIT incarnation. Firstly, the BIT
part can inherit from the component. This method is interesting because it
allows to directly manipulate the component itself. Indeed, it is then possible,
for example, to have access to protected attributes and operations, in order
to setup the component in a particular state before execution of a speci�c test.
That also allows to directly describe its behavior in terms of its attribute values if
the component was initially designed to support the BIT technology. Secondly,
the component can be included as a particular �eld value in its BIT version.
The major advantage is encapsulation respect since the protected attributes and
operations are then not activable. In the remainder, we use the �rst approach.

Step 2 - Description of the behavior with a state machine. To describe
the component behavior, it must be speci�ed via a state machine that conforms
to Harel's formalism (Figure 5). Each state is an attribute of the BIT compo-
nent whose type is BIT_state (or Statechart). A unique special attribute is also
implemented within the BIT component whose type is BIT_state_monitor (or
Statechart_monitor). Below, we have the declaration of two states: Run and
Hold :

1 protected Statechart _Run;
2 protected Statechart _Hold;

6

3 //...
4 protected Statechart_monitor _Programmable_thermostat;

Fig. 5. An extract of the Programmable Thermostat state machine

Below, instantiation of simple states occurs. It is also possible to build com-
plex (i.e. nested) states, recursively. In order to connect them together, the and
(concurrency between states) and xor (common exclusiveness between states)
operators are used. As for nesting, it is managed through assignment (e.g. _Op-
erate is assigned with an expression mixing its sub-states).

1 // declaration of the state machine in the BIT component
2 _Run = new BIT_state("Run");
3 _Hold = new BIT_state("Hold");
4 //...

1 // complex BIT_state
2 _Operate=((_Run).xor(_Hold)).and(...)).name("Operate");

It is possible to associate an operation with an incoming (or an outgoing or an
internal) transition. This operation is then automatically triggered. These oper-
ations can be those of sub-components. This permits the correlation between the
BIT component states and the activation of sub-components. This also permits
the trace of execution paths in case of faults at a deep level of nesting.

1 // Automatic dynamic access to the "set_time" internal
2 // action through the "time_out" operation belonging
3 // to the BIT component's interface
4 _Operate = (((_Run)).name("Operate")).internalAction(
5 "time_out", this,"set_time",null);
6 //...

Once all of the states de�ned, the state machine of the BIT component must
be declared and instantiated:

7

1 // State machine
2 _Programmable_thermostat =
3 new BIT_state_monitor((_Operate).xor(_Setup)...);

Finally, the initial states of the state machine must be established. In our
example, the initial states are Hold and Current_date_and_time_displaying.

1 _Hold.inputState();
2 _Current_date_and_time_displaying.inputState();

Step 3 - De�nition of the testing interface. The BIT/J library pro-
vides general-purpose operations which may be overloaded to pay attention to
contextual phenomena (see �execution_condition()" for instance in Figure 2).
These operations are supported by two entities of the library. The �rst is the
BIT_testability_contract interface. It allows to develop traditional contracts. In
contrast, the is_in_state() and set_to_state() operations are members of the
State_based_BIT_testability_contract interface and rule the setup of states
before a test (see below), and the evaluation of target, expected or unexpected,
states after a test.

1 // In the BIT Component
2 public boolean Configuration_1() throws ... {
3 set_to_state("Hold");
4

5 // execution of the "set_clock()" operation
6 set_clock();
7 }

Step 4 - Instantiation and execution of the test case objects. The tester
instantiates a BIT component. Then, it can run the test sets that embody a
given policy. For that, it instantiates test cases (i.e. instances of BIT_test_case
and/or State_based_BIT_test_case) by specifying operations that have to be
run. The global test process relies on the test() operation and result/fault inter-
pretation depends upon the interpretation() operation. The code below shows
the realization of a test concerning the set_clock() Programmable Thermostat's
operation. The expected result is the arrival at the Setup state.

1 // bc is a BIT component
2 bc = new BIT_programmable_thermostat (temperature);
3

4 // Put the BIT component in a specific state before the test
5 bc.set_to_state("Hold");
6

8

7 // Definition of the test case. The third argument
8 // is the expected result
9 sbbtc1 = new State_based_BIT_test_case (bc, "set_clock",

10 null, null, "Setup");
11

12 // Execution of the test case
13 sbbtc1.test();
14

15 // Get the test case result
16 System.err.println("Interp: "+ sbbtc1.result());

Quality of service analysis. Below is an example of malfunctioning that the
BIT technology may help to detect. The Programmable Thermostat is designed
for automatically be forced in the Hold state if previously in Setup and no action
performed for 20 seconds. We simulate a defect by means of a undesired delay.
Di�erent computer operating systems may lead to di�erent results for speci�c
test.

1 /* Instantiation of the BIT component */
2 public boolean Configuration_2 () throws ... {
3

4 set_to_state("Setup");
5

6 /* Starting of a timer for 20 s */
7 try {
8 Thread.sleep(20000);
9 } catch(Exception e){...}

10

11 /* Test if the BIT component is in the Hold State */
12 if (is_in_state("Hold"))...
13 else...
14 }

4 Conclusion
Individual comprehensive behaviors of COTS components often remain buried
within their hidden part. Formal behavioral speci�cations is a �rst step to make
trustworthiness e�ective but is insu�cient. Built-In Test is another step to create
con�dence. Vendors may equip their COTS components with test stu� in order
to run it online, especially within unknown (at development time) execution
environments. We enhance in this paper Meyer's �design by contract" idea in
allowing �rst the description of assertions (pre-conditions, post-conditions and
invariants) based on complex nested, and sometimes concurrent, states of com-
ponents that largely hinge on sub-components. Next, we ground our approach on

9

Java re�ection capabilities that ensure that test protocols are written once and
for all. In such a context, properties of components are dynamically accessed at
run-time. Test stu� is launched within test case objects subject to interfaces em-
bodying testability contracts, are implemented by BIT components. They are in
fact two ways for working: either vendors adhere to our component design tech-
nique or purchasers need to build BIT components from ordinary components.
In the �rst case, providers add value to their COTS components by delivering
customizable testing functionality. In the second case, components have to be
adapted in order to be plugged into the BIT/J library. Limited to the Java world,
our approach is however a concrete support for the notion of Built-In Test that
has been de�ned more theoretically in some other papers. The Programmable
Thermostat component is in this respect, a representative example. We measure
for instance the timer event quality of service that may greatly vary from an
environment to another one. Finally, we also supply a step-by-step component
design process that is based on rationality. The most signi�cant perspective is
nowadays the submersion of the BIT/J library in the JMX (Java Management
eXtensions) framework. BIT components may thus be evaluated through Web
browsers. We intend in a near future to develop remote testing as part of a
project that intends to o�er component acquirement facilities on the Web.

References
1. Heiler, S.: Semantic Interoperability. ACM Computing Surveys 27 (1995) 271�273
2. Meijler, T.D., Nierstrasz, O.: Beyond Objects: Components. In: Cooperative Infor-

mation Systems � Trends and Directions. Academic Press, San Diego, CA (1998)
49�78

3. Crnkovic, I., Schmidt, H., Sta�ord, J., Wallnau, K.: Anatomy of a Research Project
in Predictable Assembly. Fifth ICSE Workshop on Component-Based Software
Engineering - White paper (2002)

4. Harrold, M.J.: Testing: A Roadmap. In: ICSE - Future of SE Track. (2000) 61�72
5. Wang, Y., King, G., Patel, D., Court, I., Staples, G., Ross, M., Patel, S.: On Built-

in Test and Reuse in Object-Oriented Programming. ACM Software Engineering
Notes 23 (1998) 60�64

6. Jézéquel, J.M., Deveaux, D., Le Traon, Y.: Reliable Objects : Lightweight Testing
for OO Languages. IEEE Software 18 (2001) 76�83

7. Gao, J., Gupta, K., Gupta, S., Shim, S.: On Building Testable Software Components.
In: Proceedings of First International Conference on COTS-Based Software Systems,
ICCBSS 2002. Lecture Notes in Computer Science 2255, Orlando, FL, USA, Springer
LNCS (February 4-6, 2002) 108�121

8. Harel, D.: Statecharts : a visual formalism for complex systems. Science of Computer
Programming 8 (1987) 231�274

10

