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Abstract

Component Based Software Engineering is a good re-
sponse to actual systems needs: flexibility and adaptability.
In this context, design techniques based on software com-
position and verification techniques proving that the design
properties are well implemented, are current and actively
studied problematics. In this paper we present a composi-
tion design technique based on a formally defined theory:
the whole-part relationship. We show, with an in-house
verification framework, how to verify an implementation of
composition properties. We illustrate our approach with a
case study.

1. Introduction

Our research group is dealing more specifically with
one of the limitations of the current approaches supporting
component-based software engineering (CBSE): the fact
that software composition is mainly treated at assembly-
time only (running components). This limitation is partic-
ularly sensible for adaptability concerns, which is difficult
to achieve when dependencies between components are not
formally specified. These adaptations, and hence the con-
cerns focussing on dependencies, are necessary for a cor-
rect components integration. One must determine the prop-
erties of the assemblies through component compatibility
at deployment time in particular [16]. To summarize, as
it has been pointed out by numbers of reports [1, 15] or re-
cent CBSE workshops [5], components are not enough con-
ceived to take into account their composability, reusability,
and hence flexibility. Our focus is then not on the com-
ponents themselves, but on their composition, and more
specifically, on their composition expressed as soon as pos-
sible in the development process. We are using a Platform
Independent Model (PIM) approach following the current
directions promoted by the OMG [10]. We then consider

components at the modeling level. Our modeling approach
is based on the recently adopted UML 2.0 notation [11],
which has made significant progress in component support
[18]. Unfortunately improvements have only been made on
the notation itself [6].

We are working on an approach [3] based on an overall
theory: the whole-part relationship (WPR). This theoreti-
cal framework is used to specify the software composition
at design level and to constraint the component-based im-
plementations. It is based on the formal definition of the
properties of this relationship. The composition can then
be specified by selecting one or more of these properties.
In this article we will describe how to concretely use such a
framework and we will detail the associated implementation
environment we have developed. This environment allows
us to easily implement compositions by a dedicated support
of the possible properties we have defined. It is also possi-
ble to check, especially at run-time, the assembly properties
of the components. We will illustrate its use through a case
study consisting of a CoffeeMachine, composed of two sub-
components, a Coiner and a DrinkMaker.

The paper is organized as follows: in section 2 we will
make a short recall of our proposal, in section 3 we will
describe our implementation environment, in section 4 we
will illustrate its use by a case study and we will conclude in
section 5 about the benefits and the ongoing developments
of our approach.

2. Overall description of the approach

Our approach aims at improving the development of
assemblies of components. Our composition approach is
based on a reflexive compositional hierarchy: the WPR. In
this approach, any composition is seen as a high-level com-
ponent (Whole) composed of subcomponents (Parts). This
Whole component is based on the services of its Part com-
ponents, and itself provides more elaborated services. This
idea is close to those adopted by the recent WCOP work-



shop [5] in which it is for example concluded: ”In fact, one
can think of a component-based system as a triangle. At the
top node a component-based system consists only of one
component that actually represents the whole architecture
of the corresponding application. A zoom operation can
then be used to decompose the application ”. This approach
has also some similarities with the Composite design pattern
[9]. It is different, however, in the sense that we are more
interested in the formalization of the properties of the com-
position relationship than in applying a pattern to a defined
design. Some other approaches aim at the formal defini-
tion of composition, such as, for example, those using the
B language [12]. Nevertheless these approaches often re-
quire from the designers some knowledge and skills in the
use of formal notations. Our goal is to provide well defined
properties, hiding in a sense the complexity of the formal
definition.

2.1. The Whole-Part Relationship

Our theoretical framework is based on an adaptation to
CBSE of a formalization of the WPR [2]. We have ex-
tended the semantic properties of the WPR by adapting its
formal base to software composition. We have determined
which properties to apply to component composition and
defined formally these properties. We ground our approach
on metamodeling and assertions in order to constrain the
specification of composition relationships. Constraints are
added to components at implementation time via generated
contracts [3].

Dependency variations between a Whole and its Parts
may be expressed through the choice of a precise set of
basic characteristics. Some of them are always present in
a WPR and some are optional. We then split these prop-
erties into two categories: primary properties (properties
that a WPR must always respect) and secondary properties
(properties that specialize a WPR in specific subtypes). The
primary properties are the properties which a relation must
possess in order to be qualified as a WPR: binary nature of
the relation, asymmetry at component level, anti-symmetry
at instances level, existence of at least an emergent prop-
erty and of a resulting property. The secondary properties
are the properties which characterize the type of WPR: en-
capsulation, lifetime dependency, transitivity, shareability,
separability, mutability, and existential dependency.

Applied in the context of CBSE, some WPR primary
properties can be regarded as heuristics only (this is the case
for the resulting and emergent properties). The precise se-
lection of secondary properties of the composition link be-
tween two components helps for example to apprehend the
definition of the behavior of the assembly of components.
This is an important feature for the community [5].

2.2. Composition properties

In this section we describe the secondary properties and
discuss the impact of their selection on a composition.

WholePart
�binary�
�instance-asymmetry�
�component-antisymmetry�

Aggregation
�shareability�
�separability�
�mutability�

Composition
�unsharing�
�encapsulation�
�life-time dependency (5th case)�
�immutability�
�unseparability�
�non-transitivity�

Figure 1. Whole-Part subtypes examples

Encapsulation A component A is encapsulated into a
component B when only B can access its services. This
implies that: (i) A cannot be part of another component,
and (ii) A do not have any relationship of any kind with any
component outside of B.

Shareability This property allows a component to be part
of several wholes. It can be considered at a local level (a
part shared among same kinds of wholes – same WPR) or a
global level (a part shared among different kinds of wholes
– different WPRs). The reverse of local shareability is local
exclusion. The reverse of total shareability is total exclu-
sion.

Separability and mutability Separability allows a com-
ponent to be separated from its whole. This property can
cause confusion because of its lack of distinction with,
in particular, the life-time dependency. This is why we
strongly link this property with the one of mutability. The
mutability is the property which makes it possible to mod-
ify the number and/or the identity of the part components
of a whole. By opposition, immutability implies that the set
of part components of a whole is same throughout its life
cycle. It has been formally established that immutability ⇒

inseparability and that separability ⇒ mutability.

Life-time Dependencies There are nine cases of life-time
dependency (between a whole and a part). These nine cases
correspond to the combination of ”before/after/same-time”
characteristic with the ”birth/death” one. Among them, the



existential dependency is of particular interest, i.e., the co-
incidence of birth and of death of the two elements. In this
case, the property is directly related to the mutability and
separability ones. Indeed, in order to have an existential de-
pendency, it is necessary that the immutability property is
selected and thus as well the inseparability one.

Transitivity If a whole component A is composed of a
part component B, itself composed of a part component C,
the transitivity property consists in making possible that A
directly access to C services without going through the B
interface.

2.3. Secondary properties: relations and combina-
tions

We have mentioned that certain properties have strong
relations between them. It is not our aim to be exhaustive in
this paper by describing all these interactions, but we give
some examples of them as an illustration of the need of a
development environment that support such definitions.

The existential dependency property, for example, is
strongly dependent with the one of immutability/insepara-
bility. The property of encapsulation is also illustrative. In
our approach, we consider the software composition as a
vertical one, i.e., we consider any composition as a WPR:
a whole component is composed of part components. The
latter play the role of service supplier for the whole compo-
nent. Hence, when the encapsulation property is specified,
it implies for the component to be non-shareable locally and
globally, since it can provide its services only to its whole
component. In the same way, if a subcomponent is not
shareable and if its whole component is itself a part com-
ponent of a third component, then this last will not be able
to use directly the services of the first. The non-transitivity
property is then implicit. These examples illustrate the im-
portance of the interactions between secondary properties.
These interactions make possible to define several subtypes
of the WPR (the one that often occur in CBSE). For exam-
ple (see Figure 1), a relation for which the shareability, sep-
arability and mutability properties have been selected will
characterize a WPR subtype which is commonly known
as aggregation (especially for UML users). Another re-
lation possessing the non-shareability, encapsulation, ex-
istential dependency, immutability, inseparability and non-
transitivity will characterize the subtype called composition.
We have so far deeply studied only these two subtypes since
they are already treated in UML. We currently work at the
characterization of other subtypes of WPR, and at the full
study of properties interactions. This study is important: (i)
to avoid contradictory set of properties, and (ii) to define
dependencies between properties.

2.4. Discussions

The main benefit of our approach is the ability to add
some precisely-defined properties on the composition rela-
tion. It is a significant improvement which has not been
incorporated in the last version of the UML notation, which
only treat syntactical aspects of composition. It is possible
in our approach to specify constraints on the composition
itself. It makes possible to consider interactions between
components during the modeling phase, early in the life-
cycle.

Providing the theoretical framework is not enough. In
order to be useful, this framework needs to be supported in
some way. A modeling support should allow the expression
of the composition properties, and a development support
should allow to check and verify the expected properties
in a developed system. We are currently experimenting two
approaches for this purposes. In an a priori approach, based
on the definition of a UML 2.0 metamodel, we make it pos-
sible to check the soundness of model before final compo-
nent integration. In a a posteriori approach, we provide
a development environment for component assemblies that
supports our approach. The metamodeling effort is not pre-
sented in this paper. In the next sections, we introduce the
environment, and we illustrate the concepts presented so far
in a concrete case study.

Figure 2. Simplified JMX architecture

3. A verification environment

We now introduce a verification environment based on
the WPR. Our environment constrains the assembly of soft-
ware components, according to the intrinsic properties of
the WPR that we have previously defined. We then show
how its use on a concrete case study (a coffee machine) can
reveal inconsistencies during components assembly.

Our environment uses the JMX (Java Management eX-
tensions) technology [17]. This library allows the man-



agement of Java components, called MBeans (Managed
Beans). Each MBean is referenced within a server by a
unique name, its object name. MBeans can communicate
through the MBean server thanks to their object names.
Each MBean has a management interface in which it ex-
poses the attributes and the methods which will be made
accessible to the other MBeans. Another benefit from this
environment is that a Web browser can be connected to the
MBean server: the server generates HTML pages to man-
age the MBeans by accessing their management interface.
Figure 2 depicts this architecture and Figure 3 is an example
of the manipulation interface. This manipulation interface
is completely generated by JMX. We consider this manage-
ment interface as an example of configuration interface as
introduced in [4].

Figure 3. Simple Relation

JMX offers an optional, but very interesting, relation ser-
vice. We have used this service to build an implementation
environment. This service allows us to create and to manage
relations between components (encapsulated as MBeans).
It is used to constrain their consistency (e.g., respect of the
specified cardinality). These relations are simple n-ary as-
sociations between MBeans in named roles.

The WPR implementation we have realized has been ini-
tiated in [8]. It is based on a JMX relation. The properties
of WPR are fulfilled by using both the capabilities of the
JMX server and its relation service. For instance, the binary
nature of the relation between the Whole component and
its Part component is ensured by a JMX relation type com-
posed of a Whole role and a Part role, and the antisymmetry
at component level of the relation is checked by an algo-
rithm we have developed which looks through the relation
types that are already registered in the relation service.

The architecture of our environment is designed in such
a way that one may quickly and easily implement WPR sub-
types. We illustrate this process using the two subtypes de-
fined in UML: aggregation and composition. In Figure 1,

we have illustrated how aggregation and composition rela-
tions can be seen as WPR subtypes. The WholePart relation
embodies the primary WPR properties and the secondary
properties are embodied into Aggregation and Composition.

In our environment, we have defined a WholePart ab-
stract class which implements all the properties of WPR,
i.e., primary and secondary ones, and a marker interface
for each secondary property. Then to create a new WPR
subtype, we extend the WholePart abstract class (so the re-
lation inherits the primary properties) and we only use the
marker interfaces corresponding to the secondary properties
we want to activate. For the composition and aggregation,
this is simply expressed in the following code:

Figure 4. Mutable & Separable Relation

1 public interface CompositionMBean extends
2 Encapsulation,
3 LifetimeDependency {
4 }

1 public class Composition
2 extends WholePart
3 implements CompositionMBean {
4 public Composition(...) throws JMException {
5 super(...);
6 }
7 }

1 public interface AggregationMBean
2 extends Shareability,
3 Separability,
4 Mutability {
5 }

1 public class Aggregation
2 extends WholePart
3 implements AggregationMBean {
4 public Aggregation(...) throws JMException {
5 super(...);
6 }
7 }



There is no need for additional code. Only the parame-
ters of the constructors are omitted for readability purposes.
Besides its use for a posteriori verification, this technique
offers a great flexibility in building WPR subtypes and gives
us a simple way to experiment new relations. So we can
practically figure out what are the suitable combinations
of properties for software composition, and then define the
corresponding WPR subtypes.

Another important aspect of our approach is the com-
plete separation between the component code itself from
the composition code. In fact, the composition code is com-
pletely supported by our tool. When properties have been
set, our environment ensures the respect of the composition
properties. Figure 3 was an illustration of the manipula-
tion interface where the specified properties had no addi-
tional operation needed. If we consider another example,
where the mutability and the separability properties are set
for a relation, the tool automatically add in the interface the
required operations to change (mutability) and to remove
(separability) a component from this relation. In Figure 4,
we can see that these properties have been set and that the
corresponding relation Web page exposes the necessary but-
tons to invoke these operations.

4. Implementation in a case study

�interface�
GUIComplexCoffeeMachine

�component�
ComplexCoffeeMachine

�component�
Login

�component�
CoffeeMachine

Figure 5. A concrete case study

In this section, we present our case study, then we show
the use of our method in this particular case study at mod-
eling level first and at verification level next.

4.1. Introducing our case study

Our case study consists of a drink dispenser system de-
composed in three complex components: a ComplexCof-
feeMachine component, a Login component and a Cof-
feeMachine component (see Figure 5). We will only focus

�component�
CoffeeMachine

�component�
Coiner

�component�
DrinkMaker

Figure 6. CoffeeMachine details

here on the CoffeeMachine. This component is in charge of
managing payments, making and delivering drinks. In our
approach, this is a Whole component. We depict it, using
the UML 2.0 formalism [11], as a PackagingComponent. It
has two subcomponents (or Part components) shaped into
BasicComponents: a component for receiving and giving
change, named Coiner, and a component for preparing and
delivering drinks, named DrinkMaker (see Figure 6).

4.2. Use of the WPR properties for the system design

The DrinkMaker subcomponent is specific to the Cof-
feeMachine component. It has no other use in the sys-
tem. Thus, we have specified that only the CoffeeMachine
can gain access to it. Then DrinkMaker is encapsulated in
its Whole component, CoffeeMachine. To ensure this re-
stricted access, this relationship holds the global and local
exclusion property since the DrinkMaker can be owned by
only one CoffeeMachine. To ensure the continuity of the
service, the subcomponent must permanently exist. It must
not be separable from its Whole and consequently, it also
must not be mutable and it is existentially dependent on its
Whole.

The case of the Coiner subcomponent is different. In-
deed, in our case study, the CoffeeMachine component is
coupled with a graphical interface and a mechanism of elec-
tronic wallet. The regular users of the coffee machine can
deposit virtual money using the coiner interface of the cof-
fee machine. The electronic wallet is not presented here but
it has to use the same Coiner component used by the Cof-
feeMachine component. So this component must be shared
and it must not be encapsulated into its Whole component:
this is the global sharing property. However, the CoffeeMa-
chine component must existentially depend on the Coiner
since we do not want it to be destroyed and let free access
to the CoffeeMachine.

4.3. Verification

We have developed, for our case study, a Java imple-
mentation using our environment. It has been then possible



Figure 7. Lifetime dependency verification

to check the consistency of the properties that we have al-
ready defined in the previous section and which are held by
the relations between the system components. Depending
on the nature of the properties, the environment performs a
positive or negative verification: either the environment en-
sures itself the property to the relation, in this case we are
sure that the property holds, or it checks that the property
is consistent with the already defined relations and ban this
relation if an inconsistency is detected. We will show an
example of both possibilities.

Firstly, in our case study, the CoffeeMachine component
is in lifetime dependency with the Coiner and DrinkMaker
components. Thus, as an example, the destruction of the
Coiner component entails the destruction of the CoffeeMa-
chine component which in its turn entails the destruction of
the DrinkMaker component. This is an example of posi-
tive verification. Figure 7 depicts this situation. In (a), the
three components are manageable through the Web inter-
face. Once the Coiner component is selected, it is removed
in (b), which is validated by JMX in (c). Then, none of the
three components are manageable any longer through the
Web interface in (d).

Secondly, we have specified that the DrinkMaker com-
ponent is in exclusive relation with the CoffeeMachine com-
ponent. Thus, this relation is not shareable (i.e. global and
local exclusion). For instance, another component which

has the same type as the CoffeeMachine should not be in
relationship with the DrinkMaker component. Figure 8 de-
picts this situation where the violation of the property noti-
fied in (c) prevents the DrinkMaker to be bound to another
CoffeeMachine component.

5. Conclusion and future works

We have presented in this paper a modeling approach
aiming to improve CBSE, and more precisely composition.
The basic idea is to express a composition as a particular
case of whole-part relationship. We have shown, using a
set of well-defined properties, how we can specify the se-
mantics of software composition. We have then detailed a
tool, based on an existing Java library, that allows us to de-
fine, and later to check, the properties of a composition. We
illustrated our approach using a particular case study.

The work presented in this paper is integrated in an over-
all project aiming at the definition of a complete environ-
ment for development of component-based systems, from
the modelization, to the test of assemblies of components.
The modeling support presented in this paper is not cur-
rently supported by any UML tool. We are currently defin-
ing a UML profile implementing our properties definitions.
This profile will be integrated into a UML tools. We are
currently exploring two possible supports, a public domain



Figure 8. Shareability verification

one, SMW [13], and a commercial one, Objecteering [14].
As we have illustrated, the lack of effective and CBSE-

dedicated support (in terms of modeling) is one of the main
obstacle to the massive use of software components, and
in particular of Commercial Off-The-Shelf (COTS) com-
ponents. We have started a three years project aiming at
the definition of such a dedicated support. The main goal
of this project is the definition of a Component Modeling
Language (CML). Based on the general modeling notation
UML, and incorporated specific concepts such as those pro-
vided by Architecture Description Languages (ADLs), this
project enables us to federate our efforts around compos-
ability (like those described in this paper) and those around
behavior prediction (and more precisely extra-functional
properties prediction) of assemblies of components [7].
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