
The new UML 2.0 Component Model: Critical View

Jean-Michel Bruel
LIUPPA, University of Pau
64013 Pau CEDEX, France

Jean-Michel.Bruel@univ-pau.fr

Ileana Ober
VERIMAG

Grenoble, France
ileana.ober@imag.fr

1 Introduction

At the time we write this paper, when you type

“Component Modeling Language” in a web-search
engine, not only you do not find so many links, but you
find among the first ones a link to the Rational Rose
web page. Looking through this page, and also through
the recently adopted U2-partners proposal [4] for the
upcoming 2.0 version of the UML, it seems that UML
2.0 aims to be, among other things, a Component
Modeling Language (CML). It is not the aim of this
short article to fully explore the requirements for a
potential CML (see [3] or [1] for ongoing researches on
this topic), but indeed, most people do not use UML in
its current status (1.x [5]) for modeling components. It
is true that the current version of the standard is very
limited in terms of component modeling abilities, as it
basically supported only physical components. In this
paper we are going to give an overview of the UML
new support for components, highlighting mainly the
improvements and new concepts recently adopted.

2 UML 2.0 component model: critical
view

Reusability and architecture representation have

been the key concerns in the definition of the new UML
version. The component model itself has been
improved, the overall concept of composition has been
integrated, and even at the class level. For details on
this section, see the full specification [4].

2.1 Overview

UML 2.0 provides support for decomposition

through the new notion of structured classifiers
(in this paper we use verdana bold font to
highlight the new UML 2.0 concepts). A structured
classifiers is something that can be internally
decomposed (Classes, Collaboration, and Components).
In addition, some new constructs to support
decomposition have been introduced: Part,
Connectors, and Ports. It supports the specification
of physical components such as in UML 1.X (e.g., EJB,
CORBA, COM+ and .NET components), but also
logical components (e.g., business components, process

components) as well as deployed components (such as
artifacts and nodes). A component is viewed as a “self
contained unit that encapsulates state + behavior of a
set of classifiers”. It may have its own behavior
specification and specifies a contract of
provided/required services, through the definition of
ports. It is hence a substitutable unit that can be
replaced as long as port definitions do not change.
Notice that the notion of “change” here is not defined
and has to be taken at a syntactical level only.

Fig. 1 – Example of a composite structure

2.2 New constructs

Three new constructs are part of the component

model. Note that those constructs can be used together
with any composite diagram. These new concepts are:
- Part: something that is internal to a composite

structure. Notice that, as illustrated in the Fig. 1,
instances (of a class) and parts have similar notations.
Parts have to be seen as roles, and instance are the
realization that satisfy these roles.

- Connector: expresses the relationship between
parts. It is a link (an instance of association) that
enables communication between two or more
instances. It may be realized by pointer, network
connection, etc.

- Port: the connection point via which messages are
sent to/received by a class (or a component). Ports
have type which is given by a set of interfaces
(provided and required), and can be described with a
state machine.

The notion of interface has not changed, it
represents a signature given in terms of a set of public
features (operations, attributes, signals). However the
interface use was extended, a classifier may implement
or require an interface. The graphical notation of a

classifier with interface has evolved to cover this
extension. In Fig. 2, we have a component with a
required (NetworkServices) and an implemented
interface (EstablishCall).

Phone

 NetworkServices

 EstablishCall

<<component>>

Fig. 2 – Notation for component with
interfaces

Interfaces can be attached to ports. A required

interface attached to a port characterizes the
behavioral features that the owning classifier expects
from its environment via the given port, while a
provided interface attached to a port characterizes
the behavioral features offered by the owning classifier
via the given port. Note the distinction between a port
and an interface: an interface specifies a service
offered/required by a classifier, while a port specifies
the services offered/ required by the classifier via that
particular interaction point (port). It is possible to
attach to a port or to an interface, a protocol state
machine that allows the definition of a more precise
external view by making dynamic constraints on the
sequence of operation calls and signal exchanges
explicit. The protocol state machine of a port (if
present) shall be compatible with the protocol state
machines of all interfaces attached to it. However, this
“compatibility” is not define in the proposal. In
addition, there is no evidence nor heuristic in the
proposal on the difference of attaching the protocol
state machine to an interface or to a port.

2.3 Component Diagrams

In UML 1.x, component diagrams offer support for

physical components only. Now, not only they integrate
logical components, but they also support component-
based software engineering (CBSE). Components
models can be viewed under two views:
- An external one, corresponding to the usual “black

box” view, describing the contracts of the component
with its environment in terms of provided and
required services;

- An internal view, hidden from the clients,
corresponding to the classical “white box” view
describing how the component is organized in terms
of parts, sub-components, connectors, etc.

There is two specific connectors for components:
- an assembly connector is the link between a

required (socket) and a provided (ball) interfaces.
It is one way to wire components together (the
other way is to use dependencies as in UML 1.x);

- a delegation connector is the same idea but
from an internal point of view: an arrow indicate
the delegation direction.

2.4 Support for composition

New constructs and new approaches have been

introduced in UML 2.0 with direct impact on the
support for composition. To describe the links between
a composite and its sub-components, UML 2.0 uses the
notion of nested components. As we have shown,
the internal structure of a component can be described
by a component diagram. In fact, despite the
added/modified notations for components constructs,
the main change, or the one that is going to have the
more impact on the ongoing researches (such as ours
[2]) is the introduction of the CompositeStructures first
class element, and at a lower level the new distinction
of required interface. Components communicate
together via messages going through their ports, using
the same idea as processes in SDL or capsules in
ROOM. Note that components can also communicate
directly point to point, using the same idea as in usual
component models such as CCM.

3 Conclusion

We have presented in this short paper the improved

notation of the new UML 2.0 specification that could
benefit to CBSE. Going briefly through the introduced
concepts and changes, we have highlighted that it was
mainly a change at the syntactical level only. These
improvements, already existing in some approach will
be useful for component modeling as long as this
modeling is used for documentation only. As soon as
some more rigorous development strengths will be
needed (validation purposes, etc.) UML 2.0 users will
still encounter the same lack of well-defined semantic
problems, in which UML 2.0 has failed to bring them
concrete answers.

4 References

 [1] ARTIST, Project IST-2001-34820, Component based
Design and Integration Platforms : Roadmap. Available at
http://www.artist-embedded.org.

[2] Nicolas Belloir, Jean-Michel Bruel and Franck Barbier,
Whole-Part Relationships for Software Component
Combination. Proceedings of the 29th Euromicro Conf. on
CBSE Belek, Turkey, 2003. To be published.

[3] Jean-Michel Bruel, CML – Component Modeling
Language : un langage de composition pour composants
logiciels. Projet d’Action Concertée Incitative 2003.

[4] http://www.u2-partners.org/uml2-proposals.htm
[5] Object Management Group, UML Specification, version

1.4, http://www.omg.org, 2001.

