
Component Behavior Prediction and Monitoring through Built-In Test

Franck Barbier
LIUPPA, Université de Pau

BP 1155
64013 Pau CEDEX, France
Franck.Barbier@univ-pau.fr

Nicolas Belloir
LIUPPA, Université de Pau

BP 1155
64013 Pau CEDEX, France
Nicolas.Belloir@univ-pau.fr

Abstract

Real-time systems or safety-critical applications
require high-confidence software components.
Component behavior prediction refers to the ability to
check, even certify, component specification conformance
at development time. Complementarily, odd and varied
execution contexts linked to the idea of deployment
impose extra checking when components are deployed.
This paper on purpose proposes incorporation of test into
components. Components that own states and complex
dependencies between these states, are methodically
specified in using UML Statechart Diagrams. Code is
next derived in order to verify at development time
component functioning in relation to specification. At
deployment time, facilities are offered for (re-)configuring
components to carefully fit specific runtime environments.
Built-In Test (BIT) material may thus be optionally
generated in components to capture execution conditions
and to make possible component behavior adjustments.
All of these principles are powered by means of the BIT/J
dedicated Java library that is presented and illustrated in
the paper.

1. Introduction

Components trustworthiness is a key issue to be
addressed in the field of component-based software
engineering. This expectation relies on the well-known
dichotomy between development and deployment [1].
Using formal verification & validation techniques for
components and assemblies, supposes however the
existence of mathematical specifications of component
system behaviors. Precise models of execution
environments are also needed. Unfortunately, such
models are hard to construct or to find.

In contrast, built-in test singles out empirical checking
of components in the sense that test material may be
customized, deployed, as well as ruled at runtime. Built-
In contract testing is a specialized approach in which
component states and their complex relationships play an
important role in contract expressions [2]. Moreover,

monitoring test code cannot be ignored since critical
“normal” behavior phases cannot tolerate concurrent test
execution [3].

We discuss in this paper a framework that includes a
library used for endowing components with built-in test
code. To that extent, Section 2 exposes the general idea
and principles of built-in test while Section 3 precisely
states how built-in contract testing can be exercised.
Section 4 closes the paper in coping with an example that
shows how the BIT/J Java library supports BIT.

2. Built-In Test

Built-In test is defined by Binder in [4] as follows:
“Built-in test refers to code added to an application that
checks the application at runtime.” This idea is not new in
electronics for instance. Built-In Self-Test or BIST
concerns electronic components that may be individually
tested in an automated way. Regarding software, Binder
also notices that assertion checking is a straightforward
support for BIT. Assertions in the Eiffel programming
language [5] is a reputable native mechanism to
incorporate invariants, pre-conditions and post-conditions
into code. This leads to the expression: “design by
contract”. Other advanced and dedicated assertion
languages exist, as for instance the Sugar language [6].

2.1. Built-In Testing Technique

We propose in this paper an enhanced approach
developed within the Component+ European project
(www.component-plus.org). We initially observe that
assertions are essentially based on class/component
instance states. For an object like a stack for instance, a
pre-condition (i.e. a contract) to “pop” is “not empty”.
However, components are in most cases not fine-grained
software entities, but sizeable elements that own
numerous states, as well as complex dependencies
between them (e.g. concurrency, nesting, elaborate event
processing). Moreover, components have a required
interface [7] that corresponds to what is required by the
component in order to properly function. States of
components are thus partially composed of those of their



subparts, i.e. subcomponents that are fully encapsulated
(i.e. unshared) and play a significant role in the
implementation of the wholes they belong to. In other
words, wholes are components that are visible by clients.
Client components ground their requests on the provided
interface of wholes that may delegate jobs to subparts.

Success (i.e. contract respect) thus hinges on accurate
behavior phases or instants that together relate to wholes
and parts [8]. In this scope, at development time,
contracts are expressed via state combination based on
appropriate operators (and for instance meaning
concurrency). We thus have built-in test to predict
component behavior, as well as assembly behavior.
Contracts may indeed be violated in certain assembly
patterns while they may work in other circumstances.
Hissam et al. in [9] discuss prediction capability design
via the expression: “prediction-enabled component
technology”.

At deployment time, contracts are a priori removed
from components in software releases because of realism.
Test code first causes overheads: memory overload in
embedded systems for instance. Next, test code execution
cannot occur at any time and therefore, must be
monitored to work consistently and concomitantly with
“functional” (a.k.a. “normal”) code. However, contracts
may be certified in given environments while they may
fail in others. Furthermore, contracts cannot be only based
on states but have to take into account execution
conditions that change from one operating environment to
another one.

The built-in testing technique proposed in this paper
tries to go beyond these limits. Apart from hard
performance constraints, we keep contracts in
components. We also monitor (i.e. trace, diagnose and
possibly assess/measure) component behavior through
built-in test. We call that Quality of Service (QoS) testing
in the rest of the paper. Figure 1 sketches the overall spirit
of our approach.

In our view, contract testing thus investigates whether
a component deployed within a new runtime environment
is likely to be able to deliver the services it is contracted
to deliver. The approach essentially makes some well-
defined states of the component accessible to clients of a
component. This allows a client component to place an
acquired component into a defined state, to invoke one or
more of its services, and then to verify that the correct
result and state are reached before accepting the
component as “correct”. Such contract tests are typically
performed when a system of components is (re)-
configured, and usually occur infrequently at one or two
well defined instants during a system’s running lifetime.

Component A Component B

Contract Testing 

Operating Environment 

Quality of Service 
Testing 

Figure 1. Contract Testing versus QoS Testing
QoS testing concentrates on continuous verification of

component/assembly behavior while it is fulfilling its
normal obligations. Two main categories of errors are
considered: those arising from residual defects within a
component, and those arising from erroneous component
interactions which may lead to system level failures.
Some of these situations can be detected within the
component. In these cases, the component is instrumented
with internal test code which offers continual verification,
and supplies special entry points which allow external
entities to invoke and control the tests. In other cases,
such as process deadlock, the error cannot be identified
within a single component but depends on a combination
of components. To cover these situations, the component
also offers interfaces through which “inaccessible”
information can be extracted. This information is used by
external entities for test purposes. We emphasize contract
testing in this paper. QoS testing is detailed in [10].

2.2. Built-In Testing Process

Built-In Test is an early concern in the software
development process compared to “traditional” test. As it
happens, recent utilizations and observations in the
Component+ project show that components aim to be
equipped with BIT code as soon as they are constructed.
As such, their specification has to be done accordingly.
As shown later, components without accurate
specifications may however become BIT components in
the scope of the BIT/J library and Java. More precisely,
we use the Java reflection support (java.lang.reflect
package) that favors component introspection. Formal
specifications based on state machines remain however a
more powerful way of running BIT.

Thus, in the design phase of the development process,
thoughts on how BIT components interact together lead to
view software architectures differently. Moreover, tester
components are not parts of applications. Hence, we have
also to pay great attention to how to separate the normal
application and the testing one while perfectly ensuring
their mutual collaboration. This problem is going to be
solved through the use of a Java standard relating to
distributed component and application management
(Section 4.2).



Finally, we may note that BIT greatly facilitates by
anticipation component integration problems. From recent
experience, we observe that BIT design investment at the
beginning of the software development process shortens
the integration phase.

3. Built-In Contract Testing

In component-based development, integration testing is
a source of huge challenges. Interactions of individual
pairs of components especially need to be semantically
tested [11]. Component interfaces are in fact the basic
support for checking compatibility between components.
However, interfaces syntactically describe potential
exchanges. This does not ensure that the provided and
required interfaces of two different components match in
the semantic sense, nor that their full range of mutual
collaboration possibilities are attained. In this scope,
Heiler notices in [12] that: “Semantic interoperability
ensures that these exchanges make sense – that the
requester and the provider have a common understanding
of “the meanings” of the requested services and data.”

The objective of built-in contract testing is to check
that the environment (server component or operating
environment) of a component meets its expectations. For
example, if a component C is a client of another
component S, the purpose of the test software built into C
is to check S by invoking its services and to verify that
they behave individually and collectively as expected.
Since the tests present in a client assess the behavior of a
server, they essentially evaluate the semantic compliance
of the server to the “clientship” contract. While most
contemporary component technologies enforce the
syntactic conformance of a component to an interface,
they do nothing to enforce the semantic conformance.
Built-In contract testing offers a feasible and practical
approach for validating the behavioral semantics of
components. This semantics may be formalized with
modern modeling languages. Concrete concerns lead us to
use Harel’s Statecharts [13] that are part of UML [14].

In our framework, we impose a minimal set of features
and conditions to make components testable. An
introspection mechanism which provides access to and
information about components is required.

implements 

inheritance 
association 
dependency 

- Legend (all figures) -

Component Sub-component 

BIT component

«interface» 
BIT testability contract BIT test case 

BIT tester 

Figure 2. Core of Built-In Contract Testing
Figure 2 describes the core framework for built-in

contract testing. A BIT component compensates for a
component that may be a COTS component. In this latter
case, contracts do not a priori exist inside the component.
They are thus actually incorporated into the BIT
component. Testing the BIT component is equivalent to
testing the source component.

«interface» 
BIT testability contract 

Result : {#Failure, #Success, #TBD} 
execution condition() : Boolean 

is testable() : Boolean 
initialize test() 
finalize test() 

Figure 3. Testability Contract
Besides, the BIT component has to inform testers of

deployment constraints. The BIT component thus strongly
depends upon the BIT testability contract predefined
interface (Figure 3). The initialize_test and finalize_test
operations allow to setup and to restore the tested
component before, respectively after, a test execution.
Arbitration or conflict resolution with “normal” code
progress in particular occur within these stages. In the
same line of reasoning, the is_testable function
determines whether a specific status of the component
precludes for testing. For example, a component may run
a data acquisition parallel process embodied by an
associated Running data acquisition concurrent state. We
thus need to write:

public boolean is_testable() {
return ! is_in_state(“Running data

acquisition”; // not testable in this state
}

As for the execution_condition service, it may report
special contexts linked to the deployment environment.



Finally, execution results are readable by means of three
symbolic (use of # in UML) values of the Result attribute
(see Figure 3). Sometimes, a non deterministic result is
tolerated (TBD standing for To Be Determined).

As shown in the Java code above, we need accurate
knowledge on the inside of the tested component and for
that, an extended version of the BIT testability contract
interface is often needed (Figure 4). In the same way,
elements in Figure 4 add new services to the component’s
regular functional interface and serve contract testing
purposes. Indeed, components are state machines and
require state transition testing. Before a test can be
executed, the tested component must be brought into the
initial state which is required for a particular test. After
test case execution, the test must verify that the outcome
(if generated) is as expected, and that the tested
component resides in the expected final state. Figure 4
shows an appropriate interface called State-based BIT
testability contract from which a BIT component can be
linked to.

«interface» 
State-based BIT testability contract 
is_in_state(name :String) : Boolean 

set_to_state(name :String) 

BIT Component 
 

«interface» 
BIT testability contract 

Result : {#Failure, #Success, #TBD} 
execution condition() : Boolean 

is testable() : Boolean 
initialize test() 
finalize test() 

Figure 4. Extension of BIT testability contract
with State-based BIT testability contract

4. Illustration

In order to illustrate the applicability of the concepts
presented above, we have developed a Java library whose
overall architecture is presented in Figure 5. Built-In
contract testing can first be simply carried out by means
of the three main elements named BIT testability contract,
BIT test case and BIT tester. In this case, we just cope
with assessment of computation results, as well as
management of execution environment phenomena and
faults in general. In the more complicated case, three
equivalent state-oriented facilities are required: State-
based BIT testability contract, State-based BIT test case
and State-based BIT tester. Since these three last elements
call on Harel’s formalism, an underlying library
(Statecharts package: top-left of Figure 5) is reused, i.e.
the two following classes: Statechart and Statechart
monitor. BIT state and BIT state monitor are BIT-oriented
specializations of the Statecharts package in order to
create a connection with State-based BIT testability
contract, State-based BIT test case and State-based BIT
tester.



Statecharts 

Statechart 

Statechart monitor 

BIT state 

BIT state monitor BIT Component Component 

« interface » 
State-based BIT 

testability contract

State-based BIT 
test case 

State-based BIT 
tester 

« interface » 
BIT testability 

contract 
BIT test case BIT tester 

Figure 5. Architecture of the BIT/J Library

4.1. Component Behavior Prediction

Figure 6 is a partial view of a Railcar system
component presented in [15].

Wait for 
entrance 

Watch alert 
 

Watch 
 
 
 

Alerted 
entry/ ^cruiser.disengage
exit/ ^cruiser.engage(20)

Arrival 

alert 80 

Wait for 
terminal track 

arrived at track 
[mode = stop] 

Wait for stop 

Wait for depart 
entry/ 
^terminal.depart 
requested 

arrived at track 
[mode = pass] 

alert stop/ 
^cruiser.disengage

depart granted

Figure 6. Partial Statechart of a Railcar System
Component (Arrival Substate)

From Figure 6, we are able to construct the UML
Component Diagram appearing in Figure 7. This
especially allows to exhibit the provided interface of the
Railcar system component based on the technique stated
in [10]. In Figure 7, the provided interface is incomplete
since the statechart is itself incomplete in Figure 6.

The following code is therefore generated:
public class BIT_railcar_system {
…
protected BIT_state Watch, Alerted,
Wait_for_entrance, Wait_for_depart, Watch_alert,
Wait_for_terminal_track, Wait_for_stop, Arrival;
protected BIT_state_monitor Railcar_system;
…

Arrival =
(Watch_alert.and(Wait_for_terminal_track).xor(Wa
it_for_stop)).name(“Arrival”);
Railcar_system = new
BIT_state_monitor(Arrival.xor(…));
…

The direct substates of Arrival are connected together:
and, xor and nesting (realized through assignment) are the
operators used.

 

«Sub-component» 
Arrival 

«Sub-component»
Watch alert 

alert 80

«Sub-component»
Wait for 

terminal track 

depart 
granted
arrived 
at track

«Component» 
Railcar system 

«reside» 

«Sub-component»
Wait for 

stop 
alert 
stop

Figure 7. UML Component Diagram Deriving
from Figure 6

Event processing is then managed as follows:
synchronized public void arrived_at_track() {
try {
boolean guard = (mode == Pass);
Railcar_system.fires(Wait_for_entrance,Wait_for_
depart,guard);
guard = (mode == Stop);
Railcar_system.fires(Wait_for_entrance,Wait_for_
stop,guard);
// event interpretation cycle:
Railcar_system.used_up_with_recovery();
}
catch(StatechartException se) {



…
}
}

Test scenarios within tester objects can finally be
developed:
BIT_railcar_system brs;
…
State_based_BIT_test_case sbbtc = new
State_based_BIT_test_case(brs,"arrived_at_track"
,null,null,null);
sbbtc.test("Wait for stop");
// Possible failure:
System.err.println("Interpretation: " +
sbbtc.interpretation());

4.2. Component Behavior Monitoring

We evoke in Section 3 the four key operations of the
BIT testability contract interface that help configuring
BIT components and ruling tests in optimal conditions. At
this stage of the library’s development, we focus on the
utilization of the Java Management Extensions (a.k.a.
JMX) in order to present the testing interface within a
Web browser.

An expected benefit is remote testing. Based on the
general-purpose COTS component idea [15], we may
imagine that purchasers remotely access, assess and next
buy components over the Internet. Vendors provide then
benchmarks grounded on the BIT philosophy. We
nevertheless want, in essence, to let the purchasers
develop their own sets of tests located on their own site.
An other expected advantage (not yet implemented in
BIT/J) is thus the externalized execution of test code. At
this time, we have no separation between test code and
normal code, even if execution conflicts are carefully
managed. We thus intend to remotely monitor BIT
component behaviors which seems for us a more suitable
approach in the spirit of a COTS component marketplace.

5. Conclusion

Online controlled verification of components aims to
go beyond proof correctness of component models.
Deployment factors greatly influence such a research
trend and direction. This paper together proposes a built-
in testing approach and a concrete tool in order to reach
such an objective. Built-In contract testing is a technique
further detailed and explained in the paper by means of
the example of a Railcar system component. This
example favors the understanding of the BIT/J Java
library that effectively and efficiently supports BIT.

Limitations of what is proposed are linked to Java. We
use the java.lang.reflect package within BIT/J in order to
dynamically manipulate component features. We in
particular do not need an access to source code which is
satisfactory with regard to the COTS component spirit.
We currently investigate C++ components by using the
RTTI (Run-Time Type Information) programming

interface. We also think about component platforms,
namely .NET, through appropriate component languages,
e.g. Eiffel. One of our key goal is indeed the use of
languages that offer reflection characteristics, i.e.
dynamic access and management of components at
runtime in order to make BIT credible. The more obvious
and tangible perspective of our work is to view BIT as a
basic technique to create and to leverage a component
marketplace over the Web.

References

[1] Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.,
2002. Specification, Implementation, and Deployment of
Components, Communications of the ACM, 45(10), pp. 35-40.

[2] Jézéquel, J.-M., Deveaux, D., and Le Traon, Y., 2001.
Reliable Objects: Lightweight Testing for OO Languages. IEEE
Software, July/August, pp. 2-9.

[3] Wang, Y., King, G., Fayad, M., Patel, D., Court, I.,
Staples, G., and Ross, M., 1998. On Built-In Tests Reuse in
Object-Oriented Framework Design, ACM Software
Engineering Notes, 23(4), pp. 60-64.

[4] Binder, R., 2000. Testing Object-Oriented Systems –
Models, Patterns, and Tools, Addison-Wesley.

[5] Meyer, B., 1997. Object-Oriented Software Construction,
2nd Edition, Prentice Hall.

[6] IBM, November 2000. Guide to Sugar Formal
Specification Language, Version 1.3.1. IBM Haifa Research
Laboratory, Israël.

[7] Szyperski, C., 1998. Component Software – Beyond
Object-Oriented Programming, Addison-Wesley.

[8] Barbier, F., 2002. Composability for Software
Components: An Approach Based on the Whole-Part Theory,
proceedings of The 8th IEEE International Conference on
Engineering of Complex Computer Systems, Greenbelt, USA,
IEEE Computer Society Press, December 2-4, pp. 101-106.

[9] Hissam, S., Moreno, G., Stafford, J., and Wallnau, K.,
2001. Packaging Predictable Assembly with Prediction-Enabled
Component Technology, Technical Report CMU/SEI-2001-TR-
024, Carnegie Mellon University, Pittsburgh, PA.

[10] Barbier, F., 2003. Business Component-Based Software
Engineering, Kluwer.

[11] Gao, J., Gupta, K., Gupta, S., and Shim, S., 2002. On
Building Testable Software Components, proceedings of The 1st

International Conference on COTS-Based Software Systems,
Orlando, USA, Lecture Notes in Computer Science #2255,
Springer, February 4-6, pp. 108-121.

[12] Heiler, S., 1995. Semantic Interoperability, ACM
Computing Surveys, 27(2), pp. 271-279.

[13] Harel, D., 1987. Statecharts: a visual formalism for
complex systems, Science of Computer Programming, 8, pp.
231-274.

[14] Object Management Group, 2001. OMG Unified
Modeling Language Specification, version 1.4, Needham, MA.

[15] Harel, D., and Gery, E., 1997. Executable Object
Modeling with Statecharts, IEEE Computer, July, pp. 31-42.

[16] Wallnau, K., Hissam, S., and Seacord, R., 2002.
Building Systems from Commercial Components, Addison-
Wesley.


	Introduction
	Built-In Test
	Built-In Testing Technique
	Built-In Testing Process

	Built-In Contract Testing
	Illustration
	Component Behavior Prediction
	Component Behavior Monitoring

	Conclusion
	References

