
WDBQS: A Unified Access to Distant Databases Via a
Simple Web-Tool

Christian Sallaberry 1, Eric Andonoff 2, and Nicolas Belloir 2

1 Université de Pau et des Pays de l’Adour, UFR Droit & IAE, 64000 Pau, France,
christian.sallaberry@univ-pau.fr

2 IRIT/UT1, Université Toulouse 1, 1 place Anatole France, 31042 Toulouse Cedex, France
ando@irit.fr

Abstract. Within organisations, Information Systems are characterised by het-
erogeneity. The main management tools are different Relational and Object
Oriented DataBase Management Systems. Therefore, variety, complexity and
lack of integration make it difficult for casual users to query them. This paper
presents WDBQS (Web DataBase Query System); a Web-interface for query-
ing distant Relational and Object Oriented DataBases. This system, dedicated
to casual users, proposes simple Web mechanisms to navigate through database
schemas, build queries and display results.

1 Introduction

We have collaborated with Local Communities (LC) to produce WDBQS (Web Da-
taBase Query System), an ongoing project that aims to develop a tool intended for
casual users for distant relational and object-oriented database querying (RDB and
OODB). LC handle a set of Information Systems managed by Relational DBMS and
Object-Oriented DBMS (RDBMS and OODBMS). These IS have been developed
and managed independently; they are based on different software technologies and
run on various hardware platforms. WDBQS offers to the LC users a common lan-
guage to query the databases implementing the different IS. There is no need to de-
velop approaches like DataWareHouse or MultiDataBase. Indeed, LC users just need
a tool to query, one after another, the different distant and independent RDB and
OODB.

So, WDBQS is a relational and object-oriented database query system. Its main
characteristics are:
� ODMG data model,
� common access to distant RDB and OODB,
� accessible via the Web in an intranet architecture and advocates a navigational

query formulation mechanism,
� reuse of data and systems in order to take advantage of existing resources and be

able to rely on proven technologies (RDBMS and OODBMS),
� extendibility in order to access any new database, either achieved through the

corresponding DBMS drivers already integrated in WDBQS or through the inte-
gration of a new DBMS drivers in WDBQS,

� specific interfaces so as to manage distant databases accessed by WDBQS, define
queries and display results.
WDBQS makes accessible heterogeneous DBMS via a unique platform. It is based

on the ODMG model and proposes a Web-like query language, called WDBQL (Web
DataBase Query Language). WDBQL is intended for casual users i.e. users who do
not have any knowledge in computer-science and consequently in databases and
database query languages such as SQL and OQL. WDBQL proposes a Web-interface
and implements a Web-like i.e. navigational mechanism to formulate queries. Such a
mechanism is easy to use for casual users and really helps them when query formula-
tion.

The remainder of the paper is organised as follows. Section 2 presents the
WDBQS architecture. Section 3 introduces the WDBQS models and a running exam-
ple. Section 4 describes the WDBQL querying principles and presents the WDBQL
interface. It also gives a comparison with related works. Section 5 concludes the pa-
per.

2 WDBQS
architecture

WDBQS proposes a
client-server architec-
ture described in fig-
ure 1. It is composed
of WDBQL, WDBQS
Server (WDBQSS),
Host DataBase Server
(HDBS) and Remote
DataBase Server
(RDBS).

Fig. 1. WDBQS archi-
tecture

HDBS stores in a special database called the Host DataBase, a meta-schema which
describes the schemas of all the distant RDB and OODB. The model of this Host
DataBase is the ODMG one [9]. The distant RDB and OODB schemas are stored as
instances of the meta-schema. HDBS uses a schema extractor and an ODMG wrapper
to first extract the schema of a distant database and to then convert it as instances of
the meta-schema. There are as many schema extractors as distant databases and as
many wrappers as distant database distinct models. The interest of such an approach
is that the number of accessible distant databases is easily extendable.

RDBS is the server of the distant database. It executes queries and returns the cor-
responding result. Two situations are possible: RDBS integrates a Web module (e.g.
O2Web, OracleWeb) or not. If the Web module exists, RDBS displays the results by
itself in a new client Web navigator window. If not, RDBS returns a set of data which
are converted by the WDBQL Data Translator into the WDBQL visual format. RDBS
also notifies HDBS of any database schema updates. HDBS then starts again schema
extraction and conversion.

Fig. 2. WDBQS: navigators and translators

WDBQL offers two main navigators: one for remote database schema management
and another for remote database querying. Each navigator translates users visual
queries respectively into database management function calls or OQL (or SQL3)
queries for WDBQSS. A third navigator possibly displays results via an HTML
wrapper. The WDBQL querying navigator uses the Query Definition and Validation
module to display the schema of the queried remote database and to help the user
when query formulation. The WDBQL querying navigator also uses the Query
Translator module to translate WDBQL queries into OQL ones. The query Translator
module principally uses the translation algorithms presented in [10].

WDBQSS manages communication through all the modules of the system. The
working of the system is the following (cf. Fig. 3.).

One user connects with WDBQSS via the HTTP protocol. WDBQSS sends back
an HTML page integrating WDBQL to the client (Java applets). WDBQL displays
the list of all the remote databases which can be queried. The user selects a database.
The name of the selected database is returned to WDBQSS via a socket. WDBQSS
gets the corresponding database schema in the HDB and sends it to WDBQL in a text
format file using a socket once again. WDBQL interprets this data file and displays
the data base structure to the user. Then the user formulates a query on his client
machine and submits it to WDBQSS. The query is then shipped to RDBS to be exe-
cuted. RDBS either displays the result of the query in a new navigator (if it has its
own Web module) or returns a set of data which are converted by the WDBQL Data
Translator into the WDBQL visual format.

Fig. 3. Client (WDBQL) / Server (WDBQSS) communications

WDBQS architecture can be compared to that of GEM/WeBUSE [15]. The GEM/
WeBUSE context is quite the same as the WDBQS one. The main difference is that
GEM/WeBUSE proposes a remote GEM server for each distant database system.
There is no central host database and HDBS but there are many remote meta-schema
descriptors. This approach is not suitable in WDBQS as it makes too many communi-
cations (with the remote DBMS) when formulating queries. Moreover, in our context
we are not allowed to use disk space within remote database servers.

3 The WDBQS models

We give here the County Council database example which manages boroughs, town
halls, citizens, elected representatives and clerks. Because of space limitation, we
only give an implementation of this example in a remote object-oriented database. O2
is chosen as object-oriented database system.

class Borough type tuple
(Bcode : integer,
 Bname : string,
 Bcity : string,
 Mayor : Elected,
 Deputies : set(Elected),
 Counselors : set(Elected),
 MainTownHall : TownHall,
 SecondaryTownHalls : set(TownHall))

 end;

class Person type tuple
(Pcode : integer,
 Surname : string,
 Firstnames : set(string),
 Address : tuple(street, zip, city : string),
 Married : Person,
 Birthdate : Date)
end;

class Elected inherits Person type tuple
(Arrival : Date,
 Grade : string)
end;

WDBQS supports two levels of data representation: the database level and the user
level. We now present the two level of data representation.

3.1 The database level

The database level of WDBQS stores the description of the different remote RDB and
OODB schemas as instances of a meta-schema. This meta-schema is described using
the standard ODMG-93 [9]. We choose the ODMG model because it generalises the
RDB and OODB concepts. Besides, it is chosen as a pivot model in several federated
DBMS.

The meta-schema is composed of a set of meta-types implementing the main
ODMG model concepts. The specified meta-types are the Base, Type, Property, Ty-
peProperty, BasicTypeProperty, MultiTypeProperty, StructuredTypeProperty, Op-
erations and Relationship ones. The meta-schema and its corresponding types are
detailed in [5].

3.2 The user level

The user level allows interpretation of the meta-schema within a more simple repre-
sentation model. The latter is described using a graph model based on the node, link
and anchor notions. Such a model obviously better suits casual users.

Each node has a name and is either terminal or non-terminal: terminal nodes are
not connected to others by a link, while non terminal nodes are at least connected to
one another by a link. The database model and the user model are perfectly matched
as we can see in the following table:

Database Model User Model
Base Non-terminal node
Type Non-terminal node
Property
- Mono-valued
- Multi-valued
- Structured

Terminal node
Terminal node
Non-terminal node

Operation Terminal node
Relationship
- Mono-valued
- Multi-valued

Non-terminal node
Non-terminal node

Table. 1. Correspondence between the Database Model and the User Model

The instances of the meta-types Base, Type and Relationship correspond to non-
terminal nodes in the user model while instances of Operation correspond to terminal
nodes. Instances of BasicTypeProperty (mono-valued property) and MultiType-
Property (multi-valued property) are represented as terminal nodes while instances of
StructuredTypeProperty (structured property) correspond to non-terminal nodes.
Links are defined either between non-terminal nodes or between a non-terminal node

and a terminal node. The figure below partially illustrates that correspondence with
respect to the running example.

Fig. 4. Part of the County Council database described with the user model

4 WDBQL: a query language intended for casual users

WDBQL is a Web-based query language intended for casual users. It allows the ex-
pression of queries from a Web interface using a navigational language.

4.1 The querying principles

WDBQL supports the user model. That means that the queried database schema is
visualised as a set of nodes, links and anchors. A WDBQL query is a set of actions on
nodes of the user model. We distinguish two types of actions which are navigation
and selection.

Navigation only concerns non-terminal nodes. It is possible thanks to the anchors
associated to each non-terminal nodes of the database. The name of a node is used as
the corresponding anchor flag. The selection of an anchor visualises all the nodes
linked to the node corresponding to the anchor. We illustrate below the navigation in
the County Council database.

The County Council database is composed of the types Borough, TownHall, Per-
son and Elected. When selecting the County Council database, these four types are
visualised as shown below: Then the user can go on its navigation selecting for ex-
ample the non-terminal node Borough. All the nodes linked to the node Borough are
then visualised.

User Model Result of an Action of Navigation

Selection concerns both terminal and non-terminal nodes. It has different semantics
which depend on the type of the node. We distinguish four types of nodes: mono-
valued terminal node, multi-valued terminal node, mono-valued non-terminal node
and multi-valued non-terminal node.

The following tables present the operators and operands which can be used to de-
fine selection predicates. Because of space limitation, we only give below the table
for multi-valued non-terminal nodes.

Operators Operands
=, ≠, <, >, ≥, ≤ Query or Node value (multi-valued)

contains Element(Query)
exists, forall, none Query

County Council
Borough
TownHall
Person
Elected

The selection of
the node County
Council implies
the visualization
of the linked
nodes

Table 2. Operators and operands for a multi-valued non-terminal node

4.2 The querying interface

The WDBQL querying interface is proposed via an HTML page. It contains three
distinct interfaces which are the navigation, the contextual filter and the summary
interfaces. The navigation interface allows the user to consult the database schema in
accordance with the navigational process described before. This interface supports
the user model. The contextual filter interface is used to define the result of the query
and to express selections. It is a guide to the casual user as it saves him from making
inconsistent selections for one's query. Finally, the summary interface reminds the
user the expressed query. We give the figure 5 as an example of the querying inter-
face.

The expressed query looks for all the boroughs having a young mayor, i.e. a mayor
who is less than 35 years old. The navigation interface1 shows the navigation from
Borough to Mayor, and from Mayor to Age. The contextual filter interface2 illustrates
the expression of a selection. Operators and operands must be specified to express a
predicate of selections. The user chooses an operator in the Operators contextual list.
This list proposes all the operators available for the selected node (here Age). Then,
the user enters the value of the operand. Finally, the user chooses in the Ac-
tion/predicates list if he wants to execute the query, abort it, or go on the predicate
specification using And or Or logical connectors. The summary interface3 reminds the
user the expressed query: the result is Borough and the selection criteria is Age<=35.

Fig. 5. The WDBQL interface

4.3 Comparison with related works

Recent development mixing Web and database technologies are numerous. We
distinguish three classes of work related to information management on the Web: (i)
modelling and querying the Web, (ii) information extraction and integration, and (iii)
Web site construction and restructuring. Even if WDBQS mixes Web and database
technologies, it has a quite different objective which is to define a Web-interface for
querying distant RDB and OODB. WDBQS is mainly intended for casual users. The
language it proposes, called WDBQL is comparable to the different visual query

languages described in the literature. These query languages may be classified into
form-based, graph-based, icon-based and Web-based query languages.

Form-based query languages allow the expression of queries from forms which
represent the queried database schema. Form-based query languages are proposed for
RDB (QBE [18], Access [1]), for extended-RDB (VQL [17], QBEN [13]) and for
OODB (OOQBE [16], GOQL [12], PESTO [7], RYBE [13]). Graph-based query
languages permit the expression of queries from graphs which describe the queried
database schema. Some graph-based languages adopt a conceptual approach (QBD
[3], CONQUER [6]) while others adopt an object-oriented one (OHQL [2], QUIVER
[10]). Icon-based query languages use visual metaphors to both represent the queried
database and the query language operators. ICI [8] and VISTA [4] are examples of
icon-based query languages. Web-based query languages permit the expression of
Web queries i.e. queries expressed from a Web interface using a navigational lan-
guage. DataGuides [11] and WDBQL are examples of Web-based query languages.
DataGuides is dedicated to semi-structured databases while WDBQL is dedicated to
remote RDB and OODB. WDBQL is ODMG-compliant.

5 Conclusion and future works

This paper has presented WDBQS, a system we developed to allow LC casual users
to easily query with a common language distant RDBs and OODBs. WDBQS has a
client-server architecture ; it is accessible via the Web in an intranet context. WDBQS
proposes WDBQL, a query language well-suited for LC casual users. WDBQL is a
Web-based query languages. That means it advocates a Web-like query formulation
mechanism. Such a mechanism is really easy to use for casual users.

If we compare WDBQS to other similar systems [6, 7, 11, 15], we can mention
some of the main differences:
 WDBQS allows to query with a common language distant RDBs and OODBs. So,

it is different from [11] which is dedicated to semi-structured databases.
 WDBQS is ODMG-compliant.
 WDBQS proposes a Web-based query language i.e. a language which is accessible

via the Web and which advocates Web navigational mechanisms for query build-
ing. So, it is different from [6] and [7] which propose a navigational query lan-
guage but which do not have a Web-interface.

However, WDBQS has some drawbacks. On the one hand, WDBQL is less power-
ful than OQL. It needs to be extended in order to include (i) nested queries -we have
implemented an operator whose name is NewQuery and it is possible to nest a query
using the in operator; predicate such as x in (Query) are available -, (ii) aggregation
operators -Count, Max, Min, Avg and Sum are not yet available- and (iii) collection
operators -Flatten, Element, Union, Intersect and Minus are neither available-. These
operators need to be integrated to WDBQL in order to make it powerful and compa-
rable to OQL. But, we are not sure we should implement them because we keep in
mind that WDBQL is only intended for Local Communities casual users who express
enough simple queries only including selection, projection or join operations. The

user-friendly objective that WDBQL has for this kind of users must not be given up
to the benefit of its power. On the other hand, we need to set evaluations of WDBQL
up to LC casual users.

WDBQS is still an ongoing project. A first prototype is now available. Only the
Oracle RDB and the O2 OODB are accessible as remote databases. We implemented
two wrappers which respectively translate Oracle and O2 database schemas as in-
stances of the meta-schema. We used OracleWeb and O2Web to display the WDBQL
query results. We now implement the wrapper whose aim is to translate a query result
in a remote database format into the WDBQL format. We also implement Jasmine as
a remote database for WDBQS.

References

1. Access: Microsoft home page: http://home.Microsoft.com
2. Andonoff, E., Mendiboure, C., Morin, C., Rougier, V., Zurfluh, G.: OHQL: An Hypertext

Approach for Manipulating Object-Oriented Database. Information Processing and Man-
agement, Vol. 28, n°6, 1992

3. Angellacio, M., Catarci, T., Santucci, G.: Query By Diagram: a Fully Visual Query Sys-
tem. Visual Languages and Computing, Vol. 1, n° 2, 1990

4. Belieres, B., Trepied, C.: New Metaphors for a Visual Query Language. DEXA’96, Inter-
national Workshop on Databases and Expert Systems Applications, Zurich, Switzerland,
September 1996

5. Belloir, N.: Une approche navigationnelle pour l’interrogation de base de données via le
Web. Mémoire de DEA, Institut de Recherche en Informatique de Toulouse, Toulouse,
France, September 1999

6. Bloesch, A., Halpin, T.: CONQUER: a Conceptual Query Language. ER’96, 15th Interna-
tional Conference on the EntityRelationship Approach, Cottbus, Germany, October 1996

7. Carey, M., Haas, L., Maganty, V., Williams, J.: PESTO: An Integrated Query/Browser for
Object Database. VLDB’96, 22nd International Conference on Large Data Base, Mumbai,
India, August 1996

8. Catarci, T., Massari, A., Santucci, G.: Iconic and Diagrammatic Interfaces: an Integrated
Approach. International Workshop on Visual Languages. Kobe, Japan, June 1991

9. Cattell, R.G.: ODMG-93: Le Standard des Bases de Données Objet. International Thomson
Publishing, France, 1995

10. Chavda, M., Wood, P.: Towards an ODMG Compliant Visual Object Query Language.
VLDB’97, 23rd International Conference on Very Large DataBase, Athens, Greece,
August 1997

11. Goldman, R., Widom, J.: DATAGUIDES: Enabling Query Formulation and Optimisation
in Semi-structured Databases. VLDB’97, 23rd International Conference on Very Large
DataBase, Athens, Greece, August 1997

12. Keramopoulos, E., Pouyioutas, P., Sadler, C.: GOQL: a Graphical Query Language for
Object-Oriented Database Systems. BIWIT’97, 3rd Basque International Workshop on In-
formation Technology, Biarritz, France, July 1997

13. Lorentzos, N.A., Dondos, K.A.: Query By Example for Nested Tables. DEXA’98, Interna-
tional Workshop on Databases and Expert Systems Applications, Vienna, Austria, August
1998

http://home/

14. Sallaberry, C., Bessagnet, M.N., Kriaa, H.: RYBE: a tabular interface for querying a multi-
database system. COMAD’97, 8th International Conference on Management of Data, Ma-
dras, India. December 1997

15. Sivadas, M., Fernandez, G.,: GeM and WeBUSE: Towards a WWW-Database Interface.
Workshop on Co-ordination Technology for Collaborative Applications, Asian’96, 2nd
Asian Computer Science Conference, Singapore, 1996

16. Staens, F., Tarentino, L., Tiems, A.: A Graphical Query Language for Object-Oriented
Databases. International Workshop on Visual Languages, Kobe, Japan, June 1991

17. Vadaparty, K., Aslandignan, Y.A., Ozsoyoglu, G.: Towards a Unified Visual Database
Access. SIGMOD’93, 20th ACM SIGMOD International Conference On Management of
Data, Washington, USA, 1993

18. Zloof, M.: Query By Example: A Database Language. IBM System Journal, Vol. 16, n°4,
1977

