
Valentine : a dynamic and adaptative operating

system for wireless sensor networks

Natacha Hoang1, Nicolas Belloir1, Cong-Duc Pham1 and Severine Sentilles2

1 LIUPPA
University of Pau

F-64013 Pau
Email:{natacha.hoang, nicolas.belloir,cpham}@univ-pau.fr

2 Mälardalen University Departement of Computer Science and Electronics
PO Box 883, SE-721 23 Västerås, Sweden

Email: severine.sentilles@mdh.se

Abstract. We present in this paper an approach allowing dynamic re-
configuration in wireless sensor networks. This proposition is based on
two complementary works. Firstly we propose a new component-based
operating system (OS) for wireless sensors networks, allowing dynamic
administration of components at runtime. This OS will be generated from
an OS generator called Think. Secondly, we discuss and present Valen-
tine, a specific mechanism for dynamic reconfiguration in the constrained
context of wireless sensor networks.

1 Introduction

In many disaster relief scenario (earthquake, flooding...) or environmental mon-
itoring applications, it is usually very difficult to get accurate and up-to-date
local information that would definitely help the organization of rescue and/or
help scientists to collect data in order to better understand the causes of a given
physical phenomenon. The traditional way of getting such local information is
by means of specialized devices, called sensors, which are usually connected to
a fixed data acquisition system. For instance, air quality and more generally
environmental monitoring networks follow this architecture. Although efficient,
these infrastructures are heavy, mostly static, and are extremely difficult to de-
ploy dynamically on a large-scale basis.

With the recent advances in microelectronics research these sensors are now
able to communicate wirelessly with other sensors in the range of several me-
ters and have also embedded processing and storage capabilities, taking place
within the context of the pervasive computing, more known under the name of
ubiquitous computing [1]. It is therefore possible to build a collaborative network
of sensors on a vast geographical area. These wireless sensor networks (WSN)
could be deployed more rapidly because they do not need any wired or fixed
infrastructures. A survey on sensor networks could be found in [2]. It is foreseen
that these autonomous sensor networks will open new perspectives for monitor-
ing applications and most importantly disaster relief applications where relevant
information must be obtained as quickly as possible.



However, the integration of such sensors inside the physical world is not
an easy task. New problems are essentially generated by the severity of the
constraints inherent in their resources. One can quote the conservation of the
memory space or also the problem of energy management. Some solutions have
already been proposed to some of these problems. For example, TinyOS [3], the
reference operating system, fills very little memory thanks to the many opti-
mizations such as the use of a component-based architecture.

On another side, Component-Based Software Engineering [4] (CBSE ), is now
recognized for the development of both flexible and well structured applications,
meeting in particular needs for reconfiguration and administration. However even
if TinyOS presents similar concepts to those present in CBSE, some important
are lacking. In particular, no support is proposed for dynamically reconfigure an
application which has been identified as fundamental in autonomic computing [5].
In the CBSE context, dynamic reconfiguration allows to replace a component
by another in a running application. Such action can originate from several
reasons. For example it can be necessary to substitute a badly implemented
component, i.e. not carrying out the target functionalities or carrying them out
in an incorrect way, or to add to this component news functionalities. Such a
process can be performed only if the component is in a stable state, i.e that
it is not used anymore. If it is not the case, reconfiguration could lead to an
irremediable crash of the system. In the WSN context, dynamic reconfiguration
becomes an important feature for reorganizing a deployed network or adding
new functionalities to several sensors.

Within this context, we propose in this paper to investigate operating systems
handling dynamic reconfiguration for WSN. We describe current OS limitations
in section 2 and we propose in section 3 the design of a new operating system
for WSN with the Think model [6]. Our model for dynamic reconfiguration in
WSN is presented in section 4. Finally, section 5 presents some conclusions and
directions for future works.

2 Limits of current operating systems for dynamic

reconfiguration

2.1 Overview of some existing operating systems

There have been many proposals for implementing dynamic reconfiguration in
sensor networks. Initially, propositions for dynamic reconfiguration were based
on a full image update. TinyOS ,which is the de facto standard for WSN, is
an operating system for sensor networks that generates a binary image of the
entire application. We will present later on the limitations of TinyOS. Deluge
[7] is a networked bootloader and dissemination protocol that process full image
upgrades of TinyOS applications. Mate [8] is a virtual machine architecture for
the resource constrained sensor devices allowing to reconfigure programs running
on TinyOS nodes. Nevertheless, it has significant computational overhead.

Other approaches such as SOS [9] and Contiki [10] are based on modular bi-

nary module. The idea is to separate kernel from code modules. The architecture

2



of SOS consists of dynamically-loaded module and a statically compiled kernel.
Metadatas contains module information and a linker script is used to place a spe-
cific module at the corresponding place. Contiki is a lightweight operating system
with support for dynamic loading and replacement of individual programs and
services. [11] presents a solution based on a SOS kernel and implements a virtual
machine on top of this kernel.

Nones of these approaches provide the flexibility of CBSE. We will present
on the advantages of CBSE in the section section 3.

2.2 Limits of TinyOS for dynamic reconfiguration

TinyOS addresses the problem of limited memory thanks to many optimiza-
tions : memory is allocated statically at compile-time, the nesC implementation
model does not provide the concept of function pointers . . . Consequently, dy-
namic allocation of resources is not allowed and this is one of the TinyOS’s
limitations. Moreover, [12] points out the difficulty to implement this property
on sensors (or motes) equipped with TinyOS and proposed to use a less restric-
tive operating system allowing dynamic allocation. Even though a solution was
proposed, it is too heavy to be implemented due to the employed mechanisms
to overcome the static nature of the system and most particularly the use of
intermediate components to manage binding reassignment.

Besides, in TinyOS, the concept of component disappears when the system
image is generated. Thus, if we consider the reconfiguration property and if we
assume its feasibility, this implies that if we want to modify the implementation
of one component, like the communication subsystem for example, it is not
possible to replace only this component. A full image of the operating system
must be reinstalled.

This underlines another problem of the TinyOS model. Indeed, in WSN,
sensors are used as relay node for data propagation. However, it is clear that a
full system image is much bigger than a partial one. Therefor, if we assume the
existence of a reconfiguration mechanism for a mote running TinyOS, this implies
to “cut” this system image into several packets for transmission to the sensor.
The high number of packets puts high load in the network, thus, consuming
more energy.

Nevertheless, TinyOS is based on some efficient features for WSN. The first
of them is the event-driven execution model. Indeed, such model is often used
in embedded systems because it allows, firstly, to generate a little memory foot-
print and, secondly, to control more easily the scheduling activities. A second
important feature is the scheduling policies used to allocate a process to the
processor. TinyOS uses a FIFO queue : (i) it is a simple algorithm to imple-
ment ; (ii) activity time of a mote have to be the shortest and tasks with long
duration will be considered as marginal ; (iii) as we are in a “single-user” sys-
tem, a task monopolizing the processor is an acceptable situation. But in the
context of reconfigurable sensor this policy would become too constraining at it
will explained in section section 4.1.

3



3 Toward the Valentine component-based operating

system

The previous section shows that none of the operating systems presented and es-
pecially the TinyOS model, meet the future requirements of complex applications
in term of reconfiguration capability. In Software Engineering, the component
paradigm is now recognized for being the most powerful concept to build flexi-
ble, scalable, generic and reconfigurable applications. Components run on specific
frameworks or middlewares supporting all the internal mechanisms needed for
component administration. These middlewares hide the complexity of the op-
erating system and are lacking in WSN in order to allow the development of
complex application softwares [13]. A recent article [14] points out that “there is
a still a long way to go for a perfect middleware for WSN to really exist”. But
we think that the first step before having this kind of middleware is to provide
an operating system fully supporting a component-based operating system and
a mechanism of dynamic reconfiguration adapted to sensor network.

We propose to address the problem of dynamic reconfiguration in WSNs
using the Think framework. Think is a software framework for component-based
operating system kernels [15]. It enables OS architects to implement any new
operating system kernels from components of arbitrary size. Despite a resource
consumption more important than with TinyOS, using the Think model is very
interesting for creating new OS with dynamic capabilities on a component-based
architecture. We present here the design of such an operating system model
for sensors combining both TinyOS well-tried aspects and dynamic component-
based development, through the Think framework.

3.1 From hardware to OS components

We firstly present the different hardware elements which constitute the sensor
and how they interact when designing our operating system, each OS compo-
nent will correspond to a hardware element. A sensor has a microprocessor,
communication I/O devices (network, sensor board, serial interface) and mem-
ory. Figure 1 shows how these elements are connected together. Most of our
figure are described in UML.

The processor is the core of the system. It is constituted of an Arithmetic

and Logical Unit (ALU), a control unit to use instructions stored in memory, a
clock and a bus connecting these different components. Most processors used in
sensors are currently AVR and ARM, both based on a RISC architecture. AVR
processors3 belong to the microprocessor family based on an Harvard architec-
ture which stores program and data separately. ARM processors are widely used
in embedded systems like PDAs.

Input-Output devices (I/O devices) are the links the sensor has with the
environment, the others sensors and possibly the users. The transmitter-receiver
(network), the connection with the development framework (serial interface)

3 http://www.atmel.com/

4



<<HardwareComponent>>

I/O Device

<<HardwareComponent>>

Device Controller

<<HardwareComponent>>

Ram
<<HardwareComponent>>

Flash

<<HardwareComponent>>

Memory

<<HardwareComponent>>

Processor

<<HardwareComponent>>

Network

<<HardwareComponent>>

Sensor

<<HardwareComponent>>

Serial Interface

<<HardwareComponent>>

ALU

<<HardwareComponent>>

Control Unit

<<HardwareComponent>>

Bus

<<HardwareComponent>>

Clock

links
1

controls

*

access

communicates

is accessed

1

1

1

1

Fig. 1. “Componentization” of a sensor in UML

or the sensor board belong to this category. Each kind of I/O device has its
own controller named device controller which is in charge of these devices and
commands them. It allows to make them autonomous. The processor is informed
of the end of an I/O operation by an interruption generated by the controller.
Finally, memory enables to store both data and instructions required at run-
time. thus processor and device controllers can access to it.

3.2 Design considerations

It is necessary to determine the way the operating system uses these components
to realize the functionalities of the application. Thus, in a traditional system the
various functionalities are implemented by lightweight processes, called threads,
which are allocated to the processor by a scheduler. However using threads for
sensor networks seems to be rather expensive since each sensor must store in
memory a copy of the execution context during all its lifetime. Thus such mech-
anisms consume too much memory resources and is consequently to consider
sparingly. Moreover, blocking mechanisms, such as waiting for a message arrival,
will not be allowed in order to not prevent the execution of other processes. This
choice is implemented through a queue mechanism.

We must determine the better adapted type of operating system kernel in
the context of our study. A monolithic kernel is a kernel architecture where the
entire kernel is run in kernel space in supervisor mode. Obviously, a monolithic
kernel is too bulky to be able to be used on sensors. On the other hand exokernels

5



are tiny, since the proposed functionalities are limited to ensure protection and
the multiplexing of resources. Consequently they seem better adapted and the
application will directly get access to the needed hardware components.

Having described the basic elements constituting our model4 we must now
determine how these various elements will interact. Whereas a component-based
model typically consists in a client-server model, a client interface asks for the
execution of a request, i.e. of a function, on a server interface of another com-
ponent, a sensor network is in nature strongly event-driven. This particularity
would be considered and our operating system mut integrate both interaction
mechanisms.

Init

WaitNeighbourhood

WaitEvt

Activity

WaitForActivityEnd

Reconfiguration

<<comment>>
All states, except 
Reconfiguration, belong to 
a Run super-state to be 
able to make the Suspend 
state.

SearchNeighbourhood

ComponentReception ComponentInsertion

LinksChangeRemoveOldComponent

Entry/CheckAvailablePower

Entry/CheckAvailableMemory

[nbNeighbour=0]

PacketReception

UpdateNeighbourhood

PacketPreparationProcessing

SendPacket

H

Entry/CheckAvailablePower

Entry/CheckAvailableMemory

Entry/CheckAvailablePower

Transfert

DetectSensor[NotInActivity]

AskProcessing[NotInActivity]

[Activity]

[NoActivity]

Fig. 2. The states of a sensor

In order to illustrate importance of the event mechanism in WSN, the state
diagram of a sensor is presented at the Figure 2. We can see that the WaitEvt

and the WaitNeighbourhood states allow to save energy by waiting for event. An
event is always at the origin of the activity of the sensor. This figure highlights

4 For more details on the model, please consult [16].

6



the coexistence of two behaviors : Waiting for an event and Activity. During
a processing task, like aggregation of data, an event can occur. For example, the
battery can announce that it is too weak to continue to supply the sensor. Thus,
it must be possible to recover these events to treat them. Two processes are
then needed to manage both waiting of an event and activities in progress in
the sensor. It involves a second problem: how both event-driven and component
functional aspects (function calls in particular) could existing together?

3.3 Analysis of dynamic reconfiguration in Think

Think [17] proposes a mechanism of dynamic reconfiguration based on the con-
cept of controllers such as presented in the Fractal model [18]. Fractal5 is a
modular and extensible component model that can be used with various pro-
gramming languages to design, implement, deploy and reconfigure systems and
applications. It is developped by the INRIA6 and France Telecom R&D. A Frac-
tal component is formed out of two parts: the non-functional part, called con-

troller and the functional part, called content. The controller is used to control
and manage components. There are various controller, one for each kind of con-
trol. For exemple, the LifeCycleController manages the beginning and the
end of a component, the BindingCintroller manages the links between com-
ponents.

In [17], reconfiguration is considered at the component level. The objectives
for this mechanism are genericity and flexibility in order to support : (i) all ex-
isting models of dynamic reconfiguration ; (ii) no modification of the functional
aspect of the components ; and (iii) minimization of runtime overload memory.
Moreover, only the components that need to be reconfigured have this mecha-
nism.

To carry out these objectives, the description of dynamic reconfiguration
is constrained by both architecture and a set of rules. Both of them allow to
determine whether reconfiguration is realizable or not as well as the necessary
steps for the component substitution. These two functionalities will be imple-
mented through a controller containing a representation of the architecture as
well as reconfiguration procedures. This new controller, called ReconfEngine, is
connected to the existing Fractal controllers as depicted by the Figure 3. The
system to be reconfigured can either be a primitive component, a composite
component or a complete application.

To implement this new controller, a new interface was defined that describes
three operations : request() allowing the initiator of the reconfiguration to sub-
mit a new description of the system configuration ; resume() to avoid blocking
on waiting of a stable state ; cancel() to cancel the current reconfiguration and
to return in the initial configuration. It implies that the reconfiguration controller
stores the current configuration of the system.

5 http://fractal.objectweb.org/
6 http://www.inria.fr/

7



Fig. 3. Links between the reconfiguration controller and the system to reconfigure

Moreover, the Fractal controller LifeCycleController was upgraded with
two new methods: suspend() to place the component and its sub-components
in a stable state and resume() allowing to cancel the reconfiguration in progress
and to restart the normal activity of the component.

[17] proposes some functionalities in the following way:

1. An initiator asks for a reconfiguration by calling the function request() of
ReconfEngine and passing the new configuration as argument.

2. ReconfEngine checks if reconfiguration can be carried out. If not, it rejects
it and stops. At this step, the components and the links having to be recon-
figured are known.

3. ReconfEngine binds to the control interfaces of the components having to
be reconfigured.

4. Then for each component to be reconfigured, ReconfEngine requires obtain-
ing a stable state by calling the method suspend().

5. When the stable state is reached, LifeCycleController reactivates Reconf-
Engine by using the function resume().

6. ReconfEngine finally sets up the new configuration:
(a) the new components are loaded in memory,
(b) and/or the binds are reconfigured.
(c) the states are transferred between the components
(d) the components which are not used any more are unloaded from memory.

7. Reconfiguration is thus finished and the new configuration is saved.

Before reconfiguring the application, components must be in a stable state.
[17] proposed to determine a stable state for a component using the same mecha-
nism of interception that those used in Julia7 to carry out this task : it consists in

7 Julia is the reference implementation of the Fractal component model in Java. See
http://fractal.objectweb.org/julia for more details

8



interposing proxies between the external and internal interfaces of a component
in order to count the incoming and outgoing calls to this component. When the
counter reaches zero, there is no more process in progress in the component, so
there is no more activity. The component is in a stable state. This approach has
performance problems since each proxy takes up additional memory capacity. It
also prevents the use of by-pass techniques which make it possible to directly
call an interface of a sub-component thanks to a reference to it. Without this
optimization, such a call requires three memory indirections.

In conclusion, the model for dynamic reconfiguration proposed for Think
in [17] is too generic to satisfy the inherent constraints of sensor networks. A
modification of this proposal is thus necessary.

4 A model for dynamic reconfiguration

4.1 Presentation of the model

In this section, we present our proposition to integrate dynamic reconfiguration
into WSN.

In order to solve the problem presented in section 3.2 regarding the capability
to merge both event-driven and component functional aspects policies, each com-
ponent requires an “event handler” for processing incoming events. That implies
to have a new structure of component, presented in Figure 4.

<<interface>>

Interface

<<SoftwareComponent>>

Component

<<SoftwareComponent>>

Event Handler

Event

provides

need

*

signals

*

*

1..*

*

*

*

manages

*

*

Fig. 4. Event-driven component model

The implementation of the “event handler” as a sub-component could facil-
itate later modifications of the system since only the handler, and the optional
links between the listened events and the handler, will be modified if new events
must be considered or if the existing set of managed event must be modified.

Our proposition is that our operating system will be based on an event-
driven model functioning in the following way : lower level components announce
events to the higher level components which are able to treat them. Higher
level components can ask lower level components for occurring tasks through

9



function calls. In the same way, components in the same level also communicate
by function calls. Figure 5 shows this mechanism.

The previously chosen scheduler, a FIFO queue, imposes that all tasks are
treated in order of arrival. Thus, an event arrival does not imply its immediate
execution. A solution to this problem in the use of a “priority queue” in which
events will have a priority higher than function calls. In this case, when an event
occurs, the scheduler will place it at the head of the queue or, after other tasks
having the same priority.

Application

<<SoftwareComponent>>

System

<<SoftwareComponent>>

Hardware Representation

<<HardwareComponent>>

Hardware

<<commands>>

<<commands>>

<<commands>> <<signals>>

<<signals>>

<<signals>>

Fig. 5. Functioning of the system

In summary, we do not use a “traditional” model of operating system but
the event-driven model of execution which we described previously. Indeed, this
model retrieves not only most of the characteristics which made the success
of TinyOS but authorizes dynamic allocations of component thus allowing ad-
vanced mechanisms such as dynamic reconfiguration. The behavior of our OS is
illustrated in the Figure 6 and could be described as following :

1. Initialisation of the system.
2. Wait for event.
3. Arrival of an event causes an activity. The system is held nevertheless on the

“waiting of event” state.
4. The system can be stopped by user intervention and if the user reactivates

it, it restarts in the state where it had stopped.

By referring on this event-driven model, searching of a stable state is an ex-
pensive operation. In our system, at a given moment, only one task is running.
That implies that when it finishes, the system is stable. Thus it carries out the

10



Init Running

Stopped

Waiting

Activity

H

ReceivedEvent

ActivityEnd

UserInterruption

UserRestart

Fig. 6. The states of the system

next task in the scheduler or it recovers on waiting for event. Moreover, if one
sees reconfiguration as an event, it is possible to assign to it a higher priority
compared to the other tasks and thus to allow that the next task selected by the
scheduler is reconfiguration. Suppression of the stable state is possible by the op-
erating mode of sensors. Indeed, it is recommended that the sensor performs its
task as soon as possible and recovers on standby in order to save the consump-
tion of the resources. Thus, a sensor must spend most of its time on standby.
Moreover, a constraint of our model is to prohibit blocking functions. One can
thus consider that if the reconfiguration event occurs during the execution of a
task, this one will take a relatively short time to finish and the reconfiguration
will be able to take place.

We must compare the cost of waiting for the activity end with the cost of
searching for a stable state for each component. Nevertheless, elements can be
brought to prove the interest of this solution. Firstly, the by-pass technique,
which constitutes one of the optimizations used by Think, can be preserved.
Secondly, it is not necessary anymore to interpose proxies to count the incoming
and outgoing calls of a component and the extension of LifeCycleController
can also be removed. Thus, it is possible to save memory compared to the solution
proposed in [17].

The second modification that we can consider relates to the tests determining
if reconfiguration can be carried out. Considering the little capacity of memory
available, it does not appear necessary to preserve this mechanism on sensors
because it requires to store not only the description of the architecture but also
the rules authorizing the transformation of this architecture. It is however pos-
sible to store only the rules allowing the transformations. Indeed, thanks to the
Fractal model, somme means of component introspection are introduced through
controllers, in particular the ContentController, the BindingController and
the Component. It is then possible to obtain the overall structure but this mecha-
nism increases the processor use. The time of establishment of a new architecture
will be inevitably function of the architectural complexity of the sensor as for
example in the presence of sub-components.

11



We thus recommend a delocalization of the whole mechanism. A sink node or
a base station, having less rigorous constraints, could carry out this functionality.
It could be constructed from a more powerful mote. Thus within the context of
a reconfiguration, the base station for example would process in the following
way :

1. Locally, it contains description of the sensor architecture as well as rules of
applicable reconfiguration. It allows it to test if reconfiguration is feasible,
and to establish the procedure to modify the sensor.

2. Once the reconfiguration procedure established (which link(s) to modify,
which component(s) to remove, which component(s) to add, . . . ), the base

station checks the component(s) presence on the sensor.
(a) If the component(s) to add are already presents on the sensor, it trans-

mits only to ReconfEngine the reconfiguration request with the proce-
dure,

(b) else, it transmits new component too or, if a closer sensor contains it,
localization of this one in order to obtain a copy from it.

4.2 Limitations and future works

Some limitations result from our model. The first one relates to the increase
in message exchanges on the network. If the initiator of reconfiguration is for
example a sensor, the request for reconfiguration must be transmitted to the
base station to be treated. Then the reconfiguration is transmitted from the
base station to the sensor concerned. When the configuration is realized, the
sensor must inform the base station that the operation correctly proceeded.
This example shows that three messages are needed whereas the solution of
[17] requires only one : initialization of reconfiguration. Nevertheless, practically
reconfiguring an application or a sensor node would not be a regular activity. So
increasing the rate of message exchanges from 1 to 3 seems to be an acceptable
sacrifice if it result in providing an efficient reconfiguration mechanism.

The second limitation relates to the centralized aspect of the mechanism.
Indeed, intuitively if the base station breaks down, it is not possible anymore to
reconfigure the system. Moreover a problem appears if for example, a validation
message of reconfiguration is lost. The base station can then consider that recon-
figuration failed and then either considers the sensor as destroyed, or considers
that it has returned in its initial configuration whereas this latter has been effec-
tively modified. This case can occur because the reliability of exchanges is not
a condition imposed in sensor networks. To solve this problem, it is possible to
insert some recovering mechanisms, but this would add some overhead. We are
waiting for experiment and measurement to better solve this limitation.

At the moment this work is at the final development phase. We encountered
some error with generating the operating system on AVR processor. This is
due to internal error in Think and we are working on the Think generator in
order to solve this problem. The next step will concern the evaluation of our
proposal with some tests in order to determine the overhead of this approach

12



and compare it to the other operating systems allowing dynamic reconfiguration.
These tests are designed to : firstly determine the amount of memory needed by
OS; secondly, evaluate memory capacity and occupancy rate of processor if one
removes the description of local architecture; and thirdly carry out a comparison
with the delocalized mechanism. That will thus make it possible to determine if
it is better to save memory capacity or the traffic load in the network.

5 Conclusions and future work

In this paper, we discussed about dynamic reconfiguration in the field of WSN.
This property is very important for the next generation of applications which
would run on WSN. We explained that the component paradigm and middleware
supporting it are the best support for deploying modern applications but are
still not supported by WSN. We highlighted that existing operating systems
for WSN are not adapted. Particulary TinyOS because the component based
architecture is broken by its specific optimization. We proposed to create a new
specialized operating system for WSN, called Valentine, based on the CBSE
results, and using Think, a powerful generator of operating systems. Finally,
we discussed about the characteristics of this new operating system in order to
provide a support for dynamic reconfiguration and we proposed a specific model
for dynamic reconfiguration.

References

1. Weiser, M.: Some Computer Science Issues in Ubiquitous Computing. Communi-
cations of the ACM 36 (1993) 75 – 84

2. Khemapech, I., Duncan, I., Miller, A.: A survey of wireless sensor networks tech-
nology. In: PGNET, Proceedings of the 6th Annual PostGraduate Symposium on
the Convergence of Telecommunications, Networking & Broadcasting. (2005)

3. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System ar-
chitecture directions for network sensors. In: Proceedings of Ninth International
Conference ASPLOS, Cambridge, MA, USA (2000)

4. Szyperski, C., Gruntz, D., Murer, S.: Component Software – Beyond Object-
Oriented Programming. 2nd edn. ACM Press. Addison-Wesley, New York, NY
(2002)

5. Kephart, J., Chess, D.: The vision of autonomic computing. IEEE Computer 36

(2003) 41–50
6. The Think Project: Think home page (2006) http://think.objectweb.org/.
7. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for

network programming at scale. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems, Baltimore, MD, USA (2004) 81–94

8. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: Proceed-
ings of the 10th international conference on Architectural support for programming
languages and operating systems, San Jose, California (2002) 85–95

9. Han, C.C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating
system for sensor nodes. In: Proceedings of the 3rd international conference on
Mobile systems, applications, and services, Seattle, Washington, USA (2005)

13



10. Dunkels, A., Grönvall, B., Voigt, T.: Contiki - a lightweight and flexible operating
system for tiny networked sensors. In: Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA (2004)

11. Balani, R., Han, C., Rengaswamy, R.K., Tsigkogiannis, I.: Multilevel software
reconfiguration for sensor networks. ACM Conference on Embedded Systems Soft-
ware (EMSOFT) (2006)

12. Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A., Maroti, M.:
Constraint-guided dynamic reconfiguration in sensor networks. In: Proceedings
of ISPN 04, Berkeley, CA, USA (2004)

13. Blumenthal, J., Handy, M.: Wireless Sensor Networks - New Challenges in Software
Engineering. In: Proc. of the IEEE Emerging Technologies and Factory Automation
Conference, Lisbon, Portugal (2003) 551–556

14. Hadim, S., Mohamed, N.: Middleware challenges and approaches for wireless sensor
networks. IEEE Distributed Systems Online 7 (2006)

15. Fassino, J.P., Stefani, J.B., Lawall, J., Muller, G.: Think: A software framework for
component-based operating system kernels. In: In the USENIX Annual Technical
Conference, Monterey, CA, USA (2002) 73–86

16. Sentilles, S.: Architecture logicielle pour capteurs sans-fil en réseau.
Master report, University of Pau, Pau, France (2006) http://www.univ-
pau.fr/ belloir/DOC/Sentilles-Rapport_final.pdf.

17. Polakovic, J.: Dynamische rekonfiguration in think. Master’s thesis, Universität
Karlsruhe (2004) Master report.

18. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. Software Practice and Experience,
special issue on Experiences with Auto-adaptive and Reconfigurable Systems 36

(2006) 1257–1284

14


