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Part I

Shared Libraries



Refresher – Shared vs Static

Static Library
• Code linked into application at compile time (by the static linker ‘ld’).

• Bigger binaries, faster startup time.

• Created by ar.

Shared Library
• Code linked into application at runtime (by the dynamic linker ‘ld.so’)

• Smaller binaries, slower startup time.

• Created by the ‘-shared’ option of the compiler/static linker.
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Why Shared Libraries

Can update without recompiling.

Can load dynamically with dlopen, and friends.

More efficient memory usage. 
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Shared Library Names

Every shared library has a special name called the ‘’soname’’.
• The soname has the prefix ‘’lib’’, the name of the library, the ‘’.so’’ extension, 

followed by a period and a version number.

Every shared library has a real name.
• The real name adds to the soname a period, a minor number, another period 

and the release number.

The linker name is the name that the compiler uses when requesting 
a library.
• The soname without any version number.
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How Libraries are Used

Runtime:
• Starting up an ELF executable automatically causes all the shared libraries 

used by the program to be loaded.

• The list of directories to be searched is stored in the file /etc/ld.so.conf.

Compilation:
• When you compile your program, you need to tell the linker about static and 

shared libraries that you are using.

• Use the –L option if the library is not installed in a standard place.

• The current directory is not a standard place.

• You can see the list of the shared libraries by using ldd.
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Environment Variables

LD_LIBRARY_PATH
• Directories where libraries should be searched for first, before the standard 

set of directories.

• Should only be used for debugging and testing.

• You do need to bother with this variable when setting ld’s ‘’rpath’’ option, 
which specifies the runtime library search path of that particular program 
being compiled.

LD_DEBUG
• Trigger verbose information during loading.

• Setting LD_DEBUG to ‘’help’’ will list all the possible options.
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Incompatible Libraries

When a new version of a library is binary-incompatible with the old 
one the soname needs to change.

In C, there are four basic reasons that a library would cease to be 
binary compatible: 
• The behavior of a function changes so that it no longer meets its original 

specification,

• Exported data items change (exception: adding optional items to the ends of 
structures is okay, as long as those structures are only allocated within the 
library).

• An exported function is removed.

• The interface of an exported function changes
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Part II
Sections Related to

Shared Libraries



ELF Symbols
Symbols are a reference to some type of data or code such as a global 

variable or function.
• For instance, the printf() function is going to have a symbol entry that points to it in 

the dynamic symbol table .dynsym.

In most ELF files, there exist two symbol tables:
• .symtab for the static linker symbols: file-scope objects and functions.
• .dynsym for the dynamic linker symbols: the exported and the imported.

When a binary is linked against a library, the library needed is stored in a 
DT_NEEDED entry in the .dynamic section, and the needed functions 
needed are registered in .dynsym with the following attributes:
• Value set to 0.
• Ndx set to UND.
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.symtab vs .dynsym 1/2  
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.symtab vs .dynsym 2/2 
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The .dynamic Section

The .dynamic section functions as a “road map” for the dynamic 
linker when loading and setting up an ELF binary for execution.

The .dynamic section consists of different tags:
• For instance, tags of type DT_NEEDED inform the dynamic linker about 

dependencies of the executable.

The .dynamic section also contains pointers to other important 
information required by the dynamic linker: .dynsym, .got.plt.
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Lazy Binding
When a binary is loaded into a process for execution, the dynamic linker 

performs last-minute relocations.

It resolves references to functions located in shared libraries, where the 
load address is not yet known at compile time.

Many of the relocations are typically not done right away when the binary 
is loaded but are deferred until the first reference to the unresolved 
location is actually made.

Lazy binding ensures that the dynamic linker never needlessly wastes time 
on relocations; it only performs those relocations that are truly needed at 
runtime.
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.plt and .got

Lazy binding is implemented with the help of two special sections:
• Procedure Linkage Table (.plt)

• Global Offset Table (.got)

ELF binaries often contain a separate GOT section called .got.plt for 
use in conjunction with .plt in the lazy binding process.
• The .got.plt section is analogous to the regular .got. Historically, they were the 

same.

.plt is a code section that contains executable code, just like .text.

.got.plt is a data section
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PLT

The PLT consists entirely of stubs of a well-defined format, dedicated 
to directing calls from the .text section to the library location.

The format of the PLT is as follows:
• There is a default stub.

• Function stubs, one per library function, all following the same pattern.
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Resolving a Library Function Using the PLT 1/2

Let’s say you want to call the ‘’puts’’ function, from the libc.
• Instead of calling it directly (which isn’t possible), you can make a call to the corresponding 

PLT stub, puts@plt.

The PLT stub begins with an indirect jump instruction, which jumps to an address 
stored in the .got.plt section.
• Initially, before the lazy binding has happened, this address is simply the address of the next 

instruction in the function stub.
• Subsequently, the next instruction jumps to the common default stub shared among all PLT 

function stubs.

The default stub pushes an identifier (taken from the GOT), identifying the 
executable itself, and then jumps (indirectly, again through the GOT) to the 
dynamic linker.
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Resolving a Library Function Using the PLT 2/2

Using the identifiers pushed by the PLT stubs, the dynamic linker figures 
out that it should resolve the address of puts.

The dynamic linker then looks up the address at which the puts function is 
located and plugs the address of that function into the GOT entry 
associated with puts@plt.

Thus, the GOT entry no longer points back into the PLT stub, as it did 
initially, but now points to the actual address of puts.

For any subsequent calls to puts@plt, the GOT entry already contains the 
appropriate (patched) address of puts, so that the jump at the start of the 
PLT stub goes directly to puts without involving the dynamic linker.
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Why GOT

Wouldn’t it be simpler to just patch the resolved library address 
directly into the code of the PLT stubs?

.plt section is NOT writable (Principle: W^X).
• In other words, this extra layer of indirection allows you to avoid creating 

writable executable sections.
• Indeed, GOT is a data section.

Data references go directly through the GOT, without the 
intermediate step of the PLT.
• .got is for references to data items, while .got.plt is dedicated to storing 

resolved addresses for library functions accessed via the PLT.
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Part III

Disassembly



Basic Binary Analysis Tools
ldd: find out on which shared objects a binary depends and where (if 

anywhere) these dependencies are on your system.
xxd: a hex-dumping program.

readelf: parse ELF files.
nm: display symbols.
objdump: examine instruction-level behavior.

strings: display any printable character strings in a file.
strace & ltrace: show the system and library calls.

gdb: dynamic analysis.
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Static vs Dynamic

When people say “disassembly,” they usually mean static 
disassembly, which involves extracting the instructions from a binary
without executing it.

Dynamic disassembly, more commonly known as execution tracing, 
logs each executed instruction as the binary runs.
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Static Analysis Steps
The goal of every static disassembler is to translate all code in a binary into a 

form that a human can read or a machine can process

To achieve this goal, static disassemblers need to perform the following steps:
1. Load a binary for processing, using a binary loader like libelf.
2. Find all the machine instructions in the binary.
3. Disassemble these instructions into a human- or machine-readable form.

Unfortunately, step 2 is often very difficult in practice, resulting in disassembly 
errors.

There are two major approaches to static disassembly, each of which tries to 
avoid disassembly errors in its own way:
• linear disassembly.
• recursive disassembly.
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Linear Disassembly
It iterates through all code segments in a binary, decoding all bytes 

consecutively and parsing them into a list of instructions.
• Many simple disassemblers, including objdump, use this approach.

The risk of using linear disassembly is that not all bytes may be 
instructions.
• If disassemblers accidentally parse this inline data as code, they may encounter 

invalid opcodes, or even valid opcodes.

In practice, linear disassemblers such as objdump are safe to use for 
disassembling ELF binaries compiled with recent versions of compilers such 
as gcc or LLVM’s clang. 
• The x86 versions of these compilers don’t typically emit inline data.
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Recursive Disassembly

Recursive disassembly starts from known entry points into the binary 
(such as the main entry point and exported function symbols)
• From there recursively follows control flow (such as jumps and calls) to 

discover code.

This allows recursive disassembly to work around data bytes 
• The downside of this approach is that not all control flow is so easy to follow.
• For instance, it’s often difficult, if not impossible, to statically figure out the 

possible targets of indirect jumps or calls.

Recursive disassembly is the de facto standard in many reverse-
engineering applications, such as IDA Pro and Ghidra.
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Linear vs Recursive

For benign x86 ELF binaries, linear disassembly is a good choice 
because it will yield both a complete and accurate disassembly: 
• Such binaries typically don’t contain inline data that will throw the 

disassembler off.
• The linear approach won’t miss code because of unresolved indirect control 

flow.

In cases where disassembly correctness is paramount, even at the 
expense of completeness, you can use dynamic disassembly.

If inline data or malicious code is involved, it’s probably a better idea 
to use a recursive disassembler that’s not as easily fooled into 
producing bogus output as a linear disassembler is.
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Dynamic Analysis

Dynamic disassemblers simply dump instructions (and possibly 
memory/register contents) as the program executes.
• It is also known as execution tracers or instruction tracers

When execution reaches a particular address, you can be absolutely 
sure there’s an instruction there, so dynamic disassembly doesn’t 
suffer from inaccuracy.

The main downside of this approach is the code coverage problem:
• The fact that dynamic disassemblers don’t see all instructions but only those

they execute.
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Code Coverage Problem
The main disadvantage of dynamic disassembly is code coverage: 

• The analysis only ever sees the instructions that are actually executed during the 
analysis run.

If any crucial information is hidden in other instructions, the analysis will 
never know about it.

It is difficult and time-consuming to find the correct inputs to cover every 
possible program path.
• Dynamic disassembly will almost never reveal all possible program behavior.

There are several methods you can use to improve the coverage of 
dynamic analysis tools, though in general none of them achieves the level 
of completeness provided by static analysis.
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Strategies 1 : Test Suites

Running the analyzed binary with manually-chosen test inputs.

The downside of this approach is that a ready-made test suite isn’t 
always available, for instance, for proprietary software or malware.
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Strategies 2 : Fuzzing
Fuzzing is to try to automatically generate inputs to cover new code paths 

in a given binary.

Broadly speaking, fuzzers fall into two categories based on the way they 
generate inputs.
• Generation-based fuzzers: These generate inputs from scratch (possibly with 

knowledge of the expected input format).
• Mutation-based fuzzers: These fuzzers generate new inputs by mutating known valid 

inputs in some way, for instance, starting from an existing test suite.

The success and performance of fuzzers depend greatly on the 
information available to the fuzzer.
• For instance, it helps if source information is available or if the program’s expected 

input format is known.
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Strategies 3 : Symbolic Execution
Symbolic execution allows you to execute an application not with concrete values but 

with symbolic values.

Symbolic execution is essentially an emulation of a program, where all or some of the 
variables (or register and memory states) are represented using such symbols.

The symbolic execution also computes path constraints, which are just restrictions on 
the concrete values that the symbols could take.

The key point is that given the list of path constraints, you can check whether there’s any 
concrete input that would satisfy all these constraints.
• There are special programs, called constraint solvers, that check, given a list of constraints, 

whether there’s any way to satisfy these constraints.

Solving a set of path constraints is computationally intensive; if you don’t take care, your 
symbolic execution approach can easily become unscalable.
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Part IV

Binary Analysis



Structuring Code

Large unstructured heaps of disassembled instructions are nearly 
impossible to analyze.
• Most disassemblers structure the disassembled code in some way that’s 

easier to analyze.

Techniques:
• Compartmentalizing: By breaking the code into logically connected chunks, it 

becomes easier to analyze what each chunk does.

• Revealing control flow. How the chunks are related to each other.
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Functions Detection
Functions are the fundamental building blocks used to group logically 

connected pieces of code.

Most disassemblers make some effort to recover the original program’s 
function structure and use it to group disassembled instructions.

For binaries with symbolic information, function detection is trivial; 
• The symbol table specifies the set of functions, along with their names, start 

addresses, and sizes.

Source-level functions have no real meaning at the binary level, so their 
boundaries may become blurred during compilation.
• Bits and pieces of the function might be scattered throughout the code section,
• Chunks of code may even be shared between functions (known as overlapping code 

blocks).
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Functions Signatures
Function signatures: patterns of instructions often used at the start or end 

of a function.

Typically, signature-based function detection algorithms start with a pass 
over the disassembled binary to locate functions that are directly 
addressed by a call instruction.

Function signature patterns include well-known function prologues 
(instructions used to set up the function’s stack frame) and function 
epilogues (used to tear down the stack frame).

Optimized functions may not have well-known function prologues or 
epilogues at all, making them impossible to recognize using a signature-
based approach
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Control-Flow Graphs

To organize the internals of each function, disassemblers and binary 
analysis frameworks use another code structure, called a control-flow 
graph (CFG).

CFGs represent the code inside a function as a set of code blocks, 
called basic blocks, connected by branch edges.
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Call Graphs

Call edges are not part of a CFG because they target code outside of 
the function.

Call graphs are similar to CFGs, except they show the relationship 
between call sites and functions rather than basic blocks.

CFGs show you how control may flow within a function, while call 
graphs show you which functions may call each other.
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Structuring Data
Disassemblers automatically identify various types of code structures to help 

your binary analysis efforts.

Automatic data structure detection in stripped binaries is a notoriously difficult
• Aside from some research work, disassemblers generally don’t even attempt it.

Primitive types can sometimes be inferred by the registers they’re kept in or the 
instructions used to manipulate the data.
• For instance, if you see a floating-point register or instruction being used, you know the data 

in question is a floating-point number.
• If you see lodsb (load string byte) or stosb (store string byte), it’s likely manipulating a string.

To facilitate structuring data manually, IDA Pro (or Ghidra) allows you to define 
your own composite types (which you have to infer by reversing the code) and 
assign these to data items.
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Decompilation

Decompilers are tools that attempt to “reverse the compilation 
process.” 
• They typically start from disassembled code and translate it into a higher-level 

language, usually a form of C-like pseudocode.

Decompilers are useful when reversing large programs because 
decompiled code is easier to read than lots of assembly instructions.

Decompilers are limited to manual reversing because the 
decompilation process is too error-prone to serve as a reliable basis 
for any automated analysis.
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Optimization 1/2
Unfortunately, optimized code is usually significantly harder to accurately 

disassemble (and thus analyze) than unoptimized code.

• Inlining: compilers often merge small functions into the larger functions 
calling them, to avoid the cost of the call instruction.

Optimized calling conventions make function detection significantly less 
accurate.

At higher optimization levels, compilers often emit padding bytes between 
functions and basic blocks to align them at memory addresses where they 
can be most efficiently accessed.
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Optimization 2/2

Compilers may “unroll” loops to avoid the overhead of jumping to 
the next iteration.

• Optimized code may use the same base register to index different 
arrays at the same time, making it difficult to recognize them as 
separate data structures.
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