
Software Security

Mohamed Sabt

Univ Rennes, CNRS, IRISA

2022 / 2023

Connecting the Dots

Part I

Introduction

Compilation Steps

3

C code first gets compiled into assembly code.

Assembly code is then converted into machine code.

Simple Program

A simple C program: return47.c

#define FOURTYSEVEN 47

int main(void) {

return FOURTYSEVEN;

}

4

Preprocessor

5

Resolves Macros (#define)

Add additional source code (#include)

Handles other directives like #pragma and #if

Example:
gcc -E return47.c

int main(void) {

return 47;

}

Compiler

6

Compilation into assembly code.

Example:
gcc -S return47.c

main:

movl $47, %eax

ret

Assembler

7

Conversion into machine code.

Example:
gcc -c return47.c

0000000000000000 <main>:

0: b8 2f 00 00 mov $0x2f,%eax

5: c3 retq

Linker

8

Adds start up code.

May combine multiple object files.

Example:
gcc return47.c

./a.out

echo $?

Hello World – Code Source

#include <stdlib.h>

#include <stdio.h>

int main(void) {

printf("Hello world!\n");

return EXIT_SUCCESS;

}

9

Hello World – Assembly Code
.LC0:

.string "Hello world!"

.text

.globl main

.type main, @function
main:

subq $8, %rsp
movl $.LC0, %edi
call puts
movl $0, %eax
addq $8, %rsp
ret

10

Hello World – Machine Code (Disassembled)

objdump –t hello_world.o

0000000000000000 g F .text 0000000000000018 main

0000000000000000 *UND* 0000000000000000 puts

Function “puts” is labeled as undefined (*UND*).

Linker resolves this.

11

Part II

Static Linking (1)

Example C Program

13

int array[2] = {1, 2};
void swap(int*, int*);
int main(void) {

swap(array, array + 1);
return 0;

}

main.c

void swap(int * a, int * b) {
int temp = *a;
*a = *b;
*b = temp;

}

swap.c

Static Linking

14

What is a Linker?

A System Software that combines two or more separate object
programs and supplies the information needed to allow references
between them.

In short, linker performs the final step to convert .obj files into
executable or machine readable file (.exe).

15

Why Linkers?

Reason 1: Modularity

Program can be written as a collection of smaller source files, rather
than one monolithic mass.

Can build libraries of common functions (more on this later).
• E.g., Math library, standard C library.

16

Why Linkers? (cont)

Reason 1: Efficiency

Time: separate compilation
• Change one source file, compile, and then relink.

• No need to recompile other source files.

Space: Libraries
• Common functions can be aggregated into a single file.

• Yet executable files and running memory images contain only code for the
functions they actually use.

17

What Are Linkers For?
Step 1. Symbol resolution

Programs define and reference symbols (variables and functions)
• void swap(int *, int*) {…} // define symbol swap
• swap(a, b); // reference symbol swap
• int * xp = &x; // define symbol xp, reference x

Symbol definitions are stored (by compiler) in symbol table
• Symbol table is an array of structs.
• Each entry includes name, size, and location of symbol.

Linker associates each symbol reference with exactly one symbol
definition.

18

Exercises

True / False

The (External) Symbol Table does contain variables with automatic
storage duration.

The (External) Symbol Table does contain variables with static
storage duration, but internal linking.

19

What Do Linkers Do? (cont)

20

Step 2. Relocation

swap()

swap()

swap.o

Creating Static Libraries

Archiver allows incremental updates.

Recompile function that changes and replace .o file in archive.

21

Commonly Used Libraries

libc.a (The C Standard library)
• 4 MB archive of almost 1500 object files.

• I/O, memory allocation, signal handling, string handling, etc.

libm.a (The C math library)
• 2 MB archive of almost 500 object files.

• Floating-point math (sin, cos, tan, exp, etc.)

22

Using Static Libraries

Linker’s algorithm for resolving external references
• Scan .o files and .a files in the command line.

• During the scan, keep a list of the current unresolved references.

• As for each new .o or .a file, try to resolve each unresolved reference in the
list against the symbols defined in the file.

• If any entries in the unresolved list at end of scan, then error.

Problem
• Common line order matters

• Moral: put libraries at the end of the command line.

23

Part III

Static Linking (2)

Global Variables

Initialized vs. Uninitialized
• Initialized allocated in data section.

• Uninitialized allocated in bss section.
• Implicitly initialized to zero.

File scope vs. program scope
• Static global variables known only within file that declares them.

• Two of same name in different files are different.

• Non-static global variables potentially shared across all files.
• Two of same name in different files are same.

25

Scope

26

static int x;
int y = 0;
void func1(…) {

…
}

file1.c

static int x;
int y;
void func2(…) {

…
}

file2.c

same

Different

Reconciling Program Scope

27

static int x;
int y = 0;
void func1(…) {

…
}

file1.c

static int x;
int y;
void func2(…) {

…
}

file2.c

Tentative
definition

complete definition

Linker Symbols

Global symbols
• Symbols defined by module “m” that can be referenced by other modules.

• Examples: non-static functions and non-static global variables.

External symbols
• Global symbols that are referenced by a module “m”, but defined by some

other module.

Local symbols
• Symbols that are defined and referenced exclusively by module “m”.

• Examples: static functions and variables.

28

Resolving Symbols

29

int array[2] = {1, 2};
void swap(int*, int*);
int main(void) {

swap(array, array + 1);
return 0;

}

main.c

void swap(int * a, int * b) {
int temp = *a;
*a = *b;
*b = temp;

}

swap.cGlobal Global

External

Linker knows nothing

Strong and Weak Symbols

Program symbols are either strong or weak
• Strong: procedures and initialized globals

• Weak: uninitialized globals

30

Linker’s Symbol Rules

Rule 1: multiple strong symbols are not allowed
• Each item can be defined only once.

• Otherwise: linker error

Rule 2: given a strong symbol and multiple weak symbol, choose the
strong symbol.
• References to the weak symbol resolve to the strong symbol

Rule 3: if there are multiple weak symbols, pick an arbitrary one.
• Can override this with gcc –fno-common

31

Exercise 1/3

32

static int x;
int y = 0;
void func1(…) {

…
}

file1.c

static int x;
int y = 1;
void func2(…) {

…
}

file2.c

Exercise 2/3

33

static int x;
int y = 1;
void func1(…) {

…
}

file1.c

static int x;
int y = 1;
void func2(…) {

…
}

file2.c

Exercise 3/3

34

static int x;
extern int y;
void func1(…) {

…
}

file1.c

static int x;
int y = 1;
void func2(…) {

…
}

file2.c

Default Values

35

static int x;
__attribute__((weak))int y = 1;
void func1(…) {

…
}

file1.c

static int x;
int y = 2;
void func1(…) {

…
}

file2.c

Global Symbols in Assembly

36

int y = 1;
Int * yp = &y;
int func(void);
void main(void) {

int x = *yp + 1;
return func();

}

file1.c file1.s

Assembly Directives
.file: supplies information to be placed in the object file and the

executable.

.data: indicates that what follows goes in the data section.

.globl: indicates that the defined symbol will be used by other modules,
and this should be made known to the linker.

.type: indicates how the symbol is used. Two possibilities are function and
object.

.size (.align): indicates the size (alignment) should be associated with the
given symbol.

37

New Programs (Relocation)

38

void doAlmostNothing(void);
void main(void) {

doAlmostNothing();
return 0;

}

file1.c

static void doNothingStatic(void){}
void doNothing(void){}
void doAlmostNothing(void) {

doNothingStatic();
doNothing();

}

nothing.c

Symbols in nothing.o

39

Relocations in nothing.o

40

What this says to the link editor is: “Be careful, what is at offset 22
has to be replaced by an address that can be calculated in the way
described by the relocation type X86_64_PC32.

 The type of relocation tells the linker how to calculate the effective
address. In this case S + A - P where:
• S: The value of the symbol whose index resides in the relocation entry.
• A: The addend used to compute the value of the relocatable field.
• P: The section offset or address of the storage unit being relocated

Doing Relocation

Linker is provided instructions for updating object files.

Lots of ways addresses can appear in machine code.

Three in common use on x86-64
• 32-bit absolute addresses (.text)

• 64-bit absolute addresses (.data)

• 32-bit PC-relative addresses (both .text and .data)

41

Final Binary

42

Doing Relocation

The call to doNothingStatic has not changed. The call to
doNothingStatic was already relative jump from the next instruction
to execute.

The linker calculated that call to doNothing was a jump to 0x6a6 +
0xffffffe1 = 0x687.

43

Doing Relocation

The .text section of nothing.o starts at 0x680.

The linker knows from the relocation section that
it will have to change the value at 0x6a2 = (Try to guess?)

So that it jumps towards 0x687 = (try to guess)

The relative jump is
• 0x687 – 0x6a6 = ???? = S + A – P

• Guess S, A, and P.

44

Part IV

More on ELF Linking

The Under-Estimated Task 1/2

Unlike compilation, the linking process remains largely invisible and
poorly studied, for programmers and researchers alike.

46

The Under-Estimated Task 2/2
We can see that __libc_malloc and __libc_calloc using a third internal

helper function called _int_malloc().
• Those two functions are not guaranteed to always call the helper.
• By defining calloc as alternative ‘weak’ name, user code may optionally supply its

own calloc (overriding the local ‘weak’ alias)

These strong_alias and weak_alias directives step outside the bounds of
the C language:
• they are macro-expanded to assembler directives controlling the object file sent to

the linker.

Conventional source-language semantics do not attempt to address the
questions posed in the previous paragraph, but in practice linker features
are used to control name binding and symbol visibility.

47

Linker Speak

Much software is not written merely in a programming language like
C, but also in ‘linker speak’.

« Linker Speak » include
• the linker command-line,

• metadata contained within object files,

• assembler and compiler directives that generate that.

Linking is not simply a matter of separate compilation. Systems code
and application code alike.

48

Linker Speak – Arguments

These are command-line options supplied when invoking the linker.

In dynamic linking, environment variables serve an analogous
purpose.

49

Linker Speak – Scripts

Most linkers embed a script language.
• Although programmers rarely see it, every link job is controlled by a unique

control script.

Purposes:
• It used to control how sections in input files are mapped in the output file.

• It also provides means for controlling the program entry point, describing
regions of memory and their flags, alignment, and so on.

The user may supply their own script, overriding the built-in default.

50

Linker Speak – Metadata

Object files also contain metadata.

These metadata have corresponding forms in
• Assemblers (directive, or pseudo-operations)

• Compilers (attributes)

51

Use-Cases – Encapsulation

Source-language encapsulation features, such as static modifier, may
map directly to linker features, such as ELF’s local symbols.

Linkers expose three other encapsulation facilities that are not
supported by the language:
• ELF symbol visibility attributes,

• Archives (static libraries),

• Dynamic export control.

Compiler options can hide symbols (-fvisibility=hidden) by default.

52

Use-Cases – Built-Time Substitution

Link-time mechanisms may be used to substitute one definition for
another.

Multiple definitions are allowed if all are marked ‘weak’;
• An ordinary strong definition takes precedence, but otherwise the first weak

definition is chosen.

The semantics of archives are such that a C program can supply its
own malloc.o while still linking with the remainder of the C library
libc.a.

53

Use-Cases – Load-Time Substitution

Dynamic linkers offer another substitution feature: LD_PRELOAD
• This environment variable can supply a named library, whose definitions take

precedence over those on all other libraries (but not in the executable).

This works only when the program is dynamically linked.

54

Use-Cases – Interposition

Interposition can be seen as substitution where the prior definition is
re-used by the substituted one.
• The linker’s --wrap option.

Linking with --wrap func redirects func to __wrap_func, which may
call the real func to reach the original definition.

The semantics of --wrap affect only reference to undefined symbols.

55

Use-Cases – Optionality

Weak symbols allow codebases to reference optional features.
• Unresolved weak symbols are specified to take the value 0, so the absence of

a definition can be identified.

56

Use-Cases – Aliases

In most programming languages, a definition has exactly one name.

At link time, however, the same range of bytes may have multiple
symbol names:
• Each denoting the same address but with different metadata.

__attribute__(alias(“”))

57

Use-Cases – Versioning

Shared libraries must allow old clients to be executed against a
newer library binary.

To prevent interface changes from breaking old clients, modern
dynamic linkers support symbol versioning
• allowing multiple versions of an interface to be exposed by a single backward-

compatible binary.

58

