
Software Security

Mohamed Sabt

Univ Rennes, CNRS, IRISA

2022 / 2023

Objdump (ELF) Binaries

Part I

Introduction

Three Kinds of Compiled Files (Modules)
Relocatable object file (.o file)

• Contains code (machine instructions) and data (constants and variables) in a form
that can be combined with other relocatable object files to form executable file.

• Each .o file is produced from exactly one source .c file

Executable object file (a.out file)
• Contains code and data in a form that can be copied directly into memory and then

executed.

Shared object file (.so file)
• Special type of relocatable object file that can be loaded into memory and linked

dynamically, at either load time or run-time.
• Called Dynamic Link Libraries (DLL) by Windows.

3

Executable and Linkable Format (ELF)

Standard binary format for object files.

Originally proposed by AT&T System V Unix
• Later adopted by BSD Unix variants and Linux.

One unified format for
• Relocatable object files .o

• Executable object files a.out

• Shared object file .so

Generic name: ELF binaries (only study 64-bit ELF binaries)

4

ELF Views
ELF describes two separate ‘views’ of an executable:

• A linking view
• A loading view

Linking view is used at static link time to combine relocatable files.
• Section Headers are used during compile-time linking;
• It tells the link editor ld how to resolve symbols, and how to combine several ELF

objects into one executable.

Loading view is used at run time to load and execute program.
• Segment Headers are used during execution;
• It tells the runtime linker ld.so what to load into memory and how to find dynamic

linking information.

5

64-bit ELF Binary

6

Executable Header

Program Headers

Sections

Section Headers

ELF Components

Executable Header
• Tells you that what kind of an ELF file is.

A series of (optional) program headers (or segments)
• Provides the execution view.

A number of sections
• The code and data of programs.

A series of (optional) section headers
• Each denoting the property of its related section.

7

Section vs Segment

Section: exists before linking, in object files.
• Sections contain raw data to be loaded into memory.

• Sections also contain metadata that will disappear at runtime.

Segment exists after linking, in the executable files.
• One or more sections will be put inside a single segment by the linker.

• Segments contain information about how each section should be loaded into
memory by the OS, notably location and permissions.

8

Part II

Executable (ELF) Header

ELF64_Ehdr in /usr/include/elf.h

10

E_ident Array
 4-byte magic value:

• 7F 45 4C 46

• Hexadecimal 0x7F followed by the ASCII character code for the letters ‘E’, ‘L’ and ‘F’.

 EI_CLASS
• Denotes whether the binary is for 32-bit or 64-bit architecture.

 EI_DATA
• Indicates the endianness of the binary.

 EI_VERSION
• Version of the ELF specification.

• The only valid value is 1.

 EI_OSABI
• Non zero value indicates the use of OS-specific extensions.

 EI_ABIVERSION
• Often set to zero.

 7-byte EI_PAD
• Reserved for future use.

• Currently set to zero.

11

ELF Header Example 1/4

12

The fields e_type, e_machine, and e_version
E_type:

• ET_REL: relocatable object file.
• ET_EXEC: executable binary.
• ET_DYN: shared object file.

E_machine
• Denotes the CPU architecture.
• EM_X86_64.
• EM_386.
• EM_ARM.

E_version
• Similar to EI_VERSION in the e_ident array.

13

E_entry

Denotes the entry point of the binary.
This is the virtual address at which the execution would start.

14

ELF Header Example 2/4

15

The fields e_phoff and e_shoff

The only data structure that can be assumed at a fixed location is the
executable header, which is always at the beginning.

E_phoff
• Indicates the file offset to the beginning of the program header

E_shoff
• Indicates the file offset to the beginning of the section header

File offsets are NOT virtual addresses ; they mean the number of
bytes to read to get to the headers.

16

E_flag

Provides architecture specific flags.

For x86 binaries, e_flags is typically set to zero.

17

ELF Header Example 3/4

18

The fields e_ehsize, e_*entsize and e_*num

E_ehsize
• Specifies the size of the executable header.

• For 64-bit binaries, it is always equal to 64 bytes.

E_phrntsize and e_shentsize
• The size of each header.

E_phnum and e_shnum
• The number of headers.

19

ELF Header Example 4/4

20

E_shstrndx

The section .shstrtab contains NULL-terminated strings that store the
name of all the sections in the binary.

The field e_shstrndx is the index of the .shstrtab section in the
section header table.

21

Section Names

22

Part III

Section Headers

Headers

Sections do not have any predetermined structure.

Each section is described by a section header
• Which denotes the properties of the section;

• And allows you to locate its content.

Section Headers are at the end of the ELF file.

24

ELF64_Shdr in /usr/include/elf.h

25

The fields sh_name and sh_type

Sh_name
• Index into the string table of the section .shstrtab.

• This is not for machines, but for humans.

Sh_type
• SHT_PROGBITS: contain program data, such as machine instructions.

• SHT_SYMTAB: static symbol tables.

• SHT_DYNSYM: symbol tables for the dynamic linker.

• SHT_STRTAB: string tables.

• SHT_REL and SHT_RELA: used for static linking purposes.

26

sh_flags

SHF_WRITE
• Indicates whether the section is writable at runtime.

SHF_ALLOC
• Contents are to be loaded when executing the program.

SHF_EXECINSTR
• Contains executable instructions.

27

The fields sh_addr, sh_offset and sh_size

These fields describe the virtual address, file offset and size (in bytes)
of the section.

Exercise: why sh_addr in the section view?

28

The fields sh_addralign and sh_entsize

Sh_addralign
• The required alignment in memory for faster execution.

Sh_entsize
• Some sections, such as symbol tables and relocation tables, contain a table of

well-defined data structures.

• This field indicates the size of each entry of this table.

29

Section Headers
Example

30

Stripping Section Table

Find where section table is
• readelf –h

Remove it
• truncate -s

Verify that you can run the file

Try to use readelf to display some sections.

31

Part IV

Sections

Sections View

Typical ELF files that you’ll find on a GNU/Linux system are organized
into a series of standard (orde facto standard) sections.

For each section, readelf shows the relevant basic information,
including the index (in the section header table), name, and type of
the section.

Moreover, you can also see the virtual address, file offset, and size in
bytes of the section.

Finally, readelf also shows the relevant flags for each section, as well
as other additional information.

33

Example of Sections

34

The .init and .fini Sections

The .init section contains executable code that performs initialization
tasks and needs to run before any other code in the binary is
executed.
• The system executes the code in the .init section before transferring control

to the main entry point of the binary.

The .fini section is analogous to the .init section, except that it runs
after the main program completes, essentially functioning as a kind of
destructor

35

The .init_array and .fini_array Sections
The .init_array section contains an array of pointers to functions to run

when the binary is initialized, before main is called.
• .init section contains a single startup function that performs some crucial

initialization needed to start the executable.
• .init_array is a data section that can contain as many function pointers as you want,

including your own functions.
• By default, there is an entry for executing frame_dummy.

As you may have guessed by now, .fini_array is analogous to .init_array,
except that .fini_array contains pointers to destructors rather than
constructors.

These sections are convenient places to insert hooks that add initialization
or finalization code to the binary to modify its behavior.
• In gcc, you can mark functions in your C source files as constructors (resp.

destructors) by decorating them with __attribute__((constructor)) (resp.
__attribute__((destructor))).

36

The .text Section

The .text section is where the main code of the program resides.

37

The .bss, .data and .rodata Sections

The .rodata section, which stands for “read-only data,” is dedicated
to storing constant values.
• Constant data is usually also kept in its own section to keep the binary neatly

organized, though compilers do sometimes output constant data in code
sections.

The default values of initialized variables are stored in the .data
section, which is marked as writable since the values of variables may
change at runtime.

Finally, the .bss section reserves space for uninitialized variables.
• In the .bss section has type SHT_NOBITS. This is because .bss doesn’t occupy

any bytes in the binary as it exists on disk.
• Variables that live in .bss are zero initialized, and the section is marked as

writable.

38

The .shstrtab, .symtab, .strtab, .dynsym, and
.dynstr Sections
The .shstrtab section is simply an array of NULL-terminated strings

that contain the names of all the sections in the binary.

The .symtab section contains a symbol table that associates a
symbolic name with a piece of code or data elsewhere in the binary,
such as a function or variable.

The actual strings containing the symbolic names are located in the
.strtab section.
• Stripped binaries mean that the .symtab and .strtab tables are removed.

The .dynsym and .dynstr sections are analogous to .symtab and
.strtab, except that they contain symbols and strings needed for
dynamic linking rather than static linking.

39

Part V

Program Headers

Introduction

The program header table provides a segment view of the binary, as
opposed to the section view provided by the section header table.

An ELF segment encompasses zero or more sections, essentially
bundling these into a single chunk.

Since segments provide an execution view, they are needed only for
executable ELF files and not for nonexecutable files such as
relocatable objects.

41

ELF64_Phdr in /usr/include/elf.h

42

The p_type Field

The p_type field identifies the type of the segment.

Important values for this field include
• PT_LOAD: Segments of type are intended to be loaded into memory

• PT_DYNAMIC: contains the .dynamic section, which tells the interpreter how to
parse and prepare the binary for execution.

• PT_INTERP: contains the .interp section, which provides the name of the
interpreter that is to be used to load the binary.

43

The p_flags Field

The flags specify the runtime access permissions for the segment.

Three important types of flags exist:
• PF_X,

• PF_W

• PF_R.

44

The p_offset, p_vaddr, p_paddr, p_filesz, and
p_memsz Fields
The p_offset, p_vaddr, and p_filesz fields are analogous to the sh_offset,

sh_addr, and sh_size fields in a section header.
• For loadable segments, p_vaddr must be equal to p_offset, modulo the page size

(which is typically 4,096 bytes).

On modern operating systems such as Linux, the field p_paddr is unused
and set to zero since they execute all binaries in virtual memory.

At first glance, it may not be obvious why there are distinct fields for the
file size of the segment (p_filesz) and the size in memory (p_memsz).
• .bss Section as an example.

45

The p_align Field

The p_align field is analogous to the sh_addralign field in a section
header. It indicates the required memory alignment (in bytes) for the
segment.

If p_align isn’t set to 0 or 1, then its value must be a power of 2.

46

