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Introduction .
Overview

Problem statement

Problem and approaches

FDI for LTV systems

@ Relevant approach to FDI of NL systems
(linearization along the actual or nominal trajectory)

@ LTV systems more general than widely used LPV systems

Three main approaches

@ Detection filter, game theoretic approach to filter design,
unknown input decoupled filter, UIO, finite horizon fault

detection filter
Keviczky, Edelmayer, Chung-Speyer, Chen-Patton, Hou-Muller, Zhong-Ding, ...

@ Adaptive observers, set-valued observers, time domain

solutions to different H_ /.. problems
Zhang-Xu, Rosa-Shamma-Athans, Li-Zhou, ...

@ Parity-based fault estimation zhong-Ding
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Model and assumptions

MIMO LTV system (Hyg)
{Xk+1 = Fe Xok + GeUe + W

Yi = HeXe + JdeUc + Vg

Fx, Gk, Hk, Jx: bounded TV matrices
Wy, Vi: independent white Gaussian noises, TV cov. Qx, Rk

(Hk, Fx) observable & (Fy, 0,1/2) controllable, both uniformly

Additive faults (Hy)

Ye = He Xe + JeUe + Vg

#: unknown fault vector
W,: known TV fault profile

{Xk—H = FeXoe + GeUe + W + Vg0
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Different fault cases

@ Actuator bias: Uy — Uy + 0; then W = Gk

@ Actuator gain loss: Ux — (I — diag(8)) Uk;
then W = — Gy diag(Uyk)

@ Sensor faults: use a similar term W, 6 on the output
equation (not treated here)

@ Different fault occurrence speeds:
ex: step change Wi (r) £ Wy x I (and 6 constant)

A particular case

@ WV, = 6, k41 |- investigated by Willsky-Jones, Gustafsson
with F, assumed exponentially stable
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Proposed algorithm Detection algorithm
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Fault effect on the Kalman filter innovation

State prediction error and innovation - Fault free case

- A A
Xk = Xk — Xk|k—1
A o~
ek = Yo — Hi Xik-1

X0 = F(l-KeH)OXY — Fiki Vi + W
&9 = He X0 + Vi

State prediction error and innovation - Faulty case

X1 = Fe(l=Ka H)Xe — FiKe Vi + Wi + Wi
Exk = He X + Vi
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Introducing a matrix gain

X — Ty 0
Fk(l—Kka)rk—l-Wk, roéo

Mk

> >

[ k41
k41 = Fx (1= Kk Hi) nk — Fi Kie Vi + Wy
mw = XP

Additive fault effect

5k:52+Hkrk0
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Guaranteed properties of the recursive gain

@ [, depends on the fault gain W, not on the fault vector 6.
@ The matrix gain ', computed from the bounded W is
bounded even when the system is not stable.
@ The persistent excitation condition:
Sk TEHIE, T Hi Ty strictly positive definite
is satisfied even when the number of sensors is smaller

than the number of faults. )

Difference with the Willsky-Jones algorithm

@ Computations based on recursive formulas involving Fy
(thus required to be stable)
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Known fault profile matrix

MLE of 6 under Hj

Hp:ex ~N(0,%k), Hy:ex ~N(Hk Tk 6,Xk)
Ok = arg mgin Zk:(sj —H ;07 S (g —Hi T 6) = C; ' dy
j=1
Ck = Ck1+T] HI 5! He T
de = di1 +T] HI T ek

GLR test

A p(€1,...,6k|9:§k)
Ik=21In
k p(81,...,5k|9:0)

=d! ' d
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Unknown jump fault onset time

Handling the transient behavior after a jump

Wi(r) = Ve X Dggsry = Thir (r) = Fic (1= KicHi) Tr(r) + W(r)
Full treatment of the transient

Ok(r) = C.'(r) di(r)
Ik = max dl(r) C.'(r) dk(r)

1<r<k

fe = arg max dl (r) C'(r) di(r)

Mk(r), Ck(r), dk(r) computedforr € {k —w+ 1,k —w+2,...,k}
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Locating non zero components

Ep1
ZE| | ~N(M0,S)

€k

H?+1 I_?4—1 (?)

M = E y S:diag(ZfH,...,Zk)
Hi Tk (F)
CAEMTS'Z, FAMTS'M
0= {Za] — 05 =0against 0; # 0, 6 nuisance parameter
b
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A xT mx—1 4%
la = a Fa G

« A _ L A _
2= Ca—FapFp) G, Fhy=Faa—Fap Fpp Fpa

I3 ~ x3(dim(63))
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A simulated example
Numerical results
Example Conclusion

Leakage detection in gas transportation networks

Thanks to Paulo Lopes dos Santos et al., IEEE CST, Jan. 2011

Gas dynamics as a LPV model
Hyperbolic model linking edge pressure drop and mass flow
Discrete time LPV model

{Xk+1 = (Fo+Fpp) Xk + (Go+Gppk) Ue + Kgex

Yo = (Ho+Hopk) Xk + (bo+dopk) Uc + ek

Uk € R: input mass flow, Yy € R: output mass flow
Xk € R?: mass flow and pressure drop within the first section
Pk € R: scheduling parameter (pressure pattern)
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Simulated leakage

@ Additive changes on Gy, G, € R? (actuator gain loss) -
Monitoring the first component
@ Nominal values:
Go(1) = —7.8297¢ — 4
Gp(1) = +3.8290e — 5
@ Changed values:
Go(1)+1.6e—5 Fault 1
Gp(1)+9.5e—-6 Fault 2

o’

Available data, simulated data

@ Uy provided by P. Lopes dos Santos et al.
@ Y simulated using the LPV model
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Fault detection - Fault 1
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A simulated example
Numerical results

Example Conclusion
Detection delay and onset time estimate - Fault 1
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Detection delay and onset time estimate - Fault 2
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Fault isolation with the minmax tests - Fault 1
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A simulated example
Numerical results
Conclusion

Fault isolation with the minmax tests - Fault 2
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A simulated example
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Example Conclusion

FDI for LTV systems with TV additive faults

@ Combining a recursive and stable filter that cancels out the
fault dynamics and a GLR test

@ Handling additive parametric faults with weaker
assumptions than usual on the system stability and the
number of required sensors

@ Simulations confirm the stability of the proposed filter and
suggest the relevance of the proposed approach

@ Future investigations include numerical experiments on
simulated and real cases to assess the quality of the full
and simplified treatments of the transient
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