Statistical detection approach to flutter monitoring

Laurent Mével, Michèle Basseville, Albert Benveniste,

IRISA (CNRS & INRIA, Rennes, France)

basseville@irisa.fr - http://www.irisa.fr/sigma2/

Contents

- Motivation and modelling
- Eigenstructure monitoring: subspace-based residual
- Using the residual for flutter monitoring
 - Local approach and quadratic tests (GLR)
 - Other approximation and linear tests (CUSUM)
- Numerical results Ariane flight 501

In-flight modal analysis and aircraft stability

- Ensuring aircraft stability: in-flight tests with increasing altitude and airspeed
- Limited choices for measured excitation inputs, natural excitation input (turbulence): not controlled, not measured, and nonstationary
- Flutter: monitoring critical damping coefficients: accuracy and real-time issues in identification
- Idea: detection algorithms (shorter response time)

Modelling - Eigenstructure problem

FE model: $\begin{cases} M \ddot{\mathcal{Z}}(s) + C \dot{\mathcal{Z}}(s) + K \mathcal{Z}(s) = \nu(s) \\ Y(s) = L \mathcal{Z}(s) \end{cases}$ $(M\mu^2 + C\mu + K) \ \Psi_\mu = 0 \ , \ \ \psi_\mu = L \ \Psi_\mu$ State space: $\begin{cases} X_{k+1} = F X_k + V_k \\ Y_k = H X_k \end{cases}$ $F \varphi_{\lambda} = \lambda \varphi_{\lambda}, \quad \phi_{\lambda} \triangleq H \varphi_{\lambda}$ Parameter: $\underline{e^{\delta\mu} = \lambda}_{\text{modes}}$, $\underline{\psi_{\mu} = \phi_{\lambda}}_{\text{mode shapes}}$; $\theta \triangleq \begin{pmatrix} \Lambda \\ \text{vec } \Phi \end{pmatrix}$

Output-only covariance-based subspace identification

$$\underbrace{R_i \triangleq \mathrm{E}\left(Y_k \; Y_{k-i}^T\right)}_{\text{ok if stationary !}} \;, \quad \mathcal{H} = \mathrm{Hank}(R_i) \;, \quad R_i = H \; F^i \; G$$

$$G \triangleq \mathbf{E} \left(\mathbf{X}_{k} \ \mathbf{Y}_{k}^{T} \right), \quad \mathcal{O} \triangleq \left(\begin{array}{c} \mathbf{H} \\ \mathbf{HF} \\ \mathbf{HF}^{2} \\ \vdots \end{array} \right), \quad \mathcal{C} \triangleq \left(\begin{array}{c} \mathbf{G} \ \mathbf{FG} \ \mathbf{F}^{2}\mathbf{G} \ \ldots \right)$$

 $\mathcal{H} = \mathcal{O} \ \mathcal{C} \ , \ \mathcal{H} \longrightarrow \mathcal{O} \longrightarrow (H, F) \longrightarrow (\lambda, \varphi_{\lambda})$

Implementation: $\hat{R}_i \stackrel{\Delta}{=} 1/n \sum_{\substack{k=1 \ k=1}}^n Y_k Y_{k-i}^T$, $\hat{\mathcal{H}} = \operatorname{Hank}(\hat{R}_i)$ ok when nonstationary !

 $\mathsf{SVD}(\hat{\mathcal{H}}) + \text{truncation} \longrightarrow \hat{\mathcal{O}} \longrightarrow (\hat{H}, \hat{F}) \longrightarrow (\hat{\lambda}, \hat{\varphi}_{\lambda})$

Eigenstructure monitoring

 θ_0 : reference parameter, known (or identified) Y_k : *n*-size sample of new measurements

System parameter characterization:

 $\mathcal{H}_{p+1,q}$ and $\mathcal{O}_{p+1}(heta)$ have the same left kernel.

$$\exists U, \quad U^T \ U = I_s, \qquad U^T \ \mathcal{O}_{p+1}(\theta_0) = 0; \quad \text{say } U(\theta_0) \\ \theta_0 \leftrightarrow (R_i^0)_i \quad \text{characterized by:} \quad U^T(\theta_0) \ \hat{\mathcal{H}}_{p+1,q}^0 = 0$$

Subspace-based residual for eigenstructure monitoring

$$\zeta_n(\theta_0) \stackrel{\Delta}{=} \sqrt{n} \operatorname{vec}(U^T(\theta_0) \hat{\mathcal{H}}_{p+1,q})$$

The residual is asymptly Gaussian (local approach)

Mean sensitivity (Jacobian) $\mathcal{J}(\theta_0)$ and covariance $\Sigma(\theta_0)$

$$egin{array}{lll} oldsymbol{\zeta}_{n}(heta_{0}) &
ightarrow egin{array}{lll} \mathcal{N}(& \mathbf{\mathcal{O}}(0) & \mathbf{\Sigma}(heta_{0})) & ext{under} & \mathrm{P}_{ heta_{0}} \ \mathcal{N}(& \mathcal{J}(heta_{0}) & \delta heta, & \mathbf{\Sigma}(heta_{0})) & ext{under} & \mathrm{P}_{ heta_{0}+rac{\delta heta}{\sqrt{n}}} \end{array}$$

(GLR) χ^2 -test for modal monitoring $\zeta_n^T \ \Sigma^{-1} \ \mathcal{J} \ (\mathcal{J}^T \ \Sigma^{-1} \ \mathcal{J})^{-1} \ \mathcal{J}^T \ \Sigma^{-1} \ \zeta_n \ \ge h$

(GLR) Directional χ^2 -test for modal diagnosis

$$\zeta_n^T \ \Sigma^{-1} \ \mathcal{J}_i \ (\mathcal{J}_i^T \ \Sigma^{-1} \ \mathcal{J}_i)^{-1} \ \mathcal{J}_i^T \ \Sigma^{-1} \ \zeta_n \ \geq h$$

Flutter monitoring with residual ζ - Quadratic tests

• χ^2 focussed on damping ρ : BUT $\rho \neq \rho_0$ irrelevant;

• Hypothesis of interest: $\rho < \rho_c$

1. $\rho_c = \rho_0$: Use GLR test for (local) $\delta \rho \ge 0$ against $\delta \rho < 0$:

$$l(\theta_0) = -\operatorname{sign}(\overline{\zeta}) \cdot \overline{\chi}^2, \qquad \overline{\chi}^2 \triangleq \overline{\zeta}^T \overline{\Sigma}^{-1} \overline{\zeta}$$

2. $\rho_c < \rho_0$: non local hypotheses $\rho \ge \rho_c$ against $\rho < \rho_c$:

 $\tilde{\theta}_0 \triangleq \theta_0$ except that $\rho_0 \leftarrow \rho_c$; use $l(\tilde{\theta}_0)$: BUT biased

Flutter monitoring with residual ζ - Linear tests

• Another approximation for ζ :

$$\zeta(ilde{ heta}_0) = {\overset{n}{\sum}}_{k=1} Z_k(ilde{ heta}_0) / \sqrt{n}, \,\, Z_k(ilde{ heta}_0) riangleq U(ilde{ heta}_0)^T \,\, \mathcal{Y}^+_{k,p+1} \,\, \mathcal{Y}^-_{k,q}$$

$$\sum\limits_{k=1}^{n} Z_k/\sqrt{n}
ightarrow \mathcal{N}(0,\cdot)$$
 under $ho=
ho_c$

 $\Rightarrow Z_k \rightarrow \mathcal{N}(0,\cdot),$ and the Z_k 's are iid

• Idea: for overcoming a bias, handle deviations!

Flutter monitoring - Linear tests (Contd.)

Use CUSUM test for $\rho = \rho_c + \epsilon$ against $\rho = \rho_c - \epsilon$:

$$S_n(ilde{ heta}_0) \; riangleq egin{array}{c} n \ \Sigma \ k=1 \end{array} Z_k(ilde{ heta}_0), \;\; M_n(ilde{ heta}_0) riangleq \max_{1\leq k\leq n} S_k(ilde{ heta}_0)
ight.$$

$$g_n(ilde{ heta}_0) \;\; riangleq \; M_n(ilde{ heta}_0) - S_n(ilde{ heta}_0) \geq 0$$

under $\rho = \rho_c + \epsilon$: $\overline{g}_n(\tilde{\theta}_0) \approx 0$ under $\rho = \rho_c - \epsilon$: $\overline{g}_n(\tilde{\theta}_0) > 0$ if ρ decreases, $\overline{g}_n(\tilde{\theta}_0)$ increases if ρ increases, $\overline{g}_n(\tilde{\theta}_0)$ decreases

Numerical results - Ariane

- Identification: 2000-size blocks; Flutter monitoring: sample by sample
- Flutter monitoring: 2 reference data sets: one at the beginning $ightarrow
 ho_c = 1.5\%$, one at the middle $ightarrow
 ho_c = 0.5\%$
- Test without and with filtering
- Of interest: increase/decrease of the test g_n

Damping & frequency, CUSUM w/o filtering: $\rho_c = 1.5\%$ and 0.5%

Damping & frequency, CUSUM with filtering: $\rho_c=$ 1.5% and 0.5%