Contents

Model-based statistical signal processing

and decision theoretic approaches to monitoring

Michèle Basseville IRISA/CNRS, Rennes, France

basseville@irisa.fr - http://www.irisa.fr/sigma2/

Monitoring and model-based statistical processing

Stochastic models (static, dynamic) \leftrightarrow uncertainties

Parameterized models (physical interpretation, diagnostics)

Fault in the system \longleftrightarrow deviation in the parameter vector

(Fault, damage, deviation, change)

Monitoring and model-based statistical processing

Key concepts - Detection - Independent case

Key concepts - Detection - Dependent case

Key concepts - Isolation and diagnostics

Example: Structural Health Monitoring

Problem

Parameterized nonlinear state-space models

 $\left(egin{array}{ccc} x_{k+1} &=& f(heta, x_k, u_k, v_k) & x_k, v_k: ext{ unknown states and inputs} \ y_k &=& h(heta, x_k, u_k, v_k) + \epsilon_k & u_k, y_k: ext{ measured inputs and outputs} \end{array}
ight.$

 θ : unknown parameters

Wanted:

- Detect and diagnose (small) deviations in θ .
- Not to detect events/features of no interest!

Which model(s)? - Model validation → ⊢ 1 θο ş N Physical models, black-box models - Off-line change detection Neural networks, wavelet networks 1 - On-line change detection **Approximate models** $\theta_o \qquad t_o \qquad \theta_I$

5

Simple hypotheses, composite hypotheses

Hypotheses H_0 H_1

- θ_0 θ_1 Known parameter values Simple
- **Composite** Θ_0 Θ_1 **Unknown** parameter values

6

N

n

Key concepts - Independent data

Simple hypotheses : likelihood ratio test

 $\left\{ egin{array}{ll} ext{If} & \Lambda_N < \lambda \ / \ S_N < h: \ ext{H}_0 \ ext{is chosen} \end{array}
ight.$ If $\left. \Lambda_N \geq \lambda \ / \ S_N \geq h: \ ext{H}_1 \ ext{is chosen} \end{array}
ight.$

Composite hypotheses : Generalized likelihood ratio (GLR)

Maximize the likelihoods / unknown values of θ_0 and θ_1 :

$$\widehat{\Lambda}_{N} = \frac{\sup_{\theta_{1} \in \Theta_{1}} p_{\theta_{1}}(\mathcal{Y}_{1}^{N})}{\sup_{\theta_{0} \in \Theta_{0}} p_{\theta_{0}}(\mathcal{Y}_{1}^{N})} = \frac{p_{\widehat{\theta_{1}}}(\mathcal{Y}_{1}^{N})}{p_{\widehat{\theta_{0}}}(\mathcal{Y}_{1}^{N})}$$

Scalar parameter - Simple case: known θ_1

Hypothesis
$${
m H}_0$$

$$\theta = heta_0 \quad (1 \le i \le k)$$

Hypothesis
$$\mathbf{H_1}$$
 $\exists t_0$ s.t. $\theta = \begin{cases} \theta_0 & (1 \le i < t_0) \\ \theta_1 & (t_0 \le i \le k) \end{cases}$

Alarm time t_a : $t_a = \min \{k \ge 1 : g_k \ge h\}$

Estimated onset time: $\widehat{t_0}$

On-line detection: CUSUM, GLR

Unknown onset time t_0 ; θ_0 assumed known

Alarm time t_a : $t_a = \min\{k \ge 1 : g_k \ge h\}$

Problem: design of the decision function g_k

Simple case (known θ_1): CUSUM

Composite case (unknown θ_1): modified CUSUM, GLR

CUSUM algorithm

Ratio of likelihoods under H_0 and H_1 :

$$\frac{\Pi_{i=1}^{t_0-1} \ p_{\theta_0}(y_i) \ \cdot \ \Pi_{i=t_0}^k \ p_{\theta_1}(y_i)}{\Pi_{i=1}^k \ p_{\theta_0}(y_i)} \quad = \quad \frac{\Pi_{i=t_0}^k \ p_{\theta_1}(y_i)}{\Pi_{i=t_0}^k \ p_{\theta_0}(y_i)} \quad = \quad \Lambda_{t_0}^k$$

Maximize over the unknown onset time t_0 :

$$\begin{split} (\widehat{t_0})_k & \stackrel{\Delta}{=} & \arg\max_{1 \leq j \leq k} \quad \prod_{i=1}^{j-1} \ p_{\theta_0}(y_i) \ \cdot \ \prod_{i=j}^k \ p_{\theta_1}(y_i) \\ & = \ \arg\max_{1 \leq j \leq k} \quad \Lambda_j^k \\ & = \ \arg\max_{1 \leq j \leq k} \quad S_j^k, \qquad S_j^k = \ln \ \Lambda_j^k \end{split}$$

 $g_k \stackrel{\Delta}{=} \max_{1 \leq j \leq k} S^k_j \;=\; \ln \Lambda^k_{\hat{t}_0}$

$$g_{k} \stackrel{\Delta}{=} \max_{1 \leq j \leq k} S_{j}^{k}$$

$$= S_{1}^{k} - \min_{1 \leq j \leq k} S_{1}^{j} = S_{1}^{k} - m_{k}, \quad m_{k} \stackrel{\Delta}{=} \min_{1 \leq j \leq k} S_{1}^{j}$$

$$t_{a} = \min\{k \geq 1 : g_{k} \geq h\}$$

$$t_{a} = \min\{k \geq 1 : S_{1}^{k} \geq m_{k} + h\} \quad \text{Adaptative threshold}$$

$$g_{k} = (g_{k-1} + s_{k})^{+}$$

$$g_{k} = (S_{k-N_{k}+1}^{k})^{+}, \quad N_{k} \stackrel{\Delta}{=} N_{k-1} \cdot I(g_{k-1}) + 1$$

 $(\widehat{t_0})_k = t_a - N_{t_a} + 1$

 $N_k = N_{k-1} \cdot I(g_{k-1}) + 1$ Sliding window with adaptive size

13

$$\begin{split} \mathcal{N}(\mu,\sigma^2), \quad \theta &\triangleq \mu, \quad p_{\theta}(y) \triangleq \frac{1}{\sigma \sqrt{2\pi}} \ e^{-\frac{(y_i - \mu)^2}{2\sigma^2}} \\ s_i &= \ln \frac{p_{\mu_1}(y_i)}{p_{\mu_0}(y_i)} \\ &= \frac{1}{2 \sigma^2} \left((y_i - \mu_0)^2 - (y_i - \mu_1)^2 \right) \\ &= \frac{\nu}{\sigma^2} \left(y_i - \mu_0 - \frac{\nu}{2} \right), \quad \nu = \mu_1 - \mu_0 \\ S_1^k \text{ involves } \sum_{\substack{i=1\\j=1}}^k y_i : \text{ Integrator (with adaptive threshold)} \end{split}$$

Composite case: unknown θ_1

Modified CUSUM algorithms

Minimum magnitude of change

Weighted CUSUM

GLR algorithm

Double maximization

 $g_k = \max_{1 \leq j \leq k} \quad \sup_{ heta_1} \quad S_j^k(heta_1)$

Gaussian case, additive faults: second maximization explicit.

Key concepts - Dependent data

Conditional likelihood	$p_{\theta}(y_i \mathcal{Y}_1^{i-1})$		
Log-likelihood	$l_{\theta}(y_i \mathcal{Y}_1^{i-1})$	$\underline{\underline{\Delta}}$	$\ln \ p_{\theta}(y_i \mathcal{Y}_1^{i-1})$
Log-likelihood ratio	s_i	$\underline{\Delta}$	$\ln \; \frac{p_{\theta_1}(y_i \mathcal{Y}_1^{i-1})}{p_{\theta_0}(y_i \mathcal{Y}_1^{i-1})}$
	$\mathrm{E}_{ heta_0}(s_i)$	<	0
	$\mathbf{E}_{\theta_1}(s_i)$	>	0
Likelihood ratio	Λ_N	≙	$\frac{p_{\theta_1}(\mathcal{Y}_1^N)}{p_{\theta_0}(\mathcal{Y}_1^N)} \;=\; \frac{\operatorname{d}_i \;\; p_{\theta_1}(y_i \mathcal{Y}_1^{i-1})}{\operatorname{d}_i \;\; p_{\theta_0}(y_i \mathcal{Y}_1^{i-1})}$
Log-likelihood ratio	S_N	$\underline{\Delta}$	$\ln \ \Lambda_N \ = \ \scriptscriptstyle \Sigma_{i=1}^N \ s_i$
			17

Efficient score $z_i^* \triangleq \left. rac{\partial l_{ heta}(y_i | \mathcal{Y}_1^{i-1})}{\partial heta} \right|_{ heta = heta^*}$

Key concepts - Dependent data (Contd.)

18

Residuals and sufficient statistics

 $S(\theta, \mathcal{Y}_1^N)$ s.t. $P_{\theta}(\mathcal{Y}_1^N \mid S)$ independent of θ .

Fisher information maintained.

- Likelihood ratio for both additive and non-additive faults,
- Innovation for additive faults,
- Efficient score for non-additive faults,
- Other estimating fonctions for non-additive faults.

Innovation not sufficient for monitoring the dynamics.

Fisher information

Fisher information = inverse of the curvature of the likelihood

Fault detection

Local approach (small deviations)

 θ_0 : reference parameter, known (or identified)

 Y_k : N-size sample of new measurements

Build a residual ζ significantly non zero when fault

Test
$$H_0: \theta = \theta_0$$
 against $H_1: \theta = \theta_0 + \frac{\delta \theta}{\sqrt{N}}$

First order Taylor expansion of the efficient score

$$egin{array}{lll} \zeta_N(heta) &pprox \zeta_N(heta_0) + rac{1}{N} \left. rac{\partial^2 \ln p_ heta(\mathcal{Y}_1^N)}{\partial heta^2}
ight|_{ heta = heta_0} & \delta heta \ \mathrm{E}_{ heta_0} \; \zeta_N(heta) &pprox - \mathrm{I}(heta_0) \; \delta heta \end{array}$$

Efficient score = ML estimating function

Characterized by: $E_{\theta_0} \zeta_N(\theta) = 0 \iff \theta = \theta_0$

Caution : Efficient score \neq innovation !

23

Dependent data - Small deviations - Likelihood

Second order Taylor expansion of the log-likelihood ratio

$$heta= heta_0+rac{\delta heta}{\sqrt{N}}$$

$$S_N(heta_0, heta) \stackrel{\Delta}{=} \ln \; rac{p_ heta(\mathcal{Y}_1^N)}{p_{ heta_0}(\mathcal{Y}_1^N)} \; pprox \; \delta heta^T \; \zeta_N(heta_0) - rac{1}{2} \; \delta heta^T \; \mathrm{I}(heta_0) \; \delta heta$$

$$\begin{split} \mathbf{E}_{\theta_0} \, S_N &\approx \ -\frac{1}{2} \, \delta \theta^T \, \mathbf{I}(\theta_0) \, \delta \theta \\ \mathbf{E}_{\theta} \, S_N &\approx \ +\frac{1}{2} \, \delta \theta^T \, \mathbf{I}(\theta_0) \, \delta \theta \quad \approx \ -\mathbf{E}_{\theta_0} \, S_N \end{split}$$

$$\operatorname{cov}_{\theta_0} S_N \approx \delta \theta^T \operatorname{I}(\theta_0) \delta \theta \approx \operatorname{cov}_{\theta} S_N$$

22

Example : Gaussian scalar AR process

$$egin{array}{rcl} Y_k &=& \sum \limits_{i=1}^p a_i \, Y_{k-i} + E_k, & heta^T = (egin{array}{ccc} a_1 & \ldots & a_p \ \end{pmatrix} \ \zeta_N(heta) &=& rac{1}{\sqrt{N}} \, rac{1}{\sigma^2} \, \sum \limits_{k=1}^N \, \mathcal{Y}_{k-1,p}^- \, arepsilon_k(heta) \end{array}$$

$$I(\theta) = \frac{1}{\sigma^2} T_p$$

Efficient score ζ : vector-valued function

Innovation ε : scalar function

Hypotheses testing - Asymptotic Gaussianity

For i.i.d. variables, stationary Gaussian processes, stationary Markov processes, ...:

$$\begin{split} S_{N}(\theta_{0},\theta) & \to \begin{cases} \mathcal{N}(-\frac{1}{2} \,\delta\theta^{T} \, \mathrm{I}(\theta_{0}) \,\,\delta\theta, \quad \delta\theta^{T} \, \mathrm{I}(\theta_{0}) \,\,\delta\theta) & \text{under} \quad \mathrm{P}_{\theta_{0}} \\ \mathcal{N}(+\frac{1}{2} \,\delta\theta^{T} \, \mathrm{I}(\theta_{0}) \,\,\delta\theta, \quad \delta\theta^{T} \, \mathrm{I}(\theta_{0}) \,\,\delta\theta) & \text{under} \quad \mathrm{P}_{\theta_{0}+\frac{\delta\theta}{\sqrt{N}}} \end{cases} \\ \zeta_{N}(\theta_{0}) & \to \begin{cases} \mathcal{N}(0, \qquad \mathrm{I}(\theta_{0})) & \text{under} \quad \mathrm{P}_{\theta_{0}} \\ \mathcal{N}(\mathrm{I}(\theta_{0}) \,\,\delta\theta, \quad \mathrm{I}(\theta_{0})) & \text{under} \quad \mathrm{P}_{\theta_{0}+\frac{\delta\theta}{\sqrt{N}}} \end{cases} \end{split}$$

The efficient score ζ_N is asymptotically a sufficient statistics.

Small deviations - Other estimating functions

Residual ↔ Estimating function

$$\zeta_N(heta_0) = rac{1}{\sqrt{N}} \sum\limits_{k=1}^N \mathcal{K}(heta_0, extsf{Y}_{m{k}})$$

 $\text{Characterized by:} \ \ \mathrm{E}_{\theta_0} \ \mathcal{K}(\theta,Y_k) = 0 \quad \Longleftrightarrow \quad \theta = \theta_0 \\$

Mean sensitivity (Jacobian) and covariance

$$\mathcal{J}(\theta_0) \triangleq -\mathrm{E}_{ heta_0} rac{\partial \mathcal{K}(heta_0, Y_k)}{\partial heta}, \quad \Sigma(heta_0) \triangleq \lim_{N o \infty} \mathrm{E}_{ heta_0} \ \zeta_N(heta_0) \zeta_N^T(heta_0)$$

Asymptotically optimum and equivalent tests for composite hypotheses

First order Taylor expansion of this residual

$$heta = heta_0 + rac{\delta heta}{\sqrt{N}}$$

$$\begin{split} \zeta_{N}(\theta) &\approx \underbrace{\zeta_{N}(\theta_{0})}_{N} + \sqrt{N} \underbrace{\frac{1}{N} \left(\sum_{k=1}^{N} \left. \frac{\partial}{\partial \theta} \left. \mathcal{K}(\theta, Y_{k}) \right|_{\theta = \theta_{0}} \right)}_{\theta = \theta_{0}} \frac{\delta \theta}{\sqrt{N}} \\ \text{CLT} & \qquad \text{under} \\ \downarrow & \theta_{0} \\ \mathcal{N}(0, \Sigma(\theta_{0})) \\ \underbrace{\mathrm{E}_{\theta_{0}} \left. \frac{\partial}{\partial \theta} \left. \mathcal{K}(\theta, Y_{k}) \right|_{\theta = \theta_{0}}}_{\theta = \theta_{0}} \end{split}$$

Nonlinear dynamic systems - LS residuals

The residual is asymptotically Gaussian

$$\zeta_N(heta_0) \rightarrow \begin{cases} \mathcal{N}(0, \Sigma(heta_0)) & \text{under} & \mathrm{P}_{ heta_0} \\ \\ \mathcal{N}(\mathcal{J}(heta_0) \,\delta heta, \, \Sigma(heta_0)) & ext{under} & \mathrm{P}_{ heta_0 + rac{\delta heta}{\sqrt{N}}} \end{cases}$$

(On-board) χ^2 -test for composite hypotheses

$$\zeta_N^T \underbrace{\Sigma^{-1} \mathcal{J} (\mathcal{J}^T \Sigma^{-1} \mathcal{J})^{-1} \mathcal{J}^T \Sigma^{-1}}_{\mathbf{I}^{-1}} \zeta_N \ge h$$

Invariant / pre-multiplication of ζ with invertible gain.

Noises and uncertainty on θ_0 taken into account.

29

State estimation: (full order) observers

$$\left\{egin{array}{lll} \dot{\hat{x}}&=&\hat{f}(m{ heta},\hat{x},m{u},m{y})\ &\ \hat{y}_k(m{ heta})&=&h(m{ heta},\hat{x}(k au),m{u}(k au)) \end{array}
ight.$$

$$\hat{f}(heta, \hat{x}, u, y) riangleq f(heta, \hat{x}, u) + K_o \; (y - h(heta, \hat{x}, u))$$

$$\zeta_N : \mathcal{K}(heta_0, Y_k) = \left(rac{\partial \hat{y}_k(heta)}{\partial heta} \Big|_{ heta = heta_0}
ight)^T (y_k - \hat{y}_k(heta_0))$$

$$\begin{cases} \frac{\partial \dot{x}}{\partial \theta} = \frac{\partial}{\partial \hat{x}} \hat{f}(\theta_{0}, \hat{x}, u, y) \frac{\partial \hat{x}}{\partial \theta} + \frac{\partial}{\partial \theta} \hat{f}(\theta_{0}, \hat{x}, u, y) \\ \frac{\partial \hat{y}_{k}(\theta)}{\partial \theta} = \frac{\partial}{\partial \hat{x}} h(\theta_{0}, \hat{x}(k\tau), u(k\tau)) \frac{\partial \hat{x}_{k}}{\partial \theta} + \frac{\partial}{\partial \theta} h(\theta_{0}, \hat{x}(k\tau), u(k\tau)) \\ \end{cases}$$

$$(30)$$

Isolation (1) - **Nuisance** approach

Which components of θ ?

$$\zeta \sim \mathcal{N}(\mathcal{J} \; \theta, \; \Sigma), \quad \theta = \left(egin{array}{c} heta_a \ heta_b \ heta_b \end{array}
ight), \quad \mathcal{J} = \left(egin{array}{c} \mathcal{J}_a & \mathcal{J}_b \end{array}
ight), \quad p_{ heta_a, heta_b}(\zeta)$$

Nonlinear dynamic systems - Simulation methods

Monte Carlo sequential simulation

Particle filters

Numerical approximation of the efficient score

Decide between $\theta_a = 0$ and $\theta_a \neq 0$; θ_b unknown

$$\mathbf{I} \stackrel{\Delta}{=} \mathcal{J}^T \ \Sigma^{-1} \ \mathcal{J} \stackrel{\Delta}{=} \left(\begin{array}{cc} \mathbf{I}_{aa} & \mathbf{I}_{ab} \\ \mathbf{I}_{ba} & \mathbf{I}_{bb} \end{array} \right)$$

$$\mathrm{I}_a^{*-1}$$
 : upper-left block of I^{-1} ; $\mathrm{I}_a^* = \mathrm{I}_{aa} - \mathrm{I}_{ab} \ \mathrm{I}_{bb}^{-1} \ \mathrm{I}_{ba}$

$$2 \ln \frac{\max_{\theta_a} p_{\theta_a,0}(\zeta)}{p_{0,0}(\zeta)} = \zeta_a^T \mathbf{I}_{aa}^{-1} \zeta_a , \qquad \zeta_a : \mathsf{partial score}$$

Statistical rejection (minmax)

$$2 \ln \frac{\max_{\theta_a,\theta_b} p_{\theta_a,\theta_b}(\zeta)}{\max_{\theta_b} p_{0,\theta_b}(\zeta)} = \zeta_a^{*T} \operatorname{I}_a^{*-1} \zeta_a^*, \qquad \zeta_a^* : \text{effective score}$$

 $\zeta_a^* = \zeta_a - \mathbf{I}_{ab} \mathbf{I}_{bb}^{-1} \boldsymbol{\zeta}_b$

Regression of informative score over nuisance score (Neyman, 1954).

34

Isolation (2) - Multiple hypotheses approach

 H_{0} : $heta\in\Theta_{0}$

$$\mathrm{H}_i : \quad \theta \in \Theta_i, \ (i=1:m)$$

- Bayesian approach
- Invariant tests

Dealing with nuisance parameters - Contd.

Other approaches :

- Reparameterization : generalization of sensitivity approach
- Invariant tests
- Minimax tests

35

(On-Board) Diagnostics/localization : don't solve the inverse problem!

Optimal sensor location for monitoring

Maximize the power of the detection algorithms :

Trace $(\mathcal{J}^T \Sigma^{-1} \mathcal{J})$

Physical model necessary, 'compensate' for the number of d.o.f. of χ^2 tests.

Two possible uses :

- For a given set of faults : how many sensors, and where?

- For a given sensor pool: which faults are detectable?

Fault detectability

EXAMPLE

Structural health monitoring

With Laurent Mével, Maurice Goursat, Albert Benveniste Toolboxes: (free) Scilab; LMS CADA-X

39

VIBRATIONS: OFFSHORE STRUCTURES

VIBRATIONS: ROTATING MACHINES

Sensors: accelerometers (on the bearings!)

VIBRATIONS: BRIDGES

Problems : In-operation modal identification

and damage detection and localization

- The excitation is typically:
 - natural, not controlled.
 - not measured:
 - * buildings, bridges, offshore structures,
 - * rotating machinery,
 - * cars, trains, aircrafts.
 - nonstationary (e.g., turbulent).
- How to detect and localize small damages? Early? On-board? (without re-identification)
- Output-only damage detection and localization

43

Modelling

Output-only covariance-based subspace identification

FE model:

$$\left\{egin{array}{ll} M\ddot{\mathcal{Z}}(s)+C\dot{\mathcal{Z}}(s)+K\mathcal{Z}(s)&=&
u(s)\ Y(s)&=&L\mathcal{Z}(s)\ (M\mu^2+C\mu+K)\Psi_\mu=0\ ,\ \ \psi_\mu=L\Psi_\mu\end{array}
ight.$$

State space:

$$(M\mu^2 + C\mu + K)\Psi_\mu = 0 ,$$

 $\begin{cases} X_{k+1} = FX_k + V_k \\ Y_k = HX_k \end{cases}$
 $F\Phi_\lambda = \lambda \ \Phi_\lambda \ , \ \ \varphi_\lambda \stackrel{\Delta}{=} H\Phi_\lambda$
 $e^{\delta\mu} = \lambda \ , \ \ \psi_\mu = \varphi_\lambda$

mode shapes

modes

 $\underline{R_i \triangleq \mathrm{E}\left(Y_k \; Y_{k-i}^T
ight)}_{\mathrm{ck} \; \mathrm{if} \; \mathrm{stationerry}} \;, \;\;\; \mathcal{H} = \left(egin{array}{cccc} R_0 & R_1 & R_2 & \ldots & R_1 & R_2 & R_3 & \ldots & R_2 & R_3 & R_4 & \ldots & R_4 & \ldots$

$$, \hspace{0.2cm} \mathcal{H} = \left| egin{array}{cccccccccccc} R_1 & R_2 & R_3 & \ldots & R_2 & R_3 & R_4 & \ldots & R_3 & R_4 & \ldots & R_4 & R_4 & \ldots & R_4 & R_4 & \ldots & R_4$$

$$\begin{split} \boldsymbol{R_i} &= \boldsymbol{H} \ \boldsymbol{F^i} \ \boldsymbol{G} \ , \quad \boldsymbol{G} \triangleq \mathrm{E} \left(\boldsymbol{X_k} \ \boldsymbol{Y_k^T} \right) \\ & \mathcal{O} \triangleq \left(\begin{array}{c} \boldsymbol{H} \\ \boldsymbol{HF} \\ \boldsymbol{HF^2} \\ \vdots \end{array} \right) \ , \ \mathcal{C} \triangleq \left(\ \boldsymbol{G} \ \ \boldsymbol{FG} \ \ \boldsymbol{F^2G} \ \ldots \right) \\ & \mathcal{H} = \mathcal{O} \ \mathcal{C} \ , \ \mathcal{H} \longrightarrow \mathcal{O} \longrightarrow (\boldsymbol{H}, \boldsymbol{F}) \longrightarrow (\boldsymbol{\lambda}, \varphi_{\boldsymbol{\lambda}}) \end{split}$$

Implementation

$$\underbrace{\hat{R}_i \triangleq \frac{1}{N} \begin{array}{c} N \\ \underline{k}_{i=1} \end{array} Y_k Y_{k-i}^T}_{\text{ok when nonstationary !}}, \quad \hat{\mathcal{H}} = \begin{pmatrix} \hat{R}_0 & \hat{R}_1 & \hat{R}_2 & \dots \\ \hat{R}_1 & \hat{R}_2 & \hat{R}_3 & \dots \\ \hat{R}_2 & \hat{R}_3 & \hat{R}_4 & \dots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

$$\begin{split} \mathsf{SVD}(\hat{\mathcal{H}}) + \mathsf{truncation} &\longrightarrow \hat{\mathcal{O}} \longrightarrow (\hat{H}, \hat{F}) \longrightarrow (\hat{\lambda}, \hat{\varphi}_{\lambda}) \\ \hat{\mathcal{H}} = U \ \Delta \ W^T = U \ \begin{pmatrix} \Delta_1 & 0 \\ 0 & \Delta_0 \end{pmatrix} \ W^T \ ; \quad \hat{\mathcal{O}} = U \ \Delta_1^{1/2} \\ \mathcal{O}_p^{\uparrow}(H, F) = \mathcal{O}_p(H, F) \ F \\ \det(F - \lambda \ I) = 0 \ , \quad F \ \Phi_{\lambda} = \lambda \ \Phi_{\lambda}, \quad \varphi_{\lambda} = H \ \Phi_{\lambda} \end{split}$$

Introducing the parameter vector

FE model:

$$\left\{egin{array}{ll} M\ddot{\mathcal{Z}}(s)+C\dot{\mathcal{Z}}(s)+K\mathcal{Z}(s)&=&
u(s)\ Y(s)&=&L\mathcal{Z}(s)\ (M\mu^2+C\mu+K)\Psi_\mu=0\ ,\ \ \psi_\mu=L\Psi_\mu \end{array}
ight.$$

State space:

$$\begin{cases} I = 1 \\ K + 1 \\ Y_k = H X_k \end{cases} \\ F \Phi_\lambda = \lambda \Phi_\lambda , \quad \varphi_\lambda \stackrel{\Delta}{=} H \Phi_\lambda \end{cases}$$

Parameter: $\underline{e^{\delta\mu} = \lambda}_{\text{modes}}$, $\underline{\psi_{\mu} = \varphi_{\lambda}}_{\text{mode shapes}}$; $\theta \triangleq \begin{pmatrix} \Lambda \\ \text{vec } \Phi \end{pmatrix}$

 $(X_{l_{1}+1} = F X_{l_{2}} + V_{l_{3}})$

Robustness to nonstationary excitation

The estimates are **consistent**.

Combination of:

- the key factorization property of the covariances,
- the averaging operation underlying covariance computation,

allows to cancel out nonstationarities in the excitation.

47

Eigenstructure monitoring

$$\left\{egin{array}{lll} X_{k+1} &=& FX_k+V_k & F \ arphi_\lambda &=& \lambda \ arphi_\lambda &=& HX_k & \Phi_\lambda \stackrel{\Delta}{=} H \ arphi_\lambda \end{array}
ight.$$

Canonical parametrization:
$$\theta \triangleq \begin{pmatrix} \Lambda \\ \operatorname{vec} \Phi \end{pmatrix}$$

Observability in modal basis: $\mathcal{O}_{p+1}(\theta) = \begin{pmatrix} \Phi \\ \Phi \Delta \\ \vdots \\ \Phi \Delta^p \end{pmatrix}$

System parameter characterization:

 $\mathcal{H}_{p+1,q}$ and $\mathcal{O}_{p+1}(heta)$ have the same left kernel.

$$\exists S, \ S^T \ S = I_s, \quad S^T \ \mathcal{O}_{p+1}(heta_0) = 0; \quad ext{say} \ S(heta_0)$$

$$heta_0 \leftrightarrow (R^0_i)_i$$
 characterized by: $S^T(heta_0) \ \hat{\mathcal{H}}^0_{p+1,q} = 0$

Residual for structural damage monitoring

$$\zeta_N(heta_0) \stackrel{\Delta}{=} \mathrm{vec}(\ S^T(heta_0) \ \hat{\mathcal{H}}_{p+1,q} \)$$

Relation to parity space

$$\zeta_{\mathsf{parity}} = \mathcal{G} \; \mathcal{Y}_{k,p+1}^+, \qquad \mathcal{G} \; \mathcal{O}_{p+1} = 0$$

$$\zeta_{ ext{subspace}} = S^T \; \hat{\mathcal{H}}_{p+1,q}, \qquad S^T \; \mathcal{O}_{p+1} = 0$$

First order statistics \longleftrightarrow Second order statistics

51

Jacobian?

On-board damage diagnostics: projecting changes

FE domain changes

modal domain changes

Damage diagnostics: (local) sensitivity approach

 $(M_0^\star,K_0^\star):$ design model

Jacobian : $(\delta M, \delta K) \xrightarrow{\mathcal{J}_{(M_0^{\star}, K_0^{\star})}} \rightarrow (\delta \mu, \delta \psi_{\mu})$

Reduction: \mathcal{I} matching computed/identified modes

Problem : $\dim \left(\begin{array}{c} M \\ K \end{array} \right) \gg \dim \theta$

Computing Jacobian

 $1. \quad (\delta M, \delta K) \xrightarrow{\mathcal{I}\mathcal{J}_{(M_0^{\star}, K_0^{\star})}}{mode \ selection} \rightarrow \ (\delta \mu, \delta \psi_{\mu})$

- 2. Apply $\mathcal{I}\mathcal{J}$ to unit vectors $(\delta M, \delta K)$
- 3. Truncate small vectors $(\delta \mu, \delta \psi_{\mu})$
- 4. Cluster the remaining vectors $(\delta \mu, \delta \psi_{\mu})$, using the χ^2 -metric.

Results on real data

55

Steelquake

Z24 bridge

Flutter monitoring

54

Steelquake

Scenario	Undamaged	Damaged		
Q09 /39	2.81 · 10e <mark>2</mark>	3.78 ⋅ 10e <mark>6</mark>		
Q10 /40	1.53 · 10e <mark>2</mark>	2.20 · 10e7		
Q11 /41	6.75 · 10e2	2.18 · 10e4		
Q12 /42	2.88 · 10e2	1.62 · 10e4		

Z24 bridge (Contd.)

Z24 bridge

	Mode	1	2	3	4	χ^2
Undamaged	Freq.(Hz)	3.88	5.01	9.80	10.30	8.80 · 10e <mark>2</mark>
Damaged (1)	Freq.(Hz)	3.87	5.06	9.79	10.32	8.00 · 10e5
Damaged (2)	Freq.(Hz)	3.76	4.93	9.74	10.25	3.96 • 10e <mark>6</mark>

The test values over three months, log-scale. Two sensors sets.

Distribution of the test values for each of the nine months.

Flutter monitoring

Conclusion

A statistical framework

enlightens the meaning and increases the power

of a number of familiar operations

Damping coefficient (top), frequency (middle), CUSUM test (bottom).