Introduction

• Typical fault detection and isolation (FDI) procedure:

o residual generation

o residual evaluation

- Evaluation of Gaussian residuals
 - o for parametric change in linear systems
 - o for small parametric change in nonlinear systems (local asymptotic approach to change detection)
- ullet Changes in the mean of a Gaussian vector χ^2 -tests

 $4\mathrm{th}$ June 2003

Basic formulas for the χ^2 -tests

$$\mathrm{Iz} \sim \mathcal{N}(M\eta,\Sigma) \ \ \mathrm{I} = M^T \Sigma^{-1} M \ \ \eta = egin{bmatrix} \eta_a \ \eta_b \end{bmatrix} \ \ M = [M_a \ M_b] \ \ \mathrm{I} = egin{bmatrix} \mathrm{I}_{aa} \ \mathrm{I}_{ab} \ \mathrm{I}_{ba} \ \mathrm{I}_{bb} \end{bmatrix}$$

Fault detection (global test)

$$t = \mathbf{z}^T \Sigma^{-1} M (M^T \Sigma^{-1} M_a)^{-1} M_a^T \Sigma^{-1} \mathbf{z}$$

Fault isolation by sensitivity test

$$ilde{t}_a = \mathrm{z}^T \Sigma^{-1} M_a (M_a^T \Sigma^{-1} M_a)^{-1} M_a^T \Sigma^{-1} \mathrm{z}^{-1}$$

or equivalently

$$egin{array}{ll} ilde{\zeta}_a &= M_a^T \Sigma^{-1} \mathrm{z} \ ilde{t}_a &= ilde{\zeta}_a^T \mathrm{I}_{aa}^{-1} ilde{\zeta}_a \end{array}$$

Advanced numerical computation of χ^2 tests

for fault detection and isolation

Qinghua Zhang and Michèle Basseville

IRISA (INRIA & CNRS) Rennes, France

 $4\mathrm{th}$ June 2003

Gaussian residual evaluation — χ^2 -tests

Consider *m*-dimensional residual $z \sim \mathcal{N}(M\eta, \Sigma)$ with $M \in \mathbb{R}^{m \times n}$, $\eta \in \mathbb{R}^n$, $\Sigma \in \mathbb{R}^{m \times m}$, $m \ge n$.

Fault detection

$$H_0:\eta=0$$
 against $H_1:\eta
eq 0$

Fault isolation for some partition $\eta = \begin{bmatrix} \eta_a \\ \eta_b \end{bmatrix}$ $H_0: \eta_a = 0$ against $H_1: \eta_a \neq 0$

These hypothesis testing problems lead to χ^2 -tests.

page 1

page 2

4th June 2003

then

Same as global test (M being replaced by M_a).

Advanced numerical computation:

Basic formulas of the χ^2 -tests (contd.)

Fault isolation by min-max test

$$egin{array}{ll} ilde{\zeta}_a &= M_a^T \Sigma^{-1} \mathrm{z} \ ilde{\zeta}_b &= M_b^T \Sigma^{-1} \mathrm{z} \ ilde{\zeta}_a^* &= ilde{\zeta}_a - \mathrm{I}_{ab} \mathrm{I}_{bb}^{-1} ilde{\zeta}_b \ \mathrm{I}_a^* &= \mathrm{I}_{aa} - \mathrm{I}_{ab} \mathrm{I}_{bb}^{-1} \mathrm{I}_{ba} \ t_a^* &= ilde{\zeta}_a^* \mathrm{I}_a^{*-1} ilde{\zeta}_a^* \end{array}$$

Numerical difficulties: when the matrices to be inverted are badly conditioned, these basic formulas can lead to large numerical errors. It is thus important to develop advanced numerical algorithms.

Advanced numerical computation – Sensitivity test

 $\tilde{t}_a = \mathbf{z}^T \Sigma^{-1} M_a (M_a^T \Sigma^{-1} M_a)^{-1} M_a^T \Sigma^{-1} \mathbf{z}$

QR decomposition of ΓM_a : $\Gamma M_a = Q_a R_a$ with $Q_a^T Q_a = I$,

 $ilde{t}_a = \|Q_a^T \Gamma \mathbf{z}\|^2$

4th June 2003

page 5

Advanced numerical computation – Global test

$$t = \mathbf{z}^T \Sigma^{-1} M (M^T \Sigma^{-1} M)^{-1} M^T \Sigma^{-1} \mathbf{z}$$

- \bullet Use pseudo-inverse for Σ^{-1} if badly conditioned
- Compute t as a square : $t = \|(M^T \Sigma^{-1} M)^{-\frac{1}{2}} M^T \Sigma^{-1} \mathbf{z}\|^2$
- Avoid the inverse involving M.

Proposed solution:

- let $\Gamma = \Sigma^{-\frac{1}{2}}$ (with pseudo-inverse if necessary),
- QR decomposition of ΓM : $\Gamma M = QR$ with $Q^T Q = I$,

• Then

$$egin{aligned} t &= \mathbf{z}^T \Gamma Q R (R^T Q^T Q R)^{-1} R^T Q^T \Gamma \mathbf{z} \ &= \mathbf{z}^T \Gamma Q R (R^T R)^{-1} R^T Q^T \Gamma \mathbf{z} \ &= \| Q^T \Gamma \mathbf{z} \|^2 \end{aligned}$$

 $4\mathrm{th}$ June2003

page 6

Advanced numerical computation – Minmax test

More computations are involved.

QR decompositions:

$$egin{aligned} \Gamma M_a &= Q_a R_a \ \Gamma M_b &= Q_b R_b \ I - Q_b Q_b^T) Q_a &= Q_c R_c \end{aligned}$$

then

 $t_a^* = \|Q_a^T \Gamma \mathbf{z}\|^2$

A non-trivial step for deriving the algorithm:

$$(I - Q_a^T Q_b Q_b^T Q_a) = Q_a^T (I - Q_b Q_b^T) (I - Q_b Q_b^T) Q_a$$

Remark: SVD can be used instead of QR decomposition.

$\label{eq:aussian} \begin{array}{l} \textbf{A numerical example} \\ \text{Gaussian vector: } \dim(\textbf{z}) = 9, \dim(\eta) = 5, \dim(\eta_a) = 2. \\ \text{Condition number of } \Sigma: \ 3.4 \times 10^{10}. \\ \text{Histograms are based on 10000 random realizations.} \end{array}$

Advanced minmax test (solid line) and $\chi^{\prime 2}(2,44.955)$ density function (dashed line).

 $4\mathrm{th}$ June 2003

page 10

Conclusion

- χ^2 -tests are frequently used for residual evaluation.
- Advanced numerical algorithms can significantly improve the numerical accuracy of badly conditioned problems.

4th June 2003

page 9