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Abstract | Two entropy-based divergence classes

are compared using the associated quadratic di�eren-

tial metrics, mean values and projections.

I. Two classes of divergences

The design concepts of divergences are of interest because
of the key role they play in statistical inference and signal
processing. Most of the existing divergences D between two
probability distributions may be associated with an integral
or non integral entropy functional H�(�) with respect to some
reference measure �. We distinguish two di�erent classes
of divergences built on entropies. The �rst one is the well
known class of f -divergences If [4] which are based on the
likelihood ratio and are formally identical to the above en-

tropies I(�; �)
�
= �H�(�). In the integral case, this yields the

relative entropy class, which includes Kullback information as
its most prominent member [4]. The most important instance
of non integral f -divergences is R�enyi information [13].

The second class of divergences builds upon the concavity
of an entropy functional, which entails that, for 0 < � < 1,

J
(�)
H (�; �)

�
= H((1��)�+��)� (1��)H(�)��H(�) is pos-

itive. One can then construct CH(�; �) = max� J
(�)
H (�; �), a

Jensen di�erence JH(�; �) = J
(1=2)
H (�; �), and a Bregman dis-

tance DH(�; �) = lim�!0 �
�1J

(�)
H (�; �). Bregman distances

enjoy an Euclidian-like property, similar to the Pythagorean
theorem [9, 7], when involved in projections onto exponen-
tial or mixture families. This may be further generalized to
projections onto `�-families' as shown in [2] where families of
distributions are dealt with as di�erential manifolds. Still in
this geometrical vein, the interplay between CH ;JH and DH

can be understood via Thales theorem.
A local quadratic di�erential metric is associated with

any divergence measure [12, 2]. Based on the fact that f -
divergences are locally equivalent to the Riemannian metric
de�ned by the Fisher information matrix, we characterize the
intersection of the two above divergence classes. In particular,
it is easily found that the only Bregman distance DH which
is a f -divergence is Kullback information [9, 7]. Similarly, it
is found that the only f -divergences which can be written as
a Jensen di�erence J

(�)
H are those introduced in [11, 10].

II. Associated mean values and projections

Mean values can be associated with entropy-based di-
vergences in two di�erent ways. The �rst way [13, 1]
consists in writing explicitly the generalized mean values

��1
�Pn

i=1
�i �(pi)

�
underlying integral and non integral f -

divergences. Here the �'s are normalized positive weights.
For R�enyi information, �(u) = u�, and this results in �-mean

values
�Pn

i=1
�i p

�
i

�1=�
.

The second way [3] consists in de�ning mean values by
argminv

Pn

i=1
�i d(v; ui), namely as projections, in the sense
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of distance d, onto the half-line u1 = : : : = un > 0 [7]. When
d is an integral f -divergence d(v; ui) = uif

�
v
ui

�
, this gives

the entropic means [3], which are characterized implicitly byPn

i=1
�i f

0
�
v
ui

�
= 0, and necessarily homogeneous (scale in-

variant). The class of entropic means includes all available in-
tegral means and, when applied to a random variable, contains
most of centrality measures (moments, quantiles). When d is
a Bregman distance dh(u; v) = h(u)�h(v)� (u� v)h0(v), the
corresponding mean values are exactly the above generalized
mean values (for � = h0), which are generally not homoge-
neous.

The only generalized mean value which is also an en-
tropic mean, and thus both an f -divergence-projection and a
Bregman-projection, is the above �-mean value, correspond-
ing to R�enyi information [3]. This agrees with invariant prop-
erties of means [8] and the axiomatic of inference in [5].

Finally, we mention that mutual information (viewed both
as relative entropy and Jensen di�erence) and the related con-
cepts of channel capacity [6] and information radius [14], can
be seen as another manner of investigating the intersection of
the above two divergence classes.
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