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Introduction - (1)

• Flutter: critical aircraft instability phenomenon
unfavorable interaction of aerodynamic, elastic and inertial
forces; may cause major failures

• Flight flutter testing, very expensive and time consuming :
Design the flutter free flight envelope

• Flutter clearance techniques:
In-flight identification: output-only, or using input excitations
Data processing: time-frequency, wavelet, envelope function

Flutter prediction based on model-based approaches:
flutterometer (µ-robustness), physical model updating

• Some challenges:
Real time on-board monitoring,
robustness to noise and uncertainties

• Our approach:
Statistical detection for monitoring instability indicators
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Introduction - (2)

• Aim of in-flight online flutter monitoring:

Early detection of a deviation in the aircraft modal parameters

before it develops into flutter.

• Change-point detection: natural approach

• For a scalar instability criterion ψ and a critical value ψc,

online hypotheses testing:

H0 : ψ > ψc and H1 : ψ ≤ ψc

• CUSUM test as an approximation to the optimal test

• A moving reference version
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Subspace-based residual for modal monitoring
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Output-only covariance-driven subspace identification

SVD of H −→ O −→ (H,F ) −→ (λ, ϕλ)
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Canonical parameter : θ ∆=

 Λ
vec Φ

 modes
mode shapes

Observability in modal basis : Op+1(θ) =



Φ
Φ∆
...
Φ∆p



Given:

• a reference parameter θ?, by SVD of Ĥ?
p+1,q (reference data)

U(θ?)
T Ĥ?

p+1,q = 0 parameter estimating function

U(θ?)
T Op+1(θ?) = 0 , U(θ?)

TU(θ?) = I

• a n-size sample of new data; Ĥp+1,q

For testing θ = θ?, statistics (residual) :

ζn(θ?)
∆=

√
n vec

(
U(θ?)

T Ĥp+1,q

)
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Local approach to testing

H̃0 : θ = θ? and H̃1 : θ = θ? + Υ/
√
n

Mean sensitivity and covariance matrices:

Jn(θ?, θ) ∆= 1/
√
n ∂/∂θ̃ Eθ ζn(θ̃)

∣∣∣∣∣θ̃=θ? , Σn(θ?, θ)
∆= Eθ

(
ζn(θ?) ζn(θ?)

T
)

If Σn(θ?, θ) is positive definite, and for all Υ, under both hypoth:

Σn(θ?, θ)
−1/2 (ζn(θ?) − Jn(θ?, θ) Υ)

n → ∞→ N (0, I)

Normalized residual:

ζn(θ?)
∆= Kn(θ?, θ) ζn(θ?)

Kn(θ?, θ)
∆
= Σ−1/2

n J T
n Σ−1

n , Σn(θ?, θ)
∆
= J T

n Σ−1
n Jn

(
ζn(θ?) − Σn(θ?, θ)

1/2 Υ
)
n → ∞→ N (0, I)
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Data-driven computation for online detection

ζn(θ?) ≈ n−p∑
k=q

Zk(θ?)/
√
n

Zk(θ?)
∆= Kk(θ?, θ) vec

(
U(θ?)

T Y+
k,p+1 Y−T

k,q

)

Another approximation

For n large enough, and k = 1, . . . , n,

Zk(θ?) ≈ Gaussian i.i.d., mean 0 before change and 6= 0 after.

Monitoring any function ψ(θ)

Replace Jn(θ?, θ) with Jn(θ?, θ) J ?
θψ, where J ?

θψ = ∂θ/∂ψ|θ=θ?.
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CUSUM test for monitoring a scalar index

The crossing of a critical ψc by ψ is reflected into a change with
the same sign in the mean ν of the i.i.d. Gaussian Zk(θ?).

The CUSUM test may be used for testing between:

H0 : ν > 0 and H1 : ν ≤ 0

Procedure for unknown sign and magnitude of change in ψ

i) Set a min. change magnitude νm > 0, and test between:

H0 : ν > νm/2 and H1 : ν ≤ −νm/2

Sn(θ?)
∆=
n−p∑
k=q

(Zk(θ?) + νm), Tn(θ?)
∆= max
k=q,...,n−p Sk(θ?)

gn(θ?)
∆= Tn(θ?) − Sn(θ?)

H1><
H0

% threshold

ii) Run 2 tests in parallel, for decreasing and increasing ψ;
iii) Make a decision from the first test which fires;
iv) Reset all sums and extrema to 0, switch to the other test.
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Using and tuning the CUSUM test

For detecting aircraft instability precursors, select:

a) An instability criterion ψ and a critical value ψc;

b) A left kernel matrix U(.);

c) Estimates of Jn(θ?, θ) and Σn(θ?, θ);

d) A min. change magnitude νm and a threshold %.

Two solutions for b)-c):

1. θ?
∆= θ0 identified on reference data for the stable system;

U(θ?) computed, Jn,Σn estimated once for all with those data.

2. U(.) ∆= Ûn estimated on test data;

Jn,Σn estimated recursively with those test data.
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The moving reference version
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Example - Aeroelastic Hancock wing model

Rigid wing with constant chord; 2 d.o.f. in bending and torsion.

Matrix F , and eigenvalues λ: functions of airspeed V .

Flutter airspeed: Vf = 88.5m/s.

Stability indicator: Damping coefficient
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20700-size 2D-samples simulated (300 for each V=20:1:88m/s).
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Example - Numerical results

CUSUM test run with νm = 0.1, % = 100, and the damping as ψ.

Solution 1. with θ? = θ0 at V = 20m/s and fixed J ,Σ.

Solution 2. with online Ûn, Ĵn, Σ̂n.

Solution 1. θ? far from instability, too early alarm at V=69m/s.

The test detects that torsional damping decreases

under the predefined threshold.

Solution 2. Alarm at V = 82m/s much closer to flutter.

The test detects that the torsional damping decreases abruptly.

Both algorithms do what they are intended to do.

Only Solution 2 is a flutter detection algorithm.
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Conclusion

Online detection of instability precursors

Model-free subspace statistics, local approach, CUSUM

Analytical model for flutter prediction

Recursive computation of covariance matrix

Relevance on a small simulated structure

Limitations: cost of online kernel and covariance computation

Major issues: dimension of θ, large number of correlated criteria
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