Content

An adaptive statistical approach to flutter detection

Rafik Zouari, Laurent Mevel, Michèle Basseville

IRISA (INRIA & CNRS), Rennes, France

Eurêka project no 3341 FliTE2

michele.basseville@irisa.fr -- http://www.irisa.fr/sisthem/

Introduction - (1)

- Flutter: critical aircraft instability phenomenon unfavorable interaction of aerodynamic, elastic and inertial forces; may cause major failures
- Flight flutter testing, very expensive and time consuming : Design the flutter free flight envelope
- Flutter clearance techniques: In-flight identification: output-only, or using input excitations Data processing: time-frequency, wavelet, envelope function

Flutter prediction based on model-based approaches: flutterometer (μ -robustness), physical model updating

- Some challenges: Real time on-board monitoring, robustness to noise and uncertainties
- Our approach: **Statistical detection** for monitoring instability indicators

Introduction

Subspace-based residual for modal monitoring

CUSUM test for monitoring a scalar instability index

Using and tuning the CUSUM test

A moving reference version

Experimental results

Conclusion

2

Introduction - (2)

- Aim of in-flight online flutter monitoring: Early detection of a deviation in the aircraft modal parameters before it develops into flutter.
- Change-point detection: natural approach
- For a scalar instability criterion ψ and a critical value ψ_c , online hypotheses testing:

 $\mathrm{H}_{0} \; : \; \psi > \psi_{c} \; \mathrm{and} \; \mathrm{H}_{1} \; : \; \psi \leq \psi_{c}$

- CUSUM test as an approximation to the optimal test
- A moving reference version

1

Subspace-based residual for modal monitoring

$$\begin{split} X_{k+1} &= F X_k + V_k & F \phi_{\lambda} = \lambda \phi_{\lambda} \\ Y_k &= H X_k & \varphi_{\lambda} \triangleq H \phi_{\lambda} \\ R_i &\triangleq \mathrm{E} \left(Y_k Y_{k-i}^T \right) , \quad \mathcal{H} \triangleq \begin{pmatrix} R_0 & R_1 & R_2 & \dots \\ R_1 & R_2 & R_3 & \dots \\ R_2 & R_3 & R_4 & \dots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \\ R_i &= H F^i G \Longrightarrow \mathcal{H} = \mathcal{O} C \\ \mathcal{O} \triangleq \begin{pmatrix} H \\ HF^2 \\ \vdots \end{pmatrix} , \quad \begin{array}{c} C \triangleq (G \ FG \ F^2G \ \dots) \\ G \triangleq \mathrm{E} \left(X_k Y_k^T \right) \end{split}$$

Output-only covariance-driven subspace identification

SVD of
$$\mathcal{H} \longrightarrow \mathcal{O} \longrightarrow (H, F) \longrightarrow (\lambda, \varphi_{\lambda})$$

5

Local approach to testing

$$\widetilde{\mathrm{H}}_0: \ \theta = heta_{\star}$$
 and $\widetilde{\mathrm{H}}_1: \ \theta = heta_{\star} + \Upsilon/\sqrt{n}$

Mean sensitivity and covariance matrices:

$$\mathcal{J}_{\boldsymbol{n}}(\boldsymbol{\theta}_{\star},\boldsymbol{\theta}) \stackrel{\Delta}{=} 1/\sqrt{n} \; \partial/\partial \tilde{\boldsymbol{\theta}} \; \operatorname{E}_{\boldsymbol{\theta}} \left. \zeta_{\boldsymbol{n}}(\tilde{\boldsymbol{\theta}}) \right|_{\tilde{\boldsymbol{\theta}}=\boldsymbol{\theta}_{\star}}, \; \boldsymbol{\Sigma}_{\boldsymbol{n}}(\boldsymbol{\theta}_{\star},\boldsymbol{\theta}) \stackrel{\Delta}{=} \operatorname{E}_{\boldsymbol{\theta}} \left(\zeta_{\boldsymbol{n}}(\boldsymbol{\theta}_{\star}) \; \zeta_{\boldsymbol{n}}(\boldsymbol{\theta}_{\star})^{T} \right)$$

If $\Sigma_n(\theta_\star, \theta)$ is positive definite, and for all Υ , under both hypoth:

$$\Sigma_n(\theta_\star, \theta)^{-1/2} \left(\zeta_n(\theta_\star) - \mathcal{J}_n(\theta_\star, \theta) \Upsilon \right) \xrightarrow[n \to \infty]{} \mathcal{N}(0, I)$$

Normalized residual:

$$egin{aligned} \overline{\boldsymbol{\zeta}_n}(heta_\star) &\triangleq \mathcal{K}_n(heta_\star, heta) \,\, \boldsymbol{\zeta}_n(heta_\star) \ \mathcal{K}_n(heta_\star, heta) &\triangleq \overline{\Sigma_n^{-1/2}} \mathcal{J}_n^T \Sigma_n^{-1} \,\,, \,\, \overline{\Sigma}_n(heta_\star, heta) &\triangleq \mathcal{J}_n^T \,\, \Sigma_n^{-1} \mathcal{J}_n \end{aligned}$$

Canonical parameter : $\theta \triangleq \begin{pmatrix} \Lambda \\ \operatorname{vec} \Phi \end{pmatrix}$ modes mode shapes Observability in modal basis : $\mathcal{O}_{p+1}(\theta) = \begin{pmatrix} \Phi \\ \Phi \Delta \\ \vdots \\ \Phi \Delta^p \end{pmatrix}$

Given:

• a reference parameter θ_{\star} , by SVD of $\hat{\mathcal{H}}_{p+1,q}^{\star}$ (reference data)

$$egin{aligned} U(heta_\star)^T \ \hat{\mathcal{H}}^\star_{p+1,q} &= 0 \end{aligned} \label{eq:constraint} extbf{parameter} extbf{estimating function} \ U(heta_\star)^T \ \mathcal{O}_{p+1}(heta_\star) &= 0 \ , \ \ U(heta_\star)^T U(heta_\star) &= I \end{aligned}$$

• a *n*-size sample of new data; $\hat{\mathcal{H}}_{p+1,q}$

For testing $\theta = \theta_{\star}$, statistics (residual) :

$$egin{aligned} \boldsymbol{\zeta_n}(heta_{\star}) & \triangleq \sqrt{n} \; ext{vec} \left(U(heta_{\star})^T \; \hat{\mathcal{H}}_{p+1,q}
ight) \end{aligned}$$

Data-driven computation for online detection

$$\overline{\zeta}_n(heta_\star) pprox \sum_{k=q}^{n-p} Z_k(heta_\star) / \sqrt{n}$$
 $Z_k(heta_\star) \triangleq \mathcal{K}_k(heta_\star, heta) \ ext{vec} \left(U(heta_\star)^T \ \mathcal{Y}_{k,p+1}^+ \ \mathcal{Y}_{k,q}^{-T}
ight)$

Another approximation

For *n* large enough, and k = 1, ..., n, $Z_k(\theta_{\star}) \approx$ Gaussian i.i.d., mean 0 before change and $\neq 0$ after.

Monitoring any function $\psi(\theta)$

Replace $\mathcal{J}_n(\theta_\star, \theta)$ with $\mathcal{J}_n(\theta_\star, \theta) \ \mathcal{J}_{\theta\psi}^{\star}$, where $\mathcal{J}_{\theta\psi}^{\star} = \partial \theta / \partial \psi|_{\theta=\theta_\star}$.

6

CUSUM test for monitoring a scalar index

The crossing of a critical ψ_c by ψ is reflected into a change with the same sign in the mean ν of the i.i.d. Gaussian $Z_k(\theta_{\star})$.

The CUSUM test may be used for testing between:

 $H_0: \nu > 0$ and $H_1: \nu \leq 0$

Procedure for unknown sign and magnitude of change in ψ

i) Set a min. change magnitude $\nu_m > 0$, and test between:

$$\mathrm{H}_0:
u >
u_m/2$$
 and $\mathrm{H}_1:
u \leq -
u_m/2$

$$egin{aligned} S_n(heta_\star) &\triangleq \sum\limits_{k=q}^{n-p} \ (Z_k(heta_\star) +
u_m), \ T_n(heta_\star) &\triangleq \max\limits_{k=q,...,n-p} S_k(heta_\star) \ g_n(heta_\star) &\triangleq T_n(heta_\star) - S_n(heta_\star) \stackrel{ ext{H}_1}{\underset{ ext{H}_0}{\overset{arrho}{\leftarrow}}} \ e & ext{threshold} \end{aligned}$$

ii) Run 2 tests in parallel, for decreasing and increasing ψ ;

- iii) Make a decision from the first test which fires;
- iv) Reset all sums and extrema to 0, switch to the other test.

9

Using and tuning the CUSUM test

For detecting aircraft instability precursors, select:

- a) An instability criterion ψ and a critical value ψ_c ;
- b) A left kernel matrix U(.);
- c) Estimates of $\mathcal{J}_n(\theta_{\star}, \theta)$ and $\Sigma_n(\theta_{\star}, \theta)$;
- d) A min. change magnitude ν_m and a threshold ϱ .

Two solutions for b)-c):

1. $\theta_{\star} \triangleq \theta_0$ identified on reference data for the stable system; $U(\theta_{\star})$ computed, \mathcal{J}_n, Σ_n estimated once for all with those data.

2. $U(.) \triangleq \hat{U}_n$ estimated on test data; \mathcal{J}_n, Σ_n estimated recursively with those test data.

10

The moving reference version

Example - Aeroelastic Hancock wing model

Rigid wing with constant chord; 2 d.o.f. in bending and torsion.

Matrix *F*, and eigenvalues λ : functions of airspeed *V*. Flutter airspeed: $V_f = 88.5m/s$.

Stability indicator: Damping coefficient

20700-size 2D-samples simulated (300 for each V=20:1:88m/s).

Example - Numerical results

CUSUM test run with $\nu_m = 0.1$, $\rho = 100$, and the damping as ψ .

Solution 1. with $\theta_{\star} = \theta_0$ at V = 20m/s and fixed \mathcal{J}, Σ .

Solution 2. with online $\hat{U}_n, \hat{\mathcal{J}}_n, \hat{\Sigma}_n$.

Solution 1. θ_{\star} far from instability, too early alarm at V=69m/s. The test detects that torsional damping decreases under the predefined threshold.

Solution 2. Alarm at V = 82m/s much closer to flutter. The test detects that the torsional damping decreases abruptly.

Both algorithms do what they are intended to do. Only Solution 2 is a flutter detection algorithm.

13

Conclusion

Online detection of instability precursors

Model-free subspace statistics, local approach, CUSUM

Analytical model for flutter prediction

Recursive computation of covariance matrix

Relevance on a small simulated structure

Limitations: cost of online kernel and covariance computation

Major issues: dimension of θ , large number of correlated criteria