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Motivations

— Monitoring (the eigenstructure of) a (linear) system:
identification, damage detection and localization.

— For given monitoring requirements:
How to achieve optimum sensors positioning 7

— For a given sensors set:
Which damages can be efficiently monitored 7

— Criteria to assess sensors sets,
handling eigenstructure, monitoring requirements,
noise and uncertainties, excitation type.

Sensors positioning issues for SHM

System models and parameters

Invariant parameterizations

Different numbers of sensors

Frequency content and geometry of the excitation



System models and invariant parameterizations Structural monitoring and sensors positioning

.. . problems statement
M Z(s)+C Z(s)+ K Z(s) = e(s)

Y(s) = L Z(s) Structural monitoring

FEM:

(M p>+C p+K) ¥, =0, ¢,=L7, For a given sensor positioning L:

monitor the modes and modeshapes (\, ¢)).

X = F X, +V
State space: k+1 k &
Y, = H X,

A 5 Sensors positioning
F o, =XA®)\, o 2 H®,, =X, ¢,=0p)
modes mode—shapes For a given excitation level and profile:
P p—1 imi j i i .r.t. i :
ARMA.: Y= % A v, 4°% Bj Wk—j Optimize an objective function w.r.t. matrix L
=1 7=0 — Using a parameterization invariant w.r.t. L!

(Ap WP+ . + AL XA —1) =0 — Handling different numbers of sensors.

Sensors positioning criteria )
Scalar functions of common use

Matrix criteria . . .
For a g-dimensional matrix M and z < 0:

Observability, controllability, estimation error covariance,

Trace (M?) \/?
MAC matrix, Fisher information, ... Cz =

q

Scalar functions of a matrix . i
Determinant, trace, extremal eigenvalue:

Determinant, trace, extremal eigenvalues,

minimizing off-diagonal terms (e.g. of MAC), ... lim, o c: = |M|1/q ] c1

Invariance properties lim,\_ Cz = Amin (M)
Z N\ OO Z — 7‘min

Measurements scaling, mode-shapes normalization, ...
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Exploiting a distance between matrices

A distance between two matrices

Distance to a diagonal matrix

Scalar functions of potential interest

Scalar functions of potential interest,

with different invariance properties

>

C1(M) K(M,I;) = (Trace M — In|M| — q)/2

(1>

: _ T
Ca(M) min K(M,é 1Iy) = Ar;ll%il Co (A M A )

>

C3(M) min K (M, Ay) = Co(M)

Ag>0

>

Co(M) —-1/2 ln(|M|/i§1Mi,~) mutual info
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Kullback distance between two symmetric matrices

2 K(Mjy, M) & Trace(My My ' — I,) — In |M; M; |
Invariance: K(A My AT, A My AT) = K(M;, M>)

Distance to a diagonal matrix

2 K(M, Ag) :él ”;’ii i Zél Ind; — In|M| — q

1
Approximation

4K(M,Ig) ~ |M—Ig|3 ~ |M~' - I,||%
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Useful criterion: power of a damage detection test

g-dimensional Gaussian residual (¢
Sensor set L reflected into matrices 7,3 in:

Ho : Y =0
CNN(JTaz) :
Hq : YT #0 damage

How to compare different sensor sets,
possibly with different nhumbers, thus different g7

Use the test power
12



x3-

The power criterion

test:

Noncentrality parameter:

2)=xTrY, T=7J7 =17 Fisher info

Test power : function of 72 only. Hence the criterion:

A S.
7”3&( m) Trace(T")
m

: 2
Frerm,|yjz=1 v (Y) 4T =

But, for a fixed false alarms rate, the test power de-

pends on g 2 dim(¢) !
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Conclusion

Trade-off between instrumentation costs
and information and efficiency of SHM algorithms

Criteria to be optimized for sensors positioning

Relevance of a given sensors set (number,

positions) often summarized in a matrix
Invariance properties

Scalar functions of matrices : distances, test power
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Compensating for q

For g large and small T (damage):

(level) Po(x? < A) < a , B=P1(x* > ) (power)

2 _—082%/2
7€ ~1
~ — , 0= 1-—
B a+ N ¢ (1—a)

0 does not depend upon q. Hence use:
2
(B — )’ /? = 4%/2¢/2mq
Trace(T")
Va

(implemented within the COSMAD toolbox)

Integrating over unit sphere:
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