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Identification and merging

e Output-only eigenstructure identification,
e In the presence of nonstationary excitation,

¢ Handling moving sensor pools, with some reference sensors.

Wanted:

e Avoid merging identification results from the different pools,
e Merge the data instead, and process them globally,

e Use a standard subspace algorithm.

Problems: In-operation modal identification
and damage detection and localization

e The excitation is typically:
— natural, not controlled.

— not measured:

* buildings, bridges, offshore structures,

* rotating machinery,
* cars, trains, aircrafts.

— nonstationary (e.g., turbulent).

e How to merge multiple measurements setups
e.d. in case of moving sensors?

e How to detect and localize small damages?

Damage detection and localization

e Output-only damage detection and localization,
e In the presence of nonstationary excitation,

e On-board handling of small damages.

Wanted:
e Early warning and interpretation of damages,
e Avoid re-identification prior to detection,

e Avoid inverse problem solving prior to damage localization.
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Output-only covariance-based subspace identification
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Modelling
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FE model:
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Implementation
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Merging multiple measurements setups

Yk(O,l) Yk(0,2) Yk(O’J)

v, v, v,

Record 1 Record 2 Record J
X = x4 v
Yk(o’j) = Hpy X,gj) (the reference)
Yk(j) = H; X,(Cj) (sensor pool n%)

. . T . . AT
RV AE Yk(o,J) Ykgg’z’]) , RIAE Yk(J) Yk(g’f)

—1

. \T . T
EY,Y v not used, EYY) v

9

Robustness to nonstationary excitation

Time-varying excitation within each record
coka(J ) = Qk
Approximate factorization of covariances

R, ~ HF'G

Consistency: T ' FT—>F, H—>H

Combination of:
e the key factorization property of the covariances,
e the averaging operation underlying covariance computation,

allows to cancel out nonstationarities in the excitation.
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Stationary excitation
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Nonstationary excitation
. . AT
coka(J) =Q;, Gj =) X,gj) Yk(O’J)

R} =Hy F' G;, R!=H, F'G,

Hint: right renormalization of the covariances.
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Introducing the parameter vector

MZ(s)+ CZ(s) + KZ(s) = v(s)
FE model:

Y(s) = LZ(s)
(Mp? +Cu+ K)¥, =0, ¢, =LY,

Xp+1 = FXp+ Vi
State space:

Y, = HX,
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Damage detection

Local approach (small deviations)

6p : reference parameter, known (or identified)

Y,.: N-size sample of new measurements

Build a residual ¢ significantly non zero when damage

60
Test Ho: 6 =09 against Hi: 6 =60y+ JN
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The residual is asymptotically Gaussian
N( 0, (6p)) under Py,
Cn(B0) —
N( M(6g) 60, >(6p)) under P 50
bt N

(On-board) x?2-test
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Invariant / pre-multiplication of ¢ with invertible gain
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Residual «— Estimating function

N

1
Cn(B) = VN = K (60, Yy)

Characterized by: Eg, K(0,Y;) =0 <= 0=20g

Warning: Prediction error for sensor faults ONLY !

Mean sensitivity (Jacobian) and covariance
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Back to eigenstructure monitoring

Xg41 = FXp+ Vg Fox=Aex

Y, = HX, D\ 2 H oy

Canonical parametrization: eé( A )
vec

o
o ] DPA
Observability in modal basis: Op11(0) = | |
PAP
System parameter characterization:
Hpi1,g and O, 1(0) have the same left kernel.
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Back to structural subspace identification
38, STs=1,, ST O,1(60)=0; say S(6)

00 < (RY); characterized by: ST(69) H),, , =0

Residual for structural damage monitoring
A ~
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Damage diagnostics: (local) sensitivity approach

CNN(M 60, ), JBZIJ(MS,KS)((SM)

0K
(M§, Ky) : design model

T
Jacobian : (6M,0K) (Mg, K§)
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Reduction: Z matching computed/identified modes

Problem : dim(l\Ig > dim 6
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On-board damage diagnostics: projecting changes

Jacobia%

FE domain
changes

modal domain
changes
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Computing Jacobian

LI (g, k)

(6M, 5K) .
mode selection

(5“7 d'lpu)
Apply ZJ to unit vectors (0M,dK)
Truncate small vectors (dpu, 6vy,)

Cluster the remaining vectors (dpu, 6v,),
using the y2-metric.

7 Better reduction techniques, instead of 1., 2., 3.
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