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Introduction

Simulated data - One change !
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Introduction

Problems and issues

Problems
Detection of changes

Stochastic models (static, dynamic)←→ uncertainties
Parameterized models (physical interpretation, diagnostics)
Damage←→ change in the parameter vector : θ0 → θ1

Many changes of interest are small

Early detection of (small) deviations is useful

Key issues
1 Which function of the data should be handled ?
2 How to handle that function to make the decision ?
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Introduction

Content

Theory and algorithms

Changes in the mean

Changes in the spectrum

Changes in the system dynamics and vibration-based SHM

Application examples
1 Handling the thermal effect in SHM
2 Aircraft flutter monitoring
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Key concepts - Independent data

Likelihood ratio

Likelihood pθ(yi)

Log-likelihood ratio si
∆
= ln

pθ1(yi)

pθ0(yi)

Eθ0(si) < 0

Eθ1(si) > 0

Likelihood ratio ΛN
∆
=

pθ1(YN
1 )

pθ0(YN
1 )

=

∏
i pθ1(yi)∏
i pθ0(yi)

Log-likelihood ratio SN
∆
= ln ΛN =

∑N
i=1 si
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Key concepts - Independent data

Hypothesis testing

Hypotheses H0 H1

Simple θ0 θ1 Known parameter values

Composite Θ0 Θ1 Unknown parameter values

Simple hypotheses: Likelihood ratio test

If ΛN ≥ λ or equivalently SN ≥ h : decide H1; H0 otherwise

Composite hypotheses: Generalized likelihood ratio (GLR) test

Λ̂N =
supθ1∈Θ1

pθ1(YN
1 )

supθ0∈Θ0
pθ0(YN

1 )
=

p
θ̂1

(YN
1 )

p
θ̂0

(YN
1 )

Rule: Maximize the likelihoods w.r.t. unknown values of θ0 and θ1
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Key concepts - Independent data

On-line change detection

t
o θ

1
θo

1 ? n

Hypothesis H0 θ = θ0 known (1 ≤ i ≤ k)

Hypothesis H1 ∃ t0 unknown s.t. θ =






θ0 (1 ≤ i < t0)

θ1 (t0 ≤ i ≤ k)

Alarm time ta : ta = min {k ≥ 1 : gk ≥ h}

Wanted: decision function gk , onset time estimate (t̂0)k
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Simple case: Known θ1

CUSUM algorithm

Ratio of likelihoods under H0 and H1:
∏t0−1

i=1 pθ0(yi) ·
∏k

i=t0
pθ1(yi)

∏k
i=1 pθ0(yi)

=

∏k
i=t0

pθ1(yi)
∏k

i=t0
pθ0(yi)

= Λk
t0

Rule: Maximize the likelihood ratio w.r.t. the unknown onset time t0

(t̂0)k
∆
= arg max

1≤j≤k

j−1∏

i=1

pθ0(yi) ·
k∏

i=j

pθ1(yi)

= arg max
1≤j≤k

Λk
j

= arg max
1≤j≤k

Sk
j , Sk

j
∆
= ln Λk

j

gk
∆
= max

1≤j≤k
Sk

j = ln Λk
t̂0
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Simple case: Known θ1

CUSUM algorithm (Contd.) Lesson 1

gk
∆
= max

1≤j≤k
Sk

j

= Sk
1 − min

1≤j≤k
Sj

1 = Sk
1 −mk , mk

∆
= min

1≤j≤k
Sj

1

ta = min {k ≥ 1 : Sk
1 ≥ mk + h} Adaptative threshold

gk = (gk−1 + sk )+

gk =
(

Sk
k−Nk+1

)+

, Nk
∆
= Nk−1 · I(gk−1) + 1

(t̂0)k = ta − Nta + 1 Sliding window with adaptive size
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Simple case: Known θ1

CUSUM algorithm - Gaussian example

N (µ, σ2), θ
∆
= µ, pθ(y)

∆
=

1

σ
√

2π
exp

(
− (yi − µ)2

2σ2

)

si = ln
pµ1(yi)

pµ0(yi)

=
1

2 σ2

(
(yi − µ0)

2 − (yi − µ1)
2
)

=
ν

σ2

(
yi − µ0 −

ν

2

)
, ν

∆
= µ1 − µ0 change magnitude

Sk
1 involves

k∑

i=1

yi : Integrator (with adaptive threshold)
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Simple case: Known θ1

CUSUM algorithm - Gaussian example (Contd.)
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Composite case: Unknown θ1

Unknown θ1 - Algorithms

Modified CUSUM algorithms

Minimum magnitude of change

Weighted CUSUM

GLR algorithm

Double maximization

gk = max
1≤j≤k

sup
θ1

Sk
j (θ1)

Gaussian case, additive faults: second maximization explicit
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Composite case: Unknown θ1

Unknown θ1 - Gaussian example Lesson 2

Introducing a minimum magnitude of change νm

Decreasing mean Increasing mean

T k
1

∆
=

∑k
i=1

(
yi − µ0+

νm

2

)
Uk

1
∆
=

∑k
i=1

(
yi − µ0−

νm

2

)

Mk
∆
= max1≤j≤k T j

1 mk
∆
= min1≤j≤k U j

1

ta = min {k ≥ 1 : Mk − T k
1 ≥ h} ta = min {k ≥ 1 : Uk

1 −mk ≥ h}
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Key concepts - Dependent data

Conditional likelihood ratio

Cond. likelihood pθ(yi |Y i−1
1 )

Log-likelihood ratio si
∆
= ln

pθ1(yi |Y i−1
1 )

pθ0(yi |Y i−1
1 )

Eθ0(si) < 0

Eθ1(si) > 0

Likelihood ratio ΛN
∆
=

pθ1(YN
1 )

pθ0(YN
1 )

=

∏
i pθ1(yi |Y i−1

1 )
∏

i pθ0(yi |Y i−1
1 )

Log-likelihood ratio SN
∆
= ln ΛN =

∑N
i=1 si
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Key concepts - Dependent data

Which residuals ? Lesson 3

Residuals based on statistical inference
Likelihood ratio : may be computationally complex

Efficient score ∆
= likelihood sensitivity w.r.t. parameter

Any other parameter estimating fonction

Warning

The innovation is OK for additive faults but NOT for
multiplicative faults

The innovation is NOT sufficient for monitoring the system
dynamics
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Key concepts - Dependent data

Building a residual

Given
θ0 : reference parameter, known (or identified)

Yk : N-size sample of new measurements

Wanted
A residual ζ significantly non zero when a change occurs

Solution

Residual↔ Estimating function ζN(θ,YN
1 )

Characterized by: Eθ0 ζN(θ,YN
1 ) = 0 ⇐⇒ θ = θ0
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Key concepts - Dependent data

Designing the test

Residual behavior
Mean sensitivity J (θ0) and covariance Σ(θ0) of ζN(θ0)

The residual is asymptotically Gaussian

ζN(θ0) →






N (0, Σ(θ0)) if Pθ0

N (J (θ0) δθ, Σ(θ0)) if Pθ0+
δθ
√

N
small change

(On-board) χ2-test

ζT
N Σ−1 J (J T Σ−1 J )−1 J T Σ−1 ζN ≥ h

Invariant / pre-multiplication of ζ with invertible gain.

Noises and uncertainty on θ0 taken into account
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Structural monitoring

Vibration-based monitoring problem

The excitation
natural, not controlled
not measured:

buildings, bridges, offshore structures,
rotating machinery,
cars, trains, aircrafts

nonstationary (e.g., turbulent)

Questions
How to detect and localize small damages ?
Early ?
On-board ?
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Structural monitoring

Modelling

FE model:






M Z̈(s) + C Ż(s) + K Z(s) = ǫ(s)

Y (s) = L Z(s)

(M µ2 + C µ+ K ) Ψµ = 0 , ψµ = L Ψµ

State space:






Xk+1 = F Xk + Vk

Yk = H Xk

F Φλ = λ Φλ , ϕλ
∆
= H Φλ

eδµ = λ︸ ︷︷ ︸
modes

, ψµ = ϕλ︸ ︷︷ ︸
mode shapes
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Structural monitoring

Subspace identification of the dynamics - Theory

Ri
∆
= E

(
Yk Y T

k−i

)

︸ ︷︷ ︸
ok if stationary !

, H =





R0 R1 R2 . . .

R1 R2 R3 . . .

R2 R3 R4 . . .
...

...
. . .

...





Ri = H F i G , G ∆
= E

(
Xk Y T

k

)

O ∆
=





H
HF
HF 2

...




, C ∆

=
(

G FG F 2G . . .
)

H = O C , H −→ O −→ (H,F ) −→ (λ, ϕλ)
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Structural monitoring

Subspace identification of the dynamics - Implementation

R̂ i
∆
=

1
N

N∑

k=1

Yk Y T
k−i

︸ ︷︷ ︸
ok when nonstationary !

, Ĥ =





R̂0 R̂1 R̂2 . . .

R̂1 R̂2 R̂3 . . .

R̂2 R̂3 R̂4 . . .
...

...
. . .

...





SVD(Ĥ) + truncation −→ Ô −→ (Ĥ, F̂ ) −→ (λ̂, ϕ̂λ)

Ĥ = U ∆ W T = U
(

∆1 0
0 ∆0

)
W T ; Ô = U ∆

1/2
1

O↑
p(H,F ) = Op(H,F ) F

det(F − λ I) = 0 , F Φλ = λ Φλ, ϕλ = H Φλ
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Structural monitoring

Introducing the parameter vector

FE model:






M Z̈(s) + C Ż(s) + K Z(s) = ǫ(s)

Y (s) = L Z(s)

(M µ2 + C µ+ K ) Ψµ = 0 , ψµ = L Ψµ

State space:






Xk+1 = F Xk + Vk

Yk = H Xk

F Φλ = λ Φλ , ϕλ
∆
= H Φλ

Parameter: eδµ = λ︸ ︷︷ ︸
modes

, ψµ = ϕλ︸ ︷︷ ︸
mode shapes

; θ
∆
=

(
Λ

vec Φ

)
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Structural monitoring

Eigenstructure monitoring






Xk+1 = F Xk + Vk F ϕλ = λ ϕλ

Yk = H Xk Φλ
∆
= H ϕλ

Canonical parametrization : θ
∆
=

(
Λ

vec Φ

)

Observability in modal basis : Op+1(θ) =





Φ
Φ∆
...
Φ∆p





System parameter characterization

Hp+1,q and Op+1(θ) have the same left kernel
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Structural monitoring

Detecting structural changes

System parameter characterization

∃U, UT U = Is, UT Op+1(θ0) = 0; say U(θ0)

θ0 ↔ (R0
i )i characterized by: UT (θ0) Ĥ0

p+1,q = 0

Residual for structural monitoring

ζN(θ0)
∆
= vec( UT (θ0) Ĥp+1,q )

(On-board) χ2-test

ζT
N Σ−1 J (J T Σ−1 J )−1 J T Σ−1 ζN ≥ h
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Structural monitoring

Relation to parity space

ζparity = GT Y+

k ,p+1, GT Op+1 = 0

ζsubspace = UT Ĥp+1,q, UT Op+1 = 0

First order statistics←→ Second order statistics
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Example 1

Handling the thermal effect in SHM

The problem

The temperature T modifies the eigenfrequencies −→
T ∆

= nuisance parameter

Model of thermal effect on stiffness matrix K

Three solutions
1 Analytic updating of the left kernel U
2 Statistical rejection of the nuisance T
3 Data fusion: empirical mean of Hankel matrices

(reference data sets at different unknown T)
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Example 1

Applications

Simulated bridge deck

Provided by É. Balmès, Ecole Centrale Paris

Finite elements toolbox OpenFEM (with Matlab or Scilab)

60 m span, 9600 volume elements, 13668 nodes

Temperature variations: either uniform or linear with z

Beam within a climatic chamber
Laboratory test-case provided by F. Treyssède, LCPC

Vertical clamped beam subject to decreasing T

Small local damage: horizontal clamped spring attached to
the beam, with tunable stiffness and height



Overview Changes in mean Changes in spectrum Changes in dynamics and vibration-based SHM Conclusion

Example 1

Numerical results
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Example 2

Flutter monitoring

Flutter: critical aircraft instability phenomenon
unfavorable interaction of aerodynamic, elastic and inertial
forces; may cause major failures

Flight flutter testing, very expensive and time consuming :
Design the flutter free flight envelope

Flutter clearance techniques:
In-flight identification, flutter prediction

Some challenges:
Real time on-board monitoring,
Handling transients between steady flight test points

Our approach:
Change detection for monitoring instability indicators
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Example 2

Using CUSUM for monitoring an instability criterion ψ

Hypotheses

H0 : ψ ≥ ψc

H1 : ψ < ψc ψc : critical value

Real-time constraint
Write the subspace-based residual ζ as a cumulative sum

Proposed solution (Lesson 2)

Introduce a minimum change magnitude
(actual change magnitude unknown)

Run two CUSUM tests in parallel
(actual change direction unknown)
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Example 2

Implementing the CUSUM test

For detecting aircraft instability precursors, select

a) An instability criterion ψ and a critical value ψc ;

b) A left kernel matrix U(.);

c) A reference θ⋆ for estimating Jn(θ⋆) and Σ−1
n (θ⋆);

d) A min. change magnitude νm and a threshold h.
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Example 2

Three solutions

Three solutions for b)-c)

1 θ⋆
∆
= θ0 identified on reference data for the stable system;

U(θ⋆) computed,
Jn(θ0),Σ

−1
n (θ0) estimated recursively with the test data.

2 θ⋆
∆
= θc , critical parameter closer to instability, computed

at each flight point using θ0 and an aeroelastic model;
U(θ⋆) computed,
Jn(θc),Σ

−1
n (θc) estimated recursively with the test data.

3 U(.)
∆
= Ûn estimated on test data,

Jn(θ0),Σ
−1
n (θ0) estimated recursively with the test data.
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Example 2

Results - Aeroelastic Hancock wing model
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Advanced statistical signal processing is mandatory for
process monitoring and diagnostics

A statistical framework enlightens the meaning and
increases the power of a number of familiar operations:
integration, averaging, sensitivity, adaptive thresholds, adaptive
windows, ...

Change detection is useful for vibration-based SHM

Handling the temperature effect in SHM of civil structures

Aircraft flutter monitoring
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