Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion

On statistical change detection for FDI

Michèle Basseville

IRISA/CNRS, Rennes, France

Diagnostics of Processes and Systems, Gdansk, 2009

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
•••				

Introduction

Simulated data - One change !

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclus
000				

Introduction

Problems and issues

Problems

- Detection of changes
 - Stochastic models (static, dynamic) ←→ uncertainties
 - Parameterized models (physical interpretation, diagnostics)
 - Damage \longleftrightarrow change in the parameter vector : $\theta_0 \rightarrow \theta_1$
- Many changes of interest are small
- Early detection of (small) deviations is useful

Key issues

- Which function of the data should be handled ?
- How to handle that function to make the decision ?

Conten	t			
Introduction				
Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion

Theory and algorithms

- Changes in the mean
- Changes in the spectrum
- Changes in the system dynamics and vibration-based SHM

Application examples

- Handling the thermal effect in SHM
- Aircraft flutter monitoring

Overview 000	Changes in mean ●00000000	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Key concepts	- Independent data			
Likelih	ood ratio			

Likelihood	$p_{\theta}(y_i)$		
Log-likelihood ratio	Si	$\stackrel{\Delta}{=}$	$\ln \frac{p_{\theta_1}(y_i)}{p_{\theta_0}(y_i)}$
	$\mathbf{E}_{\theta_0}(s_i)$	<	0
	$\mathbf{E}_{\theta_1}(s_i)$	>	0
Likelihood ratio	Λ_N	≜	$\frac{p_{\theta_1}(\mathcal{Y}_1^N)}{p_{\theta_0}(\mathcal{Y}_1^N)} = \frac{\prod_i p_{\theta_1}(y_i)}{\prod_i p_{\theta_0}(y_i)}$
Log-likelihood ratio	S _N	$\underline{\underline{\Delta}}$	In $\Lambda_N = \sum_{i=1}^N s_i$

Overview 000	Changes in mean oooooooo	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Key concepts	s - Independent data			
Hypoth	nesis testing			

Hypotheses	H ₀	H ₁	
Simple	θ_0	θ_1	Known parameter values
Composite	Θ_0	Θ1	Unknown parameter values

Simple hypotheses: Likelihood ratio test

If $\Lambda_N \ge \lambda$ or equivalently $S_N \ge h$: decide H_1 ; H_0 otherwise

Composite hypotheses: Generalized likelihood ratio (GLR) test

$$\widehat{\Lambda}_{N} = \frac{\sup_{\theta_{1} \in \Theta_{1}} p_{\theta_{1}}(\mathcal{Y}_{1}^{N})}{\sup_{\theta_{0} \in \Theta_{0}} p_{\theta_{0}}(\mathcal{Y}_{1}^{N})} = \frac{p_{\widehat{\theta}_{1}}(\mathcal{Y}_{1}^{N})}{p_{\widehat{\theta}_{0}}(\mathcal{Y}_{1}^{N})}$$

Rule: Maximize the likelihoods w.r.t. unknown values of θ_0 and θ_1

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
	00000000			

Key concepts - Independent data

On-line change detection

Wanted: decision function g_k , onset time estimate $(\hat{t}_0)_k$

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Simple case:	Known θ_1			

CUSUM algorithm

Ratio of likelihoods under H_0 and H_1 :

$$\frac{\prod_{i=1}^{t_0-1} \, \rho_{\theta_0}(y_i) \, \cdot \, \prod_{i=t_0}^k \, \rho_{\theta_1}(y_i)}{\prod_{i=1}^k \, \rho_{\theta_0}(y_i)} \;\; = \;\; \frac{\prod_{i=t_0}^k \, \rho_{\theta_1}(y_i)}{\prod_{i=t_0}^k \, \rho_{\theta_0}(y_i)} \;\; = \;\; \Lambda_{t_0}^k$$

Rule: Maximize the likelihood ratio w.r.t. the unknown onset time t_0

$$\begin{split} (\widehat{t_0})_k & \stackrel{\Delta}{=} & \arg \max_{1 \le j \le k} \quad \prod_{i=1}^{j-1} \, p_{\theta_0}(y_i) \, \cdot \, \prod_{i=j}^k \, p_{\theta_1}(y_i) \\ & = \, \arg \max_{1 \le j \le k} \, \Lambda_j^k \\ & = \, \arg \max_{1 \le j \le k} \, S_j^k, \qquad S_j^k \stackrel{\Delta}{=} \ln \, \Lambda_j^k \\ g_k & \stackrel{\Delta}{=} \, \max_{1 \le j \le k} \, S_j^k \, = \, \ln \, \Lambda_{\widehat{t_0}}^k \end{split}$$

CUSUM algorithm (Contd.)

$$g_{k} \stackrel{\Delta}{=} \max_{1 \le j \le k} S_{j}^{k}$$

$$= S_{1}^{k} - \min_{1 \le j \le k} S_{1}^{j} = S_{1}^{k} - m_{k}, \quad m_{k} \stackrel{\Delta}{=} \min_{1 \le j \le k} S_{1}^{j}$$

$$t_{a} = \min\{k \ge 1 : S_{1}^{k} \ge m_{k} + h\} \quad \text{Adaptative threshold}$$

$$g_{k} = (g_{k-1} + s_{k})^{+}$$

$$g_{k} = \left(S_{k-N_{k}+1}^{k}\right)^{+}, \quad N_{k} \stackrel{\Delta}{=} N_{k-1} \cdot I(g_{k-1}) + 1$$

 $(\hat{t}_0)_k = t_a - N_{t_a} + 1$ Sliding window with adaptive size

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
	00000000			

Simple case: Known θ_1

CUSUM algorithm - Gaussian example

$$\mathcal{N}(\mu, \sigma^{2}), \quad \theta \triangleq \mu, \quad p_{\theta}(\mathbf{y}) \triangleq \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(y_{i} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$s_{i} = \ln \frac{p_{\mu_{1}}(y_{i})}{p_{\mu_{0}}(y_{i})}$$

$$= \frac{1}{2\sigma^{2}} \left((y_{i} - \mu_{0})^{2} - (y_{i} - \mu_{1})^{2}\right)$$

$$= \frac{\nu}{\sigma^{2}} \left(y_{i} - \mu_{0} - \frac{\nu}{2}\right), \quad \nu \triangleq \mu_{1} - \mu_{0} \text{ change magnitude}$$

 S_1^k involves $\sum_{i=1}^n y_i$: Integrator (with adaptive threshold)

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
	000000000			

Simple case: Known θ_1

CUSUM algorithm - Gaussian example (Contd.)

Overview	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion	
000	000000000	0000	000000000000000000000000000000000000000		
Composite case: Unknown θ_1					

Unknown θ_1 - Algorithms

Modified CUSUM algorithms

- Minimum magnitude of change
- Weighted CUSUM

GLR algorithm

Double maximization

$$g_k = \max_{1 \leq j \leq k} \sup_{ heta_1} S_j^k(heta_1)$$

• Gaussian case, additive faults: second maximization explicit

Unknown θ_1 - Gaussian example

Introducing a minimum magnitude of change ν_m

Decreasing mean

$$T_1^k \stackrel{\Delta}{=} \sum_{i=1}^k \left(y_i - \mu_0 + \frac{\nu_m}{2} \right)$$

Increasing mean

$$U_1^k \stackrel{\Delta}{=} \sum_{i=1}^k \left(y_i - \mu_0 - \frac{\nu_m}{2} \right)$$

 $M_k \stackrel{\Delta}{=} \max_{1 \le j \le k} T_1^j \qquad \qquad m_k \stackrel{\Delta}{=} \min_{1 \le j \le k} U_1^j$

 $t_{a} = \min \{k \ge 1 : M_{k} - T_{1}^{k} \ge h\} \mid t_{a} = \min \{k \ge 1 : U_{1}^{k} - m_{k} \ge h\}$

Overview 000	Changes in mean	Changes in spectrum ●000	Changes i	n dyna ooooc	amics and vibration-based SHM	Conclusion
Key conc	epts - Dependent data					
Cond	ditional likeliho	ood ratio				
	Cond. likelihoo	d $p_{\theta}(y_i \mathcal{Y}_1^{i-1})$	⁻¹)			
	Log-likelihood ı	ratio s _i	≜	In	$\frac{p_{\theta_1}(y_i \mathcal{Y}_1^{i-1})}{p_{\theta_0}(y_i \mathcal{Y}_1^{i-1})}$	
		$\mathbf{E}_{\theta_0}(\mathbf{s}_i)$) <	0		

 $\mathbf{E}_{\theta_1}(s_i) > 0$

Likelihood ratio

 Λ_N

 $\triangleq \frac{p_{\theta_1}(\mathcal{Y}_1^N)}{p_{\theta_0}(\mathcal{Y}_1^N)} = \frac{\prod_i p_{\theta_1}(y_i|\mathcal{Y}_1^{i-1})}{\prod_i p_{\theta_0}(y_i|\mathcal{Y}_1^{i-1})}$

Log-likelihood ratio $S_N \stackrel{\Delta}{=} \ln \Lambda_N = \sum_{i=1}^N s_i$

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Key concepts	- Dependent data			
Which	residuals ?			

Residuals based on statistical inference

- Likelihood ratio : may be computationally complex
- Efficient score $\stackrel{\Delta}{=}$ likelihood sensitivity w.r.t. parameter
- Any other parameter estimating fonction

Warning

- The innovation is OK for additive faults but NOT for multiplicative faults
- The innovation is NOT sufficient for monitoring the system dynamics

Overview 000	Changes in mean	Changes in spectrum oo●o	Changes in dynamics and vibration-based SHM	Conclusion
Key concepts	- Dependent data			
Buildin	g a residual			

Given

- θ_0 : reference parameter, known (or identified)
- Yk: N-size sample of new measurements

Wanted

• A residual ζ significantly non zero when a change occurs

Solution

- Residual \leftrightarrow Estimating function $\zeta_N(\theta, \mathcal{Y}_1^N)$
- Characterized by: $\mathbf{E}_{\theta_0} \zeta_N(\theta, \mathcal{Y}_1^N) = 0 \iff \theta = \theta_0$

Designing	the test			
Key concepts - Dep	pendent data			
Overview Cha	anges in mean	Changes in spectrum ooo●	Changes in dynamics and vibration-based SHM	Conclusion

Residual behavior

- Mean sensitivity $\mathcal{J}(\theta_0)$ and covariance $\Sigma(\theta_0)$ of $\zeta_N(\theta_0)$
- The residual is asymptotically Gaussian

$$\zeta_{N}(\theta_{0}) \rightarrow \begin{cases} \mathcal{N}(0, \Sigma(\theta_{0})) \text{ if } \mathbf{P}_{\theta_{0}} \\ \\ \mathcal{N}(\mathcal{J}(\theta_{0}) \delta\theta, \Sigma(\theta_{0})) \text{ if } \mathbf{P}_{\theta_{0} + \frac{\delta\theta}{\sqrt{N}}} \text{ small change} \end{cases}$$

(On-board) χ^2 -test

$$\zeta_N^T \, \Sigma^{-1} \, \mathcal{J} \, (\mathcal{J}^T \, \Sigma^{-1} \, \mathcal{J})^{-1} \, \mathcal{J}^T \, \Sigma^{-1} \, \zeta_N \ \geq h$$

• Invariant / pre-multiplication of ζ with invertible gain.

• Noises and uncertainty on θ_0 taken into account

Overview 000 Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Vibration-based monitoring problem

The excitation

- natural, not controlled
- not measured:
 - buildings, bridges, offshore structures,
 - rotating machinery,
 - cars, trains, aircrafts

nonstationary (e.g., turbulent)

Questions

How to detect and localize small damages ?
 Early ?
 On-board ?

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Structural m	onitoring			
Model	ling			

FE model:

$$\begin{cases}
M \ddot{\mathcal{Z}}(s) + C \dot{\mathcal{Z}}(s) + K \mathcal{Z}(s) = \epsilon(s) \\
Y(s) = L \mathcal{Z}(s) \\
(M \mu^2 + C \mu + K) \Psi_\mu = 0, \quad \psi_\mu = L \Psi_\mu \\
(M \mu^2 + C \mu + K) \Psi_\mu = 0, \quad \psi_\mu = L \Psi_\mu \\
K_{k+1} = F X_k + V_k \\
Y_k = H X_k \\
F \Phi_\lambda = \lambda \Phi_\lambda, \quad \varphi_\lambda \stackrel{\Delta}{=} H \Phi_\lambda \\
\frac{e^{\delta \mu} = \lambda}{modes}, \quad \underbrace{\psi_\mu = \varphi_\lambda}{mode \text{ shapes}}
\end{cases}$$

Overview	Changes in m
000	

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Subspace identification of the dynamics - Theory

$$\underbrace{R_{i} \triangleq \mathbf{E} \left(Y_{k} \; Y_{k-i}^{T} \right)}_{\mathbf{ok if stationary }}, \quad \mathcal{H} = \begin{pmatrix} R_{0} & R_{1} & R_{2} & \dots \\ R_{1} & R_{2} & R_{3} & \dots \\ R_{2} & R_{3} & R_{4} & \dots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

$$\begin{aligned}
R_{i} = H \; F^{i} \; G \;, \quad G \triangleq \mathbf{E} \left(X_{k} \; Y_{k}^{T} \right)$$

$$\mathcal{O} \triangleq \begin{pmatrix} H \\ HF^{2} \\ \vdots \end{pmatrix} \;, \quad \mathcal{C} \triangleq \left(\; G \; FG \; F^{2}G \; \dots \right)$$

 $\mathcal{H} = \mathcal{O} \ \mathcal{C} \quad , \quad \mathcal{H} \longrightarrow \mathcal{O} \longrightarrow (\mathcal{H}, \mathcal{F}) \longrightarrow (\lambda, \varphi_{\lambda})$

Overview	Changes	m
000		

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Subspace identification of the dynamics - Implementation

$$\underbrace{\hat{R}_{i} \triangleq \frac{1}{N} \sum_{k=1}^{N} Y_{k} Y_{k-i}^{T}}_{\text{ok when nonstationary}}, \quad \hat{\mathcal{H}} = \begin{pmatrix} \hat{R}_{0} & \hat{R}_{1} & \hat{R}_{2} & \dots \\ \hat{R}_{1} & \hat{R}_{2} & \hat{R}_{3} & \dots \\ \hat{R}_{2} & \hat{R}_{3} & \hat{R}_{4} & \dots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

$$SVD(\hat{\mathcal{H}}) + truncation \longrightarrow \hat{\mathcal{O}} \longrightarrow (\hat{\mathcal{H}}, \hat{\mathcal{F}}) \longrightarrow (\hat{\lambda}, \hat{\varphi_{\lambda}})$$

$$\begin{aligned} \hat{\mathcal{H}} &= U \Delta W^{T} = U \begin{pmatrix} \Delta_{1} & 0 \\ 0 & \Delta_{0} \end{pmatrix} W^{T}; \quad \hat{\mathcal{O}} &= U \Delta_{1}^{1/2} \\ \mathcal{O}_{p}^{\uparrow}(H, F) &= \mathcal{O}_{p}(H, F) F \\ \det(F - \lambda I) &= 0, \quad F \Phi_{\lambda} = \lambda \Phi_{\lambda}, \quad \varphi_{\lambda} = H \Phi_{\lambda} \end{aligned}$$

Overview	Changes in mea

Changes in spectrur

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Introducing the parameter vector

FE model:

$$\begin{cases}
M \ddot{\mathcal{Z}}(s) + C \dot{\mathcal{Z}}(s) + K \mathcal{Z}(s) = \epsilon(s) \\
Y(s) = L \mathcal{Z}(s) \\
(M \mu^2 + C \mu + K) \Psi_\mu = 0, \quad \psi_\mu = L \Psi_\mu \\
M \mu^2 + C \mu + K) \Psi_\mu = 0, \quad \psi_\mu = L \Psi_\mu \\
K_{k+1} = F X_k + V_k \\
Y_k = H X_k \\
F \Phi_\lambda = \lambda \Phi_\lambda, \quad \varphi_\lambda \triangleq H \Phi_\lambda \\
Parameter: \qquad \underbrace{e^{\delta \mu} = \lambda}_{modes}, \quad \underbrace{\psi_\mu = \varphi_\lambda}_{mode shapes}; \quad \theta \triangleq \left(\begin{array}{c} \Lambda \\
\operatorname{vec} \Phi \end{array}\right)
\end{cases}$$

Overview	Changes in mean	Changes in s
000		

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Eigenstructure monitoring

$$\begin{cases} X_{k+1} = F X_k + V_k & F \varphi_{\lambda} = \lambda \varphi_{\lambda} \\ Y_k = H X_k & \Phi_{\lambda} \stackrel{\Delta}{=} H \varphi_{\lambda} \end{cases}$$
Canonical parametrization : $\theta \stackrel{\Delta}{=} \begin{pmatrix} \Lambda \\ \operatorname{vec} \Phi \end{pmatrix}$
Observability in modal basis : $\mathcal{O}_{p+1}(\theta) = \begin{pmatrix} \Phi \\ \Phi \Delta \\ \vdots \\ \Phi \Delta^p \end{pmatrix}$

System parameter characterization

 $\mathcal{H}_{p+1,q}$ and $\mathcal{O}_{p+1}(\theta)$ have the same left kernel

Overview	

Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Structural monitoring

Detecting structural changes

System parameter characterization

•
$$\exists U, U^T U = I_s, U^T \mathcal{O}_{p+1}(\theta_0) = 0; \text{ say } U(\theta_0)$$

•
$$\theta_0 \leftrightarrow (R_i^0)_i$$
 characterized by: $U^T(\theta_0) \hat{\mathcal{H}}_{p+1,q}^0 = 0$

Residual for structural monitoring

•
$$\zeta_N(\theta_0) \stackrel{\Delta}{=} \operatorname{vec}(U^T(\theta_0) \hat{\mathcal{H}}_{p+1,q})$$

(On-board) χ^2 -test

$$\zeta_N^T \, \Sigma^{-1} \, \mathcal{J} \, (\mathcal{J}^T \, \Sigma^{-1} \, \mathcal{J})^{-1} \, \mathcal{J}^T \, \Sigma^{-1} \, \zeta_N \ \geq h$$

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Structural mo	nitoring			

Relation to parity space

$$\zeta_{\text{parity}} = \mathcal{G}^{\mathsf{T}} \mathcal{Y}_{k,p+1}^{+}, \quad \mathcal{G}^{\mathsf{T}} \mathcal{O}_{p+1} = 0$$

$$\zeta_{\text{subspace}} = \boldsymbol{U}^T \; \hat{\mathcal{H}}_{\boldsymbol{p+1},\boldsymbol{q}}, \quad \boldsymbol{U}^T \; \mathcal{O}_{\boldsymbol{p+1}} = \boldsymbol{0}$$

First order statistics \longleftrightarrow Second order statistics

Overview 000 Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Example 1

Handling the thermal effect in SHM

The problem

- The temperature T modifies the eigenfrequencies \longrightarrow $T \stackrel{\Delta}{=}$ nuisance parameter
- Model of thermal effect on stiffness matrix K

Three solutions

- Analytic updating of the left kernel U
- Statistical rejection of the nuisance T
- Data fusion: empirical mean of Hankel matrices (reference data sets at different unknown T)

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM
Example 1			

Conclusion

Applications

Simulated bridge deck

- Provided by É. Balmès, Ecole Centrale Paris
- Finite elements toolbox OpenFEM (with Matlab or Scilab)
- 60 m span, 9600 volume elements, 13668 nodes
- Temperature variations: either uniform or linear with z

Beam within a climatic chamber

- Laboratory test-case provided by F. Treyssède, LCPC
- Vertical clamped beam subject to decreasing T
- Small local damage: horizontal clamped spring attached to the beam, with tunable stiffness and height

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion	
Example 1					
Numerical results					

Beam within a climatic chamber

Original test and 3 tests handling the thermal effect versus T: kernel updating, nuisance rejection, data fusion Safe, damaged

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion
Example 2				
Flutter monitoring				

- Flutter: critical aircraft instability phenomenon unfavorable interaction of aerodynamic, elastic and inertial forces; may cause major failures
- Flight flutter testing, very expensive and time consuming : Design the flutter free flight envelope
- Flutter clearance techniques: In-flight identification, flutter prediction
- Some challenges: Real time on-board monitoring, Handling transients between steady flight test points
- Our approach:

Change detection for monitoring instability indicators

Overview 000 Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Example 2

Using CUSUM for monitoring an instability criterion ψ

Real-time constraint

Write the subspace-based residual ζ as a cumulative sum

Proposed solution (Lesson 2)

- Introduce a minimum change magnitude (actual change magnitude unknown)
- Run two CUSUM tests in parallel (actual change direction unknown)

Overview 000 Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Example 2

Implementing the CUSUM test

For detecting aircraft instability precursors, select

- a) An instability criterion ψ and a critical value ψ_c ;
- b) A left kernel matrix U(.);
- c) A reference θ_{\star} for estimating $\mathcal{J}_n(\theta_{\star})$ and $\Sigma_n^{-1}(\theta_{\star})$;
- d) A min. change magnitude ν_m and a threshold h.

Overview	Char

ges in mean (

Changes in spectrum

Changes in dynamics and vibration-based SHM

Example 2

Three solutions

Three solutions for *b*)-*c*)

- $\theta_{\star} \triangleq \theta_0$ identified on reference data for the stable system; $U(\theta_{\star})$ computed, $\mathcal{J}_{p}(\theta_0), \Sigma_{p}^{-1}(\theta_0)$ estimated recursively with the test data.

 $\mathcal{J}_n(\theta_c), \Sigma_n^{-1}(\theta_c)$ estimated recursively with the test data.

• $U(.) \stackrel{\Delta}{=} \widehat{U}_n$ estimated on test data, $\mathcal{J}_n(\theta_0), \Sigma_n^{-1}(\theta_0)$ estimated recursively with the test data. Overview Changes in mean

Changes in spectrum

Changes in dynamics and vibration-based SHM

Conclusion

Example 2

Results - Aeroelastic Hancock wing model

Frequencies (Left) and dampings (Right). Bending and torsion

Sol **1** with θ_0 at V=20 m/s. Bending (Left) and torsion (Right)

 θ_c predicted after *t* flight points. Sol **2** between flight points *t* and *t*+1.

Overview 000	Changes in mean	Changes in spectrum	Changes in dynamics and vibration-based SHM	Conclusion

Advanced statistical signal processing is mandatory for process monitoring and diagnostics

 A statistical framework enlightens the meaning and increases the power of a number of familiar operations: integration, averaging, sensitivity, adaptive thresholds, adaptive windows, ...

Change detection is useful for vibration-based SHM

- Handling the temperature effect in SHM of civil structures
- Aircraft flutter monitoring