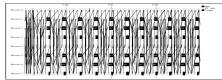
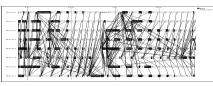
### SAAP: SimGrid As A Platform

Seminaire ingénieurs ADT

October 18., 2018


### Modern IT Systems

### **Huge Heterogenous Systems**




2,282,544 cores 4608×(2×22-cores + 6GPU) 122 Tflops, 9MW #2 Taihu Light 10,649,600 cores 40 960× 260-cores RISCs 93 Tflops, 15MW #3 Sierra 1,572,480 cores 4300×(2×22-cores + 4GPU) 71 Tflops, 12MW

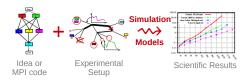
### **Complex Dynamic Applications**



Rigid, Regular, Hand-tuned Comm Patterns



Dynamic, Irregular (task-based?)

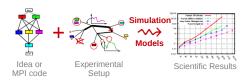

How do we study these beasts?

SimGrid As A Platform 1/11

### Simulating Distributed Systems

#### Simulation: Fastest Path from Idea to Data

Test your scientific idea with a fast and confortable scientific instrument




SimGrid As A Platform

### Simulating Distributed Systems

#### Simulation: Fastest Path from Idea to Data

Test your scientific idea with a fast and confortable scientific instrument



### Simulation: Easiest Way to Study Real Distributed Systems





- ► Centralized, Reproducible, Clairevoyance, What if studies, No Heisenbug
- ► Hard/soft co-design and capacity planning

SimGrid As A Platform 2/11

### SimGrid: Versatile Simulator of Distributed Apps

# Install a Scientific Instrument on your Laptop Computational Science of Computer Science



- ▶ Joint Project since 1998, mostly from French institutions
- Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

#### Key Strengths

- ▶ Performance Models validated with Open Science → Predictive Power
- ► Architectured as an OS → Efficiency; Performance & Correction co-evaluation
- Usability: Fast, Reliable, User-oriented APIs, Visualization
- ▶ Versatility: Advances in HPC modeling reused by Cloud users

### Community

- Scientists: 500+ publications only cite it, 58 extend it, 314 use it
- Apps/Model co-dev : StarPU, BigDFT, TomP2P
- ► Some industrial users on internal projects (Intel, Bull)
- Open Source: external Power Users (fixes & models)



# ADT SimGrid As A Platform (SAAP)

#### How to ensure the Software Sustainability

- ▶ Beyond scientific projects (ANR, IPL): best transfer strategy = open access
- Engineering tasks currently handled by scientists (IJD not enough)
  Cultivate our garden: simplify everything to grow further
- Time consuming but rewarding: huge competitive advantage in science

# ADT SimGrid As A Platform (SAAP)

### How to ensure the Software Sustainability

- Beyond scientific projects (ANR, IPL): best transfer strategy = open access
- Engineering tasks currently handled by scientists (IJD not enough)
  Cultivate our garden: simplify everything to grow further
- ▶ Time consuming but rewarding: huge competitive advantage in science

#### Announced Workplan

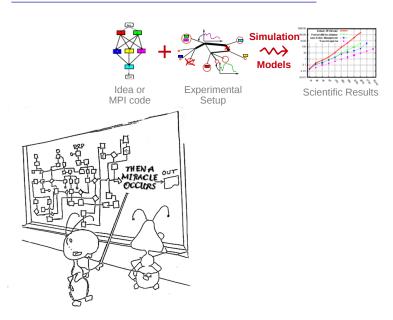
- lacktriangle Next Generation API (SimGrid 4) ightharpoonup Build Your Own Simulator
- Add callbacks for plugins, rework modularity for power users
- Improve examples and documentation for newcomers
- Provide compatibility layers to other simulators (PeerSim, DCSim)

SimGrid As A Platform 4/11

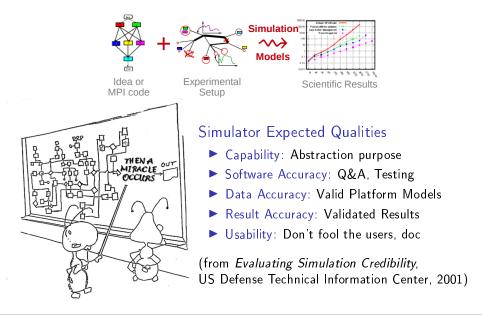
# ADT SimGrid As A Platform (SAAP)

#### How to ensure the Software Sustainability

- Beyond scientific projects (ANR, IPL): best transfer strategy = open access
- Engineering tasks currently handled by scientists (IJD not enough)
  Cultivate our garden: simplify everything to grow further
- ▶ Time consuming but rewarding: huge competitive advantage in science


#### Announced Workplan

- ▶ Next Generation API (SimGrid 4) ~ Build Your Own Simulator
- Add callbacks for plugins, rework modularity for power users
- ▶ Improve examples and documentation for newcomers
- Provide compatibility layers to other simulators (PeerSim, DCSim)

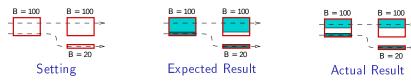

### Increase Trust to Increase Community

SimGrid As A Platform

### Methodological Challenges raised



## Methodological Challenges raised

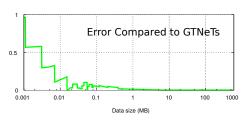



SimGrid As A Platform 5/11

You should not.

#### You should not.

Model Limit: Heterogeneity (Narses, OptorSim, GroudSim)




#### You should not.

Model Limit: Heterogeneity (Narses, OptorSim, GroudSim)



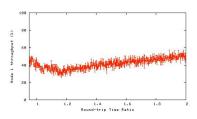
### Model Limit: Slow Start (SimGrid without SMPI)

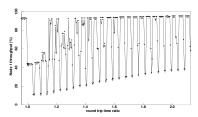


| S                 | $ \varepsilon $ | $ arepsilon_{max} $ |
|-------------------|-----------------|---------------------|
| S < 100 <i>KB</i> | pprox 12%       | pprox 162%          |
| S > 100 <i>KB</i> | pprox 1%        | $\approx 6\%$       |

SimGrid As A Platform

### More Crucial Experiments


Model Limit: Platform Stress (SimGrid, all models)




► Flow 66 terminates too early in SimGrid; seems stuck until timeout on GTNetS

### Model Limit: Phase effect (packet-level tools: NS2, NS3)

► Two long-lived flows, real (left) and simulated (right)





Periodic, deterministic traffic ⇒ May resonate [Floyd and Jacobson 1991]

# So, what can you expect from SimGrid??

### Implementation Limit: Bugs (GridSim)







# So, what can you expect from SimGrid??

### Implementation Limit: Bugs (GridSim)







- ▶ Issue reported since ages, but no answer from authors
- ▶ If you (really) want to use CloudSim, prefer CloudSimPlus (better quality)

#### SimGrid is well Tested

- ▶ 740 integration tests, 10k units (coverage: 80%)
- ► Each commit: 22 configurations (4 OS, 3 compilers, 2 archs; 3 providers)
- ▶ Nightly: 2 dynamic + 2 static analyzers; StarPU, BigDFT and Proxy Apps
- Still expect bugs, but our community strive to fix them if you provide a MWE

SimGrid As A Platform 8/11

### **Technical Considerations**

#### Complex and Dynamic Code Base

- Only 100k sloc, but complex due to versatile efficiency + formal verification
- ▶ Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran
- lacktriangle Active project: commits every day by pprox 6 commiters, 4 releases a year
- ▶ Ongoing full rewrite in C++ along with Release soon, Release often



### **Technical Considerations**

#### Complex and Dynamic Code Base

- ▶ Only 100k sloc, but complex due to versatile efficiency + formal verification
- ▶ Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran
- lacktriangle Active project: commits every day by pprox 6 commiters, 4 releases a year
- Ongoing full rewrite in C++ along with Release soon, Release often



- ▶ 740 integration tests, 10k units (coverage: 80%)
- ► Each commit: 22 configurations (4 OS, 3 compilers, 2 archs; 5 providers)
- ▶ Nightly: 2 dynamic + 2 static analyzers; StarPU, BigDFT and Proxy Apps
- ► Each Release: In Debian & Ubuntu (10+ architectures, 3 kernels)

Software Q&A taken seriously

SimGrid As A Platform 9/11

### SaaP Work

Initial Difficulties: IC → IE on a complex project

#### Capability Improvement

- Exascale Proxy Apps: Simplified code exhibiting classical characteristics
- Perfect test case for SimGrid. Toufik's work:
  - Automated Testing Infrastructure
  - ► Port each of these apps to SMPI (SimGrid MPI)
  - Fix the glitches found in SimGrid
  - ► Implement the missing pieces (in collab with Augustin Degomme)
- ► Conclusion: 51 Apps working,  $\approx$  30 not working (often: missing OpenMP)
- Ongoing: reproduce a paper from MeteoFrance

#### Usability Improvement

▶ New tutorial on S4U; Started tutorial on SMPI; Documentation Overhaul

#### Conclusion

- ► Successful ADT (despite difficulties), but unfinished
- ▶ The project progressed, but I now assume most of the technical work again
- ► Slows down the associated IPL Hac Specis (Formal Verification of HPC soft)

SimGrid As A Platform 10/11

### SimGrid: Versatile Simulator of Distributed Apps

Install a Scientific Instrument on your Laptop
Computational Science of Computer Science



- ▶ Joint Project since 1998, mostly from French institutions
- Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

#### Key Strengths

- ▶ Performance Models validated with Open Science → Predictive Power
- ► Architectured as an OS → Efficiency; Performance & Correction co-evaluation
- Usability: Fast, Reliable, User-oriented APIs, Visualization
- ▶ Versatility: Advances in HPC modeling reused by Cloud users

### Community

- Scientists: 500+ publications only cite it, 58 extend it, 314 use it
- Apps/Model co-dev : StarPU, BigDFT, TomP2P
- ► Some industrial users on internal projects (Intel, Bull)
- Open Source: external Power Users (fixes & models)

