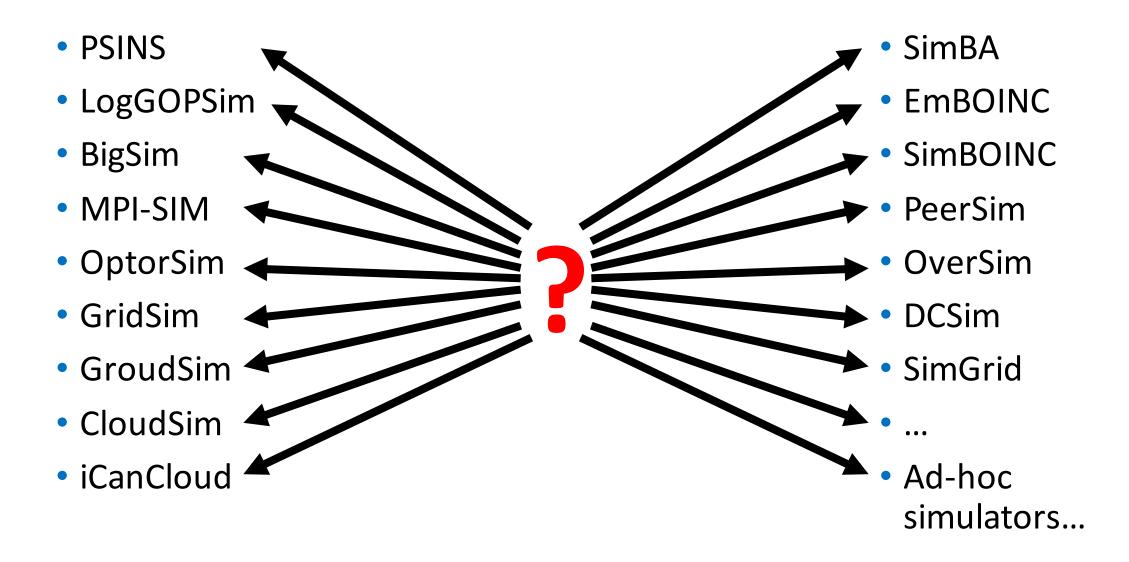
How to choose your simulator, (and why SimGrid may be a good candidate)?

Benjamin CAMUS



- Some conclusions of Martin's talk :
 - Building a simulator is a very complex task
 - Do NOT build your own simulator from scratch if an existing tools already fit your needs !

The jungle of the simulation tools

- Some conclusions of Martin's talk :
 - Building a simulator is a very complex task
 - Do NOT build your own simulator from scratch if an existing tools already fit your needs !

- Some conclusions of Martin's talk :
 - Building a simulator is a very complex task
 - Do NOT build your own simulator from scratch if an existing tools already fit your needs !
- Remaining questions :
 - How to choose your simulator ?
 - Why SimGrid may be a good candidate ?

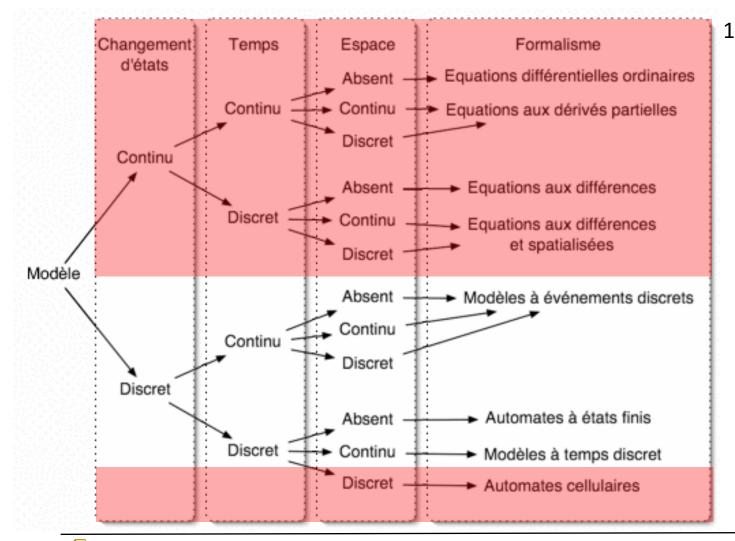
My background

- I'm using SimGrid in those projects:
 - **COSMIC** (2016 2018)
 - <u>Goal:</u> reduce the carbon footprint of distributed Cloud
 - Simulation of distributed Cloud + local PV power production
 - RennesGrid (2018 2019)
 - Goals:
 - Evaluate the impact of ITC infrastructure on SmartGrid
 - Propose an energy-efficient ITC infrastructure for RennesGrid Ren1
 - Simulation of a SmartGrid and its ITC infrastructure
 - Energy-efficiency of workflows on Cloud (2018)
 - <u>Goals</u>: investigate the impact of VM clustering on the energy-efficiency of workflow
 - Simulation of workflow executions on a data-center
- Thesis in Theory of Modeling and Simulation

- 1. Does the modelling paradigm of the tool fit my needs ?
 - Design choices
- 2. Can I trust my simulation results ?
 - Validation & Verification
- 3. Can I connect the simulator with other tools ?
 - Simulator interoperability

Does the modelling paradigm fit my needs ?

Design choices

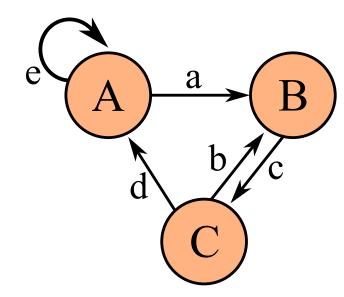

Selection criteria

- Built-in models
 - Can I actually simulate <u>what I want</u> with the tool ?
- Accuracy
 - Can I have <u>sufficiently accurate</u> results?
- Modularity
 - Can I <u>easily</u> modify my systems ?
- Execution time
 - Can I run as many simulations <u>as needed</u> in a <u>reasonable</u> time ?

What do you want to do ?

- What do you want to study ?
- What is your **experimental plan** ?

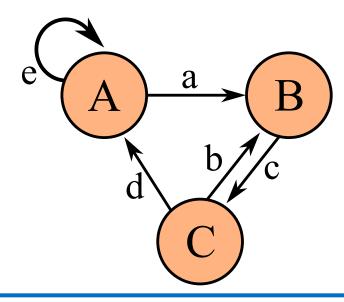
Modeling paradigms: execution policies


Time-Stepped:
✓ Simple to design
X Approximation errors
X Not efficient
Event-based:

- Complex design (error prone)
 Accurate
- ✓ Efficient

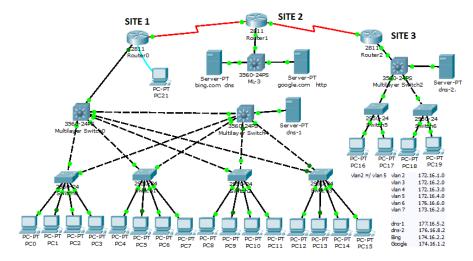
1. Ramat, E. (2006). Introduction à la modélisation et à la simulation à événements discrets. Modélisation et simulation multiagents : applications aux Sciences de l'Homme et de la Société, Lavoisier

Modeling paradigms: languages


- Formalism-based
 - ✓ Modular
 - ✓ Simulation + Formal proof
 - 🗶 Rigid
 - ✗ Approximation errors
 - ✗ Only prototypes of complex applications
- Code-based
 - ✗ Only simulation
 - ✗ Less modular
 - ✓ Flexible
 - ✓ More accurate
 - ✓ Test real application

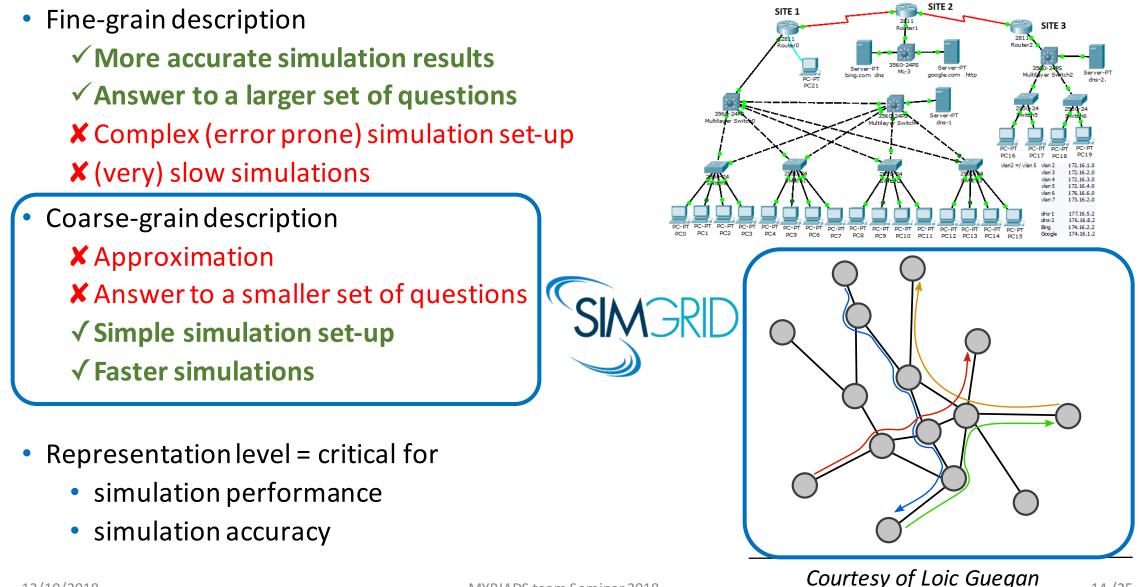
47	// worker-begin
48	<pre>static void worker(std::vector<std::string> args)</std::string></pre>
49	{
50	<pre>xbt_assert(args.size() == 1, "The worker expects no argument");</pre>
51	
52	<pre>simgrid::s4u::Host* my_host = simgrid::s4u::this_actor::get_host();</pre>
53	<pre>simgrid::s4u::MailboxPtr mailbox = simgrid::s4u::Mailbox::by_name(my_host->get_name());</pre>
54	
55	<pre>double compute_cost;</pre>
56	do {
57	<pre>double* msg = static_cast<double*>(mailbox->get());</double*></pre>
58	<pre>compute_cost = *msg;</pre>
59	delete msg;
60	
61	<pre>if (compute_cost > 0) /* If compute_cost is valid, execute a computation of that cost */</pre>
62	<pre>simgrid::s4u::this_actor::execute(compute_cost);</pre>
63	
64	<pre>} while (compute_cost > 0); /* Stop when receiving an invalid compute_cost */</pre>
65	
66	<pre>XBT_INFO("Exiting now.");</pre>
67	}

Modeling paradigms: languages


- Formalism-based
 - ✓ Modular
 - ✓ Simulation + Formal proof
 - 🗶 Rigid
 - **X** Approximation errors
 - ✗ Only prototypes of complex applications
- Code-based
 - **✗** Only simulation
 - ✗ Less modular
 - ✓ Flexible
 - ✓ More accurate
 - ✓ Test real application



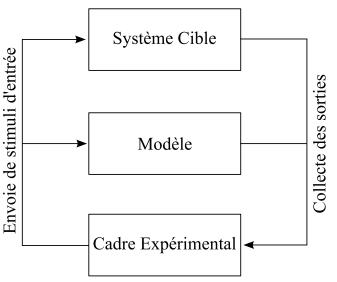
47	// worker-begin
48	<pre>static void worker(std::vector<std::string> args)</std::string></pre>
49	{
50	<pre>xbt_assert(args.size() == 1, "The worker expects no argument");</pre>
51	
52	<pre>simgrid::s4u::Host* my_host = simgrid::s4u::this_actor::get_host();</pre>
53	<pre>simgrid::s4u::MailboxPtr mailbox = simgrid::s4u::Mailbox::by_name(my_host->get_name());</pre>
54	
55	<pre>double compute_cost;</pre>
56	do {
57	<pre>double* msg = static_cast<double*>(mailbox->get());</double*></pre>
58	<pre>compute_cost = *msg;</pre>
59	delete msg;
60	
61	<pre>if (compute_cost > 0) /* If compute_cost is valid, execute a computation of that cost */</pre>
62	<pre>simgrid::s4u::this_actor::execute(compute_cost);</pre>
63	
64	<pre>} while (compute_cost > 0); /* Stop when receiving an invalid compute_cost */</pre>
65	
66	<pre>XBT_INFO("Exiting now.");</pre>
67	}


Modeling paradigms: representation level

- Fine-grain description
 - More accurate simulation results
 Answer to a larger set of questions
 Complex (error prone) simulation set-up
 (very) slow simulations
- Coarse-grain description
 - ✗ Approximation
 ✗ Answer to a smaller set of questions
 ✓ Simple simulation set-up
 ✓ Faster simulations
- Representation level = critical for
 - simulation performance
 - simulation accuracy

Modeling paradigms: representation level

Can I trust my simulation results?


Validation & Verification

Models validation

- « A **model** is a simplification of a system under study »¹
- Simplify to :
 - Make experiment feasible
 - Decrease experimentations costs
 - Ease experimentation set-up
 - Speed up experiments
- « Model validation is substantiating that the model, within its domain of applicability, behaves with satisfactory accuracy consistent with the M&S objectives »¹
 - i.e. Is my simplification sufficiently correct?
- 1. Balci, O. (1998). Verification, validation, and accreditation. In Proceedings of the 30th conference on Winter simulation, pages 41–4. IEEE Computer Society Press.

Validation in practice

- In practice, different understandings of validation :
 X Models dynamics ≈ theoretical dynamics
 - Theory ≠ reality
 - X Simulation results ≈ expected results
 - Expectation ≠ reality
 - ✓ Models results ≈ real system measurements
- Validation is only relative to an experimental frame¹
 - Define the condition of observation of the system
 - Bound the validity of the model
 - Often only implicitly defined
- 1. Zeigler, B., Praehofer, H., and Kim, T. (2000). Theory of Modeling and Simulation : Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press.

- Validated models for:
 - CPU sharing

P. Velho, "Accurate and Fast Simulations of Large-Scale Distributed Computing Systems," Theses, Université Grenoble Alpes, Jul. 2011.

- TCP
 - P. Velho, L. Schnorr, H. Casanova, and A. Legrand, "On the Validity of Flow-level TCP Network Models for Grid and Cloud Simulations," ACM Trans. on Modeling and Computer Simulation, 2013.
- Energy

F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-Amarie, S. Hunold, A.-C. Orgerie, and M. Quinson, "Predicting the Energy Consumption of MPI Applications at Scale Using a Single Node," in IEEE Cluster, Sep. 2017.

Virtual machines

L. Pouilloux, T. Hirofuchi, and A. Lebre, "SimGrid VM: Virtual Machine Support for a Simulation Framework of Distributed Systems," IEEE Trans. on Cloud Computing, 2015.

Experimental frame: some limits are clearly identified Read the papers

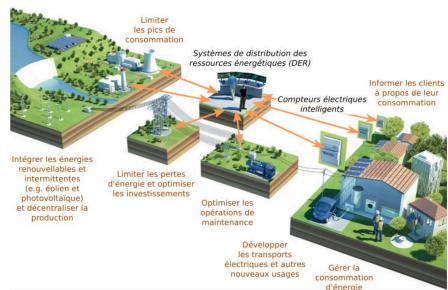
- « Model Verification is substantiating that the model is transformed [into an executable program] with sufficient accuracy. »¹, e.g. :
 - Does my simulation method execute my model in an accurate way ?
 - Does my program have bugs ?
- Validation vs. Verification :
 - « Model validation deals with building the right model »¹
 - « Model verification deals with building the model right »¹
- Should be performed all along the software life-cycle
- 1. Balci, O. (1998). Verification, validation, and accreditation. In Proceedings of the 30th conference on Winter simulation, pages 41–4. IEEE Computer Society Press.

- Complete verification is rarely done, because
 - Simulation software are too complex
 - And in continuous evolution
- Is the code of the simulator verified ?

 - Yes, here are the proofs **<** Few very simple simulators
 - Partially, here are the state of the verification process **<** reasonable answer

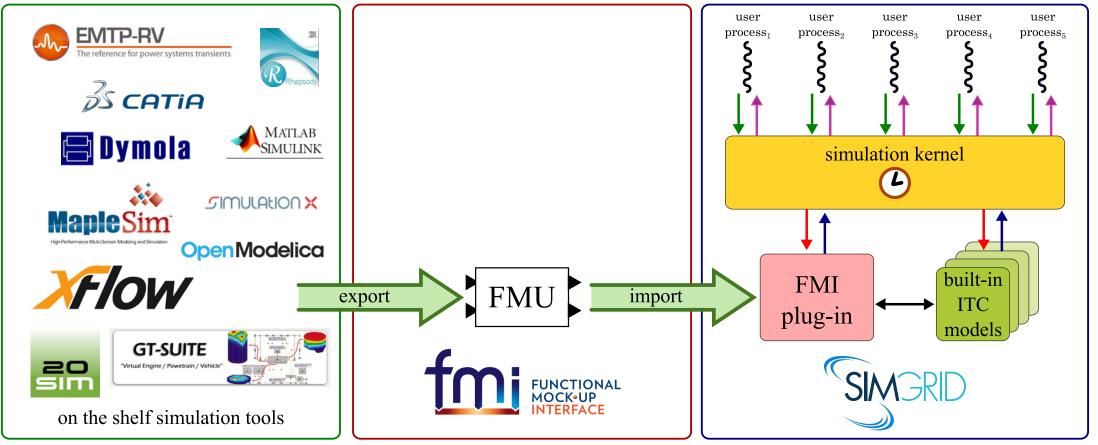
Verification with SimGrid

- Does SimGrid have bugs ?
 - Off course !
 - But they are:
 - (Partially) identified
 - Publicly accessible
- Check if some bugs may have an impact on the validity of your simulation results
- Continuous integration :
 - Keep a good level of verification,
 - which can only increase


simgrid	/ simgrid						• Wat	ch ▼ 15	★ Star	58	Ϋ́ Fork	43
<> Code	() Issues 38	n Pull requests	1 🛄 P	rojects 0	<u>ılı</u> Insi	ghts						
Filters -	\mathbb{Q} is:issue is:oper	۱		Labels	Milesto	ones					New is	sue
(!) 38 Ope	en 🗸 158 Closed			Auth	or v L	abels -	Projects 🗸	Milesto	nes 🔻 🛛	Assignee -	So	rt -
_	n::set_bound() d	oes not keep trac mquinson	k of user	changes								
-	heduled tasks ar pened Oct 3, 2018 by											
	i] manually deplo pened Oct 2, 2018 by	yed replay is not	s4u-frier	ndly smpi							Ç,	□ 1
	g energy consun	nption with multi	-core VM								Ç	3
-	re Request: VM											
•	td::function for o										Ģ	□ 4
() mcsin	ngrid: exhaustiv	e search off/on										
647/662 648/662 649/662 650/662 652/662 652/662 653/662 654/662 655/662	Test #364: 0 Test #659: 1 Test #256: 9 Test #634: 1 Test #643: 0 Test #278: 1 Test #119: 9 Test #277: 1	ysumaare-asym generic-simca tesh-self-ign smpi-replay-m tesh-surf-sur graphicator . tesh-msg-task s4u-async-wai tesh-msg-task tesh-self-bg-	lls-boos ore-rege ultiple- f_usage2 _progres tuntil-u _listen_	st -manual-m 2 ss-raw ucontext from-raw	nixed2-	st-noi	.se			Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed	0. 0. 0. 0. 0. 0. 0. 0. 0.	07 08 08 06 08 08 08
657/662 658/662 659/662 660/662 661/662	Test #295: 1 Test #227: 9 Test #330: 1 Test #368: 1	tesh-s4u-acto simix-breakpo: tesh-simdag-ba tesh-simix-fa tesh-surf-max	r-thread int asic6 ctory-uc min-larg	i						Passed Passed Passed Passed Passed	0. 0. 0. 0. 3.	08 08 07 09

Can I connect the simulator with other tools?

Modelling tools interoperability


Co-simulation

- Interact with other simulation tools
- To use the advantages of different distributed ITC simulators
- To simulate interactions between distributed ITC and physical systems, e.g:
 - data-center and its cooling system
 - Smart Grid and their ITC systems
 - IoT devices and their environments
- Challenges:
 - Software interoperabily
 - Integrate heterogeneous execution policies
 - Bridge the gap between code-based and formal-based models

Co-simulation with SimGrid

SimGrid plug-in to support the FMI standard¹

1. B. Camus, A-C Orgerie, and M. Quinson. Co-simulation of FMUs and Distributed Applications with SimGrid. In SIGSIM-PADS '18, ACM(2018).

Conclusion : How to choose your simulator ?

Not trivial

- Does the modelling paradigm fit my needs?
 - Depends on:
 - What do you want to study on the system
 - Your experimental plan
 - Check:
 - Modelling paradigm
 - Execution policy
 - Representation level
- Can I trust my simulation results ? = check for:
 - Model validity (and experimental frame)
 - Model verification
- Check for simulator interoperability