
The SimGrid Framework

Computationale Science of IT Systems

Joint work of the SimGrid team over 20 years.

June 27., 2018

Modern Large Scale Distributed Systems
Huge Systems

#1 Summit
2,282,544 cores

4608×(2×22-cores + 6GPU)

122 T�ops, 9MW

#2 Taihu Light
10,649,600 cores

40 960× 260-cores RISCs

93 T�ops, 15MW

#3 Sierra
1,572,480 cores

4300×(2×22-cores + 4GPU)

71 T�ops, 12MW

Complex Applications

Rigid, Regular, Hand-tuned Comm Patterns Dynamic, Irregular (task-based?)

How do we study these beasts?
SimGrid: Computational Science of IT Systems 1/29

Cloud Computing, Internet of Things, Fog

SimGrid: Computational Science of IT Systems 2/29

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation

SimGrid: Computational Science of IT Systems 3/29

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation

SimGrid: Computational Science of IT Systems 3/29

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Test your scienti�c idea with a fast and confortable scienti�c instrument

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Real Distributed Systems

I Centralized and reproducible setup. Don't waste resources to debug and test

I No Heisenbug, full Clairevoyance, High Reproducibility, What if studies

I Also software/hardware co-design, capacity planning or hardware quali�cation
SimGrid: Computational Science of IT Systems 3/29

Methodological Challenges raised

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges

I Validity: Realistic results

I Scalability: Fast enough; Big enough

I Right Focus: Aligned with users concerns

Flourishing State of the Art
I Each group / student build its own tool

I Short lived, Narrow focus, Improvable

I Some very good domain-speci�c tools (HPC)

SimGrid: Computational Science of IT Systems 4/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 5/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 5/29

The Many Interfaces of SimGrid

SMPI: Reimplementation of MPI on top of SimGrid

I Complex in C/C++/Fortran applications virtualized out of the box

MSG: legacy interface for Concurent Sequential Processes

I Goal: ease the study of distributed algorithms (C or Java)

I Initially for distributed scheduling, used in many other contexts since 2005

I Our main interface is slowly getting crippled (backward compat when possible)

SimDag: legacy interface for DAG scheduling

I Goal: ease the study of centralized algorithms, since 1998

S4U: Future interface for algorithms

I Currently under development toward SimGrid 4, already usable (C++ or C)

BYOS: Build Your Own Simulator
I PSG Project: PeerSim interface implemented on top of SimGrid

I Wrench Project: Work�ow Management System Simulation Workbench

SimGrid: Computational Science of IT Systems 6/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 7/29

Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q Real

SimGrid

LogGPS

Key aspects to obtain this result

I Network Topology: Contention (large msg) and Synchronization (small msg)

I Applicative (collective) operations (stolen from real implementations)

I Instantiate Platform models (matching e�ects, not docs)

I All included in SimGrid but the instantiation, remains manual (for now)

SimGrid: Computational Science of IT Systems 8/29

Validity Success Stories

unmodi�ed NAS CG on a TCP/Ethernet cluster (Grid'5000)

B

q
q

qqq

10

15

20

25

30

C
G

6432 128168
Number of nodes

S
pe

ed
up

Model
q RealNetwork collapse

SimGrid

LogGPS

Discrepency between Simulation and Real Experiment. Why?

I Massive switch packet drops lead to 200ms timeouts in TCP!

I Tightly coupled: the whole application hangs until timeout

I Noise easy to model in the simulator, but useless for that very study

I Discrepancy between simulated and real-world is actually a real-world problem

SimGrid: Computational Science of IT Systems 8/29

Have we reached the Perfect Model yet?

What is the Perfect Model anyway?

I Detailed enough to be realistic

I E�cient enough for ultra fast simulations

I Abstracted enough so that I can reason about

I In short, that's the one I could give to my students and forget about

SimGrid: Computational Science of IT Systems 9/29

Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

SimGrid: Computational Science of IT Systems 10/29

Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

SimGrid: Computational Science of IT Systems 10/29

Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

SimGrid: Computational Science of IT Systems 10/29

Perfect Model of France would be Perfect Map

Maps (and models) are abstractions
I Quality depends on what your usage

I More detailled 6= better (not always)

I No One True Map �tting all needs

I Myriads of carefully adapted maps

SimGrid: Computational Science of IT Systems 10/29

Perfect Model of Distributed Systems?

the one making your Study sound

If you study a theoretical P2P algorithm

I You could probably go for a super-fast constant-time model

If your study is a MPI application

I with TCP LAN, SMPI should do the trick (with correct instantiation)

I with In�niBand and/or GPUs, you need our still ongoing models

If you work on a TCP variant

I then you need a packet-level simulator such as NS3

If your study WAN-interconnected Set Top Boxes

I SMPI model not suited! Impossible to instanciate, validated only for MPI

I Vivaldi model intended for that kind of studies

In any case, assess the validity & soundness
SimGrid: Computational Science of IT Systems 11/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 12/29

HPL and the Top500

Stampede, U.S.A., #20 with ≈ 5 P�ops
56 Gbit/s FDR In�niBand Fat tree topology
6,400 Ö (8 cores + 1 Xeon Phi)

Context
I Real execution (quali�cation benchmark)

I Matrix of rank 3,875,000: ≈ 120 Terabytes
I 6,006 MPI processes for 2 hours: 500 CPU-days

I Simulation/Emulation with SMPI
I 1 Xeon E5-2620 server (Nova, Grid'5000)
I ≈ 47 hours and 16GB
I Modi�ed HPL (abstract compute kernels, factorize malloc)

Accuracy (Evaluation on Taurus (Grid'5000))

●

●

●
●

0

20

40

60

80

0 50 100 150 200
Number of processes

D
ur

at
io

n
(s

ec
on

ds
)

HPL duration for different numbers of processes
Matrix size: 20,000

●

●

●

●

0

10000

20000

30000

40000

0 50 100 150 200
Number of processes

E
ne

rg
y

co
ns

um
pt

io
n

(jo
ul

es
)

HPL energy consumption for different numbers of processes
Matrix size: 20,000

Experiment type ●Optimized simulation Vanilla simulation Real execution

Mismatch with the Stampede quali�cation run (Intel HPL vs. Open-Source HPL)
Perspective Capacity planning, Tune real applications, Co-Design, . . .

SimGrid: Computational Science of IT Systems 13/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 14/29

Writting Correct Distributed Applications

I Classical Solution: Proof of algorithms

I Pessimistic Solution: Lower performance expectations

I Optimistic Solution: Eventually Consistent

I HPC Solution: Rigid, Regular, Hand-tuned Communication Patterns

I Large-Scale Hybrid Machines: Dynamic, Irregular (task-based?)

Veri�cation: must explore all possible execution paths

SimGrid: Computational Science of IT Systems 15/29

Writting Correct Distributed Applications

I Classical Solution: Proof of algorithms

I Pessimistic Solution: Lower performance expectations

I Optimistic Solution: Eventually Consistent

I HPC Solution: Rigid, Regular, Hand-tuned Communication Patterns

I Large-Scale Hybrid Machines: Dynamic, Irregular (task-based?)

Veri�cation: must explore all possible execution paths

SimGrid: Computational Science of IT Systems 15/29

Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI

P3P1 P2

send sendrecv

?

SimGrid: Computational Science of IT Systems 16/29

Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI

P3P1 P2

send sendrecv

?

SimGrid: Computational Science of IT Systems 16/29

Formal Methods in Mc SimGrid

Model Checking

I Exhaustively search for faults

I Requires an accurate model

Dynamic Veri�cation: similar idea, applied to source code

I McSimGrid: Live, virtualized execution
No static analysis (yet), no symbolic execution

I On Indecision Points: checkpoint, explore, rollback

4

5

iRecv

1 5 3

Test TRUE

Test TRUE

9

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

Execution Model in Mc SimGrid
I Mono-threaded MPI applications (CSP)

I Point-to-Point semantic: Con�gurable (paranoid / permissive)

I Collective semantic: Implementations of MPICH3, OpenMPI
P3P1 P2

send sendrecv

?

SimGrid: Computational Science of IT Systems 16/29

Mc SimGrid Overview

Mc SimGrid: Dynamic Veri�cation of MPI applications

I Unmodi�ed C/C++/Fortran MPI applications

I Early stage, but already functional: Safety, Liveness, Send-determinism

I Reductions: DPOR and State Equality

I Scale to a few processes only, but exhaustive testing

State of the Art
I Many testing tools (MUST): not exhaustive nor sound

I Symbolic execution (TASS, CIVL): complementary to our work

I Dynamic veri�cation (ISP, DAMPI at U. Utah)
I PMPI proxy at runtime to delay communications to guide execution
I Works for safety, but not applicable to liveness (state equality)

Ongoing Works

I Improve DPOR by using Event Unfolding structures (IPL PhD)

I Convert checkpoints taken on OpenMPI into SimGrid runs (IPL Post-doc)

I Static Analysis to improve Dynamic State Equality Detection (IPL collab)

SimGrid: Computational Science of IT Systems 17/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 18/29

Technical Considerations

Complex and Dynamic Code Base

I Only 100k sloc, but complex due to versatile e�ciency + formal veri�cation

I Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran

I Active project: commits every day by ≈ 6 commiters, 4 releases a year

I Ongoing full rewrite in C++ along with Release soon, Release often

Well Tested
I 740 integration tests, 10k units (coverage: 80%)

I Each commit: 22 con�gurations (4 OS, 3 compilers, 2 archs; 3 providers)

I Nightly: 2 dynamic + 2 static analyzers; StarPU, BigDFT and Proxy Apps

I We cultivate our garden: simplify to grow further

SimGrid: Computational Science of IT Systems 19/29

https://sonarcloud.io/component_measures?id=simgrid&metric=Maintainability

Technical Considerations

Complex and Dynamic Code Base

I Only 100k sloc, but complex due to versatile e�ciency + formal veri�cation

I Implemented in C++/C (+ assembly); Bindings: Java, Lua and Fortran

I Active project: commits every day by ≈ 6 commiters, 4 releases a year

I Ongoing full rewrite in C++ along with Release soon, Release often

Well Tested
I 740 integration tests, 10k units (coverage: 80%)

I Each commit: 22 con�gurations (4 OS, 3 compilers, 2 archs; 3 providers)

I Nightly: 2 dynamic + 2 static analyzers; StarPU, BigDFT and Proxy Apps

I We cultivate our garden: simplify to grow further

SimGrid: Computational Science of IT Systems 19/29

https://sonarcloud.io/component_measures?id=simgrid&metric=Maintainability

The SimGrid Community

http://simgrid.org simgrid-user@lists.gforge.inria.fr

Communication and Animation
I SimGrid User Days: Welcome newcomers & Take feedback since 2010

I 500 cite 300 use 60 extend; 30 mails/month; 5 bugs/month; Stack Over�ow

Preliminary Industrial Contacts

I CERN: test the LHC DataGrid before production (since years)

I Intel: internal project to address a call from KAUST on co-design

I Octo: dimensionning Ceph infrastructures for their clients (attempt)

I Bull: sometimes used internally, but not o�cially yet :)

Training and User Support in Computing Centers

I Training @TACC: Victor Eijkhout is porting his book to SMPI

I @MPI Computing & Data Facilities: Pro�le some apps with SMPI

Toward Education
I Teach now the researchers and engineers of tomorrow to SimGrid

I Done: SMPI CourseWare, PeerSimGrid; Ongoing: Cloud, Wrench and more?
SimGrid: Computational Science of IT Systems 20/29

http://simgrid.org

StarPU-Simgrid Overview

StarPU

SimGrid

Simulation

Quickly Simulate Many Times

StarPU

Performance Profile

Calibration

Run once!
SimGrid: Computational Science of IT Systems 21/29

StarPU-Simgrid on dense linear algebra

I Accurate simulated time results
I Already required a lot of care
I Extensively used for scheduling research

Conan Cholesky Attila LU

0

500

1000

1500

20000 40000 60000 80000 20000 40000 60000 80000
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

SimGrid: Computational Science of IT Systems 22/29

Continuous Integration of StarPU using SimGrid

Nightly build since several years
I Compare native and simulated execution as a CI process

I Runs on sirocco nodes on Grid'5000: 1 CPU (12 cores) + 3 GPUs (K40M)

I Very successful
I Satisfying prediction (even on HW upgrade), at least gets the trends
I Real executions noisy and hard to deal with

Sequential (CPU+GPU) MPI (4 nodes)

SimGrid: Computational Science of IT Systems 23/29

StarPU Visualization
Get data without Heisenbug, analyze it with R

SimGrid: Computational Science of IT Systems 24/29

StarPU QR-Mumps

QR-MUMPS multi-frontal sparse factorization on
top of StarPU

I Tree parallelism

I Node parallelism

I Variable matrix geometry

I Fully dynamic scheduling w. StarPU

Activate
Assemble
Panel
Update
Deactivate

Native 1

Native 2

SimGrid

Native 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 10,000 20,000 30,000 40,000
Time [ms]

A
llo

ca
te

d
M

em
or

y
[G

iB
]

Extrapolation

0

30

60

90

4 10 20 40 100 400
Number of Threads

D
ur

at
io

n
[s

]

Type

Native

SimGrid

Measured Time

Overall Makespan

Idle Time per Thread

Perspective Tune app. and scheduler, capacity (memory) planning

SimGrid: Computational Science of IT Systems 25/29

BatSim

A Job and Resource Management System Simulator

I A key component in HPC systems

I Decouple the decision making from the simulation

I Uses SimGrid as a backend

I Developed in the Datamove team (Grenoble)

I https://github.com/oar-team/batsim

SimGrid: Computational Science of IT Systems 26/29

https://github.com/oar-team/batsim

Wrench

A Work�ow Management System Simulation Workbench
I Objective

I Provide high-level building blocks for developing
custom simulators

I Targets:
I Scientists: make quick and informed choices

when executing work�ows
I Software developers: implement more e�cient

software infrastructures to support work�ows
I Researchers: Develop novel e�cient algorithms

I Coupled with BatSim

I http://wrench-project.org
I Collaboration with ISI/USC and UH Manoa
I Funded by the NSF (grants number 1642369 and

1642335) and CNRS (PICS 7239)

SimGrid: Computational Science of IT Systems 27/29

http://wrench-project.org

TomP2P

© 2013 UZH, CSG@IFI

SimGrid with TomP2P

 TomP2P is a Java-based DHT that stores key-value pairs
 Goals of using SimGrid

– Difficult to run more than ~5K peers
– Difficult to simulate network, TomP2P peers run on same machine
→ The goal to use SimGrid was to have an easy way to simulate many

peers in a network scenario
 What to expect from SimGrid

– Not having to implement a simulation framework
– Faster verification if new algorithm works in a large-scale network

 Feedback from using SimGrid and the Java-bindings
- Threading is done by SimGrid (needed rework in TomP2P)
+ Good documentation and examples
+ Active community

(Courtesy of Thomas Bocek)
SimGrid: Computational Science of IT Systems 28/29

SimGrid: Versatile Simulator of Distributed Apps

Install a Scienti�c Instrument on your Laptop
Computational Science of Computer Science

I Joint Project since 1998, mostly from French institutions

I Open Project, contributors in the USA (UHawaii, ISI, NEU), UK, Austria, Cern

Key Strengths

I Usability: Fast, Reliable, User-oriented APIs, Visualization

I Performance Models validated with Open Science ; Predictive Power

I Architectured as an OS ; E�ciency; Performance & Correction co-evaluation

I Versatility: Advances in Clouds modeling reused by DataGrid users

Community

I Scientists: 500+ publications only cite it, 58 extend it, 314 use it

I Apps/Model co-dev : StarPU, BigDFT, TomP2P

I Some industrial users on internal projects (Intel, Bull)

I Open Source: external Power Users (�xes & models)

SimGrid: Computational Science of IT Systems 29/29

Question slides

SimGrid: Computational Science of IT Systems Chap I : Appendix 1/16

Future Research Directions for SimGrid

Better Interfaces and Tooling

I Domain-speci�c API for the Cloud and IoT platforms

I Semulation: Study real arbitrary applications with SimGrid

I Switching between Execution, Simulation and Veri�cation within a run

I Online Simulation of Distributed Infrastructures

Better Models
I Co-simulation of Smart Grids: IT and energy

Formal Veri�cation
I More usecases (larger ones) for both Safety and Liveness

I Domain-speci�c exploration and reduction technics (Star-PU)

I Domain-speci�c properties (QoS as a fairness?)

Build a Sustainable Community

I Production ready, toward Industry and Education (for engineers)

SimGrid: Computational Science of IT Systems Chap I : Appendix 2/16

IPL HAC-SPECIS (2016-2020)

Inria Project Lab ≈ 1 postdoc and 1 PhD student per year for 3-4 years

Project Partners

8 Inria Teams (veri�cation+, performance evaluation4, HPC?) + CEA?

Rhône Alpes: AVALON? 4, POLARIS? 4 + CEA?

Rennes: MYRIADS? +, SUMO+

Bordeaux: HIEPACS?, STORM?

Paris: MEXICO+

Nancy VERIDIS+

Context and Objectives

I Rigid communication patterns are not scalable enough:

I HPC apps become adaptive, lock-free, with complex optimizations/scheduling

I Research Question: Joint Study of Performance AND Correctness

I Goal: bridge the gap between communities

SimGrid: Computational Science of IT Systems Chap I : Appendix 3/16

Virtualizing MPI Applications with SimGrid

SMPI: Reimplementation of MPI on top of SimGrid

I Computations emulated; Communications simulated

I Complex C/C++/F77/F90 apps run out of the box
I 23 out of 30 Exascale Project's proxy apps supported

(others: 5 extra deps, 2 unsupported MPI calls)

I MPI 2.2 partially covered (≈ 160 primitives supported)

I No MPI-IO, MPI3 collectives, spawning ranks, . . .
I Monothreaded applications, no pthread nor OpenMP

MPI Applications are folded into a single process

host 2 host 3

host 0 host 1

Network

ra
nk

 2

ra
nk

 3

ra
nk

 0

ra
nk

 1

Real Settings

Simulated Network

single UNIX process
ra

nk
0

ra
nk

1

ra
nk

2

ra
nk

3

SimGrid Simulation
SimGrid: Computational Science of IT Systems Chap I : Appendix 4/16

SimGrid Modeling of MPI
MPI Collectives
I SimGrid implements more than 120 algorithms for the 10 main MPI collectives

I Selection logic from OpenMPI, MPICH can be reproduced

HPC Topologies
Empty
+coords

Full

Full

Dijkstra

Floyd

Rule−
based

Rule−
based

Rule−
based

based
Rule−

AS1

AS2

AS4

AS5

AS7

AS6

AS5−3

AS5−1 AS5−2

AS5−4

Torus Fat-trees Hierarchies of ASes

But also
I External load (availability changes), Host and link failures, Energy (DVFS)

I Virtual Machines, that can be migrated; Random platform generators
SimGrid: Computational Science of IT Systems Chap I : Appendix 4/16

What Kind of Properties can be Veri�ed?

Safety Properties: �A given bad behavior never occurs�

I e.g.: any assertion (x != 0, no deadlock)

I Veri�ed on each state separately

I Counter example: a faulty state

Liveness Properties: �An expected behavior will happen in all cases�

I e.g.: Any request will eventually be ful�lled; No non-progression cycle

I Veri�ed on a full execution path

I Counter example: a cycling execution path that violates the property

Comm Patterns: �It exists a pattern that is the same for all exec paths�

I e.g.: send-deterministic (local sending order is always the same)

I Work on all execution paths

I Counter examples: two paths exhibiting di�ering communication patterns

SimGrid: Computational Science of IT Systems Chap I : Appendix 5/16

Checking Liveness Properties

Enforce property φ

I Search for a counter-example, ie a run of the system satisfying ¬φ

I Counter examples are in�nite ; Build the Büchi Automaton of ¬φ

I Ensure that Application Ö Bucchi(¬φ) is empty (no accepted run)

I State Equality is crucial to detect cycles

Current state in Mc SimGrid
I Working in our tests (although fragile: equality is based on heuristics)

I We are looking for more domain-speci�c interesting properties

SimGrid: Computational Science of IT Systems Chap I : Appendix 6/16

Veri�cation of Protocol-wide Properties

Motivation
I Clever checkpoint algorithms exist, provided that the application is nice enough

I On communication determinism in parallel HPC applications,
F. Cappello, A. Guermouche and M. Snir (2010)
I Manual inspection of 27 HPC applications, seeking for such properties

Protocol-wide properties

I deterministic: On each node, send and receive events are always in same order

I send deterministic: ∀ node, send are always the same, no matter the recv order

I Not liveness, not even LTL: quanti�es for all execution paths within property

Status report: we can verify such properties in Mc SimGrid

I Explore one path to learn the communication order, deduce the property

I Enforce that this order holds on all other execution path

I We reproduced the conclusions of previous paper on several benchmarks
I NAS Parallel Benchmarks NPB 3.3 (5 kernels)
I CORAL Benchmark codes
I NERSC-8/Trinity Benchmarks

SimGrid: Computational Science of IT Systems Chap I : Appendix 7/16

Mitigating the State Space Explosion

The exploration process often fails to complete

I Too many states to explore, not enough time and/or memory

I Mc SimGrid provides two reductions techniques

Dynamic Partial Ordering Reduction (DPOR)

I Avoid re-exploring equivalent interleavings

I Don't explore all interleavings of local executions: they are equivalent

I Adapted to safety, not to liveness (cycles)

System-Level State Equality

I Detect when a given state was previously explored

I Introspect the application state similarly to gdb

I Also with Memory Compaction

I Heuristic for both safety and liveness

SimGrid: Computational Science of IT Systems Chap I : Appendix 8/16

Partial Ordering Reduction (DPOR)

I Avoid re-exploring Mazurkiewicz traces (don't permute independent events)

s0

s1

s2

α1

α2

s0

s1

s2

β1

β2

Indep

Dependent

s0

s1

s5

s9

α1

s6

s7

s8

s2

s3

s4

s10

s11

s12

α1
α1

α2

α2

α2

α2

β1

β1
β1

β2

β2

β2

β2

Proc1 Proc2 Proc1 x Proc2
I McSimGrid: iSend and iRecv are independent, etc.

I Dynamic Partial Ordering Reductions take advantage of runtime knowledge

I Many techniques (sleep sets, ample sets) are hard to understand & get right

I Ongoing work: reimplement our DPOR using Event Unfolding Structures

SimGrid: Computational Science of IT Systems Chap I : Appendix 9/16

But what are the transitions in Mc SimGrid?

Transition = atomic block of code between Indecision Points
I Test all interleavings of the shared state (mem+network) modi�cations

I Transition = (some local code +) one shared state's change

Implementation: SimGrid is an Operating System

I Actors must use simcalls to modify the shared state

I First introduced for parallel simulation, but crucial to dynamic veri�cation

Functional View

Actor Actor Actor

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

M

U2
U1

U3

Going parallel

I More actors than cores ; Worker Threads that execute co-routines

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Actors

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

SimGrid: Computational Science of IT Systems Chap I : Appendix 10/16

But what are the transitions in Mc SimGrid?

Transition = atomic block of code between Indecision Points
I Test all interleavings of the shared state (mem+network) modi�cations

I Transition = (some local code +) one shared state's change

Implementation: SimGrid is an Operating System

I Actors must use simcalls to modify the shared state

I First introduced for parallel simulation, but crucial to dynamic veri�cation

Functional View

Actor Actor Actor

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

M

U2
U1

U3

Going parallel

I More actors than cores ; Worker Threads that execute co-routines

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Actors

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm
SimGrid: Computational Science of IT Systems Chap I : Appendix 10/16

Mitigating the State Space Explosion

The exploration process often fails to complete

I Too many states to explore, not enough time and/or memory

I Mc SimGrid provides two reductions techniques

Dynamic Partial Ordering Reduction (DPOR)

I Avoid re-exploring equivalent interleavings

I Don't explore all interleavings of local executions: they are equivalent

I Adapted to safety, not to liveness (cycles)

System-Level State Equality

I Detect when a given state was previously explored

I Introspect the application state similarly to gdb

I Also with Memory Compaction

I Heuristic for both safety and liveness

SimGrid: Computational Science of IT Systems Chap I : Appendix 11/16

OS-level State Equality Detection

I Memory over-provisioning
allocated size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes: Data structure alignment

struct foo {
char c;
int i;
short s;
void *p;
}

1 3 4 2 6 8

Padding bytes

size (bytes)

c i s pstruct member

I Irrelevant di�erences: system-level PID, fd, . . .

I Syntactic di�erences / semantic equalities:

0x10

0x10

0x20

0x20

0x30

0x30

0x40

0x40

0x50

0x50

1234

1234

aSbY

aSbY

�e

gcc

gcc

�e

= = = =Solutions

Issue Heap solution Stack solution

Overprovisioning memset 0 (customized mmalloc) Stack pointer detection

Padding bytes memset 0 (customized mmalloc) DWARF + libunwind

Irrelevant di�erences Ignore explicit areas DWARF + libunwind + ignore

Syntactic di�erences Heuristic for semantic comparison N/A (sequential access)

SimGrid: Computational Science of IT Systems Chap I : Appendix 12/16

Applicative State in Mc SimGrid

We work at system level

I Target = legacy MPI apps

I Stack: where maestro lives

I Heap: shared between actors + actors stacks

I BSS+Data: private copy for each actor

I Network state is within libsimgrid data

How to privatize the BSS+data

I (this is required to fold MPI processes anyway)

I Source-to-Source: turn globals into arrays of locals

I Compiler's pass: move globals into TLS area
changes toolchain (no icc) ; alters SEBs (as any previous solution)

I GOT injection: rewrite the ELF symbol table when switching contextes
static variables are not part of the GOT unfortunately

I mmap of bss+data segments: preserves SEBs but forces sequential exec

I dlopen tricks: compile app with -fPIE, dlopen() it many times
SimGrid: Computational Science of IT Systems Chap I : Appendix 13/16

Memory Compactions

We save literally thousands of states

=

s1

=

System State S1

System State S2
Memory pages to save

s2

I Very few modi�cation between states in practice

I First fast hash function to distinguish new pages, then byte-wise equality

I Combines nicely with State Equality Detection (but complex implementation)

SimGrid: Computational Science of IT Systems Chap I : Appendix 14/16

Evaluation

Veri�ed small applications

I MPI2 collectives, MPICH3 test suite, Benchmarks (NAS, CORAL, NERSC)

I Safety, Liveness (no non-progressive cycle), Send-determinism

Results
I Without reduction, only scales up to 2 to 6 processes in 24h

I Reductions (when usable) and Memory Compaction goes a bit further

I Not exactly ExaScale, but exhaustively at small size already useful

Found bugs

I The one we intentionally added to the code

I Our own implementation of the Chord protocol (not in MPI)

I But no wild bugs in MPI yet :(

SimGrid: Computational Science of IT Systems Chap I : Appendix 15/16

Veri�cation of some MPICH3 unit tests
I Looking for assertion failures, deadlocks and non-progressive cycles
I Exhaustive exploration, but no error found
I ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

Application #P
Stateless exploration Stateful exploration

States Time # States Time Memory

sendrecv2

2 > 55 millions > 6h 936 13s 2GB

5 - - 2 284 43s 5.4GB

10 - - 3 882 2m 11GB

bcastzerotype
5 > 12 millions > 1h 2 474 41s 3.1GB

6 - - 17 525 5m 19GB

coll4 4 > 100 millions > 24h 29 973 20m 38GB

5 - - > 150 000 > 4h > 200GB

groupcreate
5 > 10 millions > 1h30 2 217 38s 2.8GB

7 - - 71 280 24m 62GB

dup
4 > 57 millions > 5h 4 827 1m20 6.5GB

5 - - 75 570 49m 87GB

I We veri�ed several MPI2 collectives too: all good so far /
SimGrid: Computational Science of IT Systems Chap I : Appendix 16/16

	Preamble
	Introduction
	Performance Simulation
	Correctness Assesment
	Technical Considerations
	StarPU-SimGrid
	Other external projects
	Conclusion

	Appendix
	Appendix

