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What is Science anyway?

Doing Science = Acquiring Knowledge

Experimental Science Theoretical Science Computational Science

I Thousand years ago

I Observations-based

I Can describe

I Prediction tedious

I Last few centuries

I Equations-based

I Can understand

I Prediction long

I Nowadays

I Compute-intensive

I Can simulate

I Prediction easier

Prediction is very di�cult, especially about the future. � Niels Bohr
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Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

this requires

large computers
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Modern Computers are Large and Complex

Massive Parallelism
I Cannot miniaturize further (atom limit)

I Cannot increase frequency (energy limit)

I Solution: Multiply compute cores!

I Sequoia, third fastest computer: 1,572,864 cores

ExaScale Systems, used in Computational Science
I Systems doing one Exa�op per second by the end of the decade

I 1 Exa�op = 1018 operations. One million million million operations. . .
At humanly doable speed, that requires 10 times the age of the universe

I Each node: 20 millions lines of code (10× Encyclopedia Britannica)

Other very large computer systems in the wide
I Google computers dissipate 300MW on average (150,000 households, 1

3
reactor)

I Botnets: BredoLab estimated to control 30 millions of zombie computers

I In addition, these systems are heterogeneous and dynamic

So, how do we study these beasts?
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Computational Science of Computer Systems

My Research Field: Methodologies of Experimentation

I Goal: assess the performance and correctness of large-scale computer systems

I Question: Are we really producing scienti�cally sound results?

I Main contribution: SimGrid, a simulator of large-scale computer system

My approach: I am a physicist

I Empirically consider large-scale computer systems as natural objects

I Eminently arti�cial artifacts, but complexity reaches �natural� levels

I Other sciences routinely use computers to understand complex systems
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Assessing Distributed Applications

Performance Study ; Experimentation
I Maths: Often not su�cient to fully understand these systems
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I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system's Models (in silico)

Correctness Study ; Formal Methods

I Tests: Unable to provide de�nitive answers

I Model-Checking: Exhaustive and automated exploration of state space
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Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol

I No heisenbug: (Simulated) time does not change when you capture more data

I Clairevoyance: Observe every bits of your application and platform

I High Reproducibility: No or very few variability

I Capacity planning: Can we save on component? What if network were faster

I Don't waste resources to debug and test (up to 50% on some production infra)
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Simulation Challenges

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges for the Tool Makers
I Validity: Get realistic results (controlled experimental bias). That's hard.

I Scalability: Fast enough and Big enough

I Tooling: runner, post-processing, integrated lab notes

Major Components of any Simulation-based Experiment

I An observation of your application: either a trace, prototype or live application

I A con�guration describing the experimental settings

I Models of your platform: CPU, Network, Disk, any other relevant resource
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SimGrid: Versatile Simulator of Distributed Apps

Scienti�c Instrument
I Versatile: Grid, P2P, IaaS Clouds, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Ready to use: Integrated to Debian/Ubuntu, self-contained Jar, win installer

Scienti�c Object

I Allows comparison of network models on non-trivial applications

I High-Performance Simulation on realistic workload

I Full model checker of distributed applications; Emulator under way

Open Project with a Large Community

I Community-driven: 30 contributors (5 not a�liated), 5 contributed tools, GPL

I Impact: 120 publications (110 distinct authors, 5 continents), 4 PhD

I Started in 1998 at UCSD; Now collab accross many individuals and institutions

I 7 partners, 20+ researchers (CNRS, Universities, Inria)

I Public funding (≈ 3M¿ ANR/Inria); Community based (User days, hackfests)
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Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton;

I GridSim/CloudSim: naive packet level or buggy �ow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Dimemas: aim at performance trends and bottleneck identi�cation

SimGrid: 10-years e�ort on validity

I Same methodology than physicist:
try to (in)validat our models

I Observe, analyze, hypothesis, test
HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

SampledSimGrid provides several Network Models

I Flow-based: Contention, Slow-start, TCP congestion, Cross-tra�c e�ects

I Constant time: A bit faster, but no hope of realism

I Coordinate-based: Easier to instantiate in P2P scenarios

I Packet-level: NS3 bindings
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SimGrid Network Model
Measurements
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SimGrid Validity Limits

Sometimes, it work rather well

App: BigDFT (physics)
Host: Tibidabo (ARM + Ethernet 10G)

Tibidabo

q
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up
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q Real

SMPI

LogGPS

Sometimes, Simulation sucks
I Model limits, Bad instanciation, Applicative model faulty

Sometimes, Reality sucks

I NAS PB benchmark. Left: simulation; Right real execution

I Discrepancy: Reality experiences timeouts that are probably due to TCP RTO
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Agenda

Introduction

Modern Large Computing Facilities

Computational Science of Computer Systems (CS2)

Simulation Models

Dynamic Veri�cation of Distributed Applications

Conclusion
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Assessing the Correctness of HPC codes?

Writing Distributed Apps is notoriously di�cult, but:

The Good Old Days

I MPI codes circumvented the di�culty with rigid communication patterns

I Correctness established through testing

I Only performance matters anyway:
I Most prefer a fast code that rarely fail-stop to a slow code that always work
I (at least, that's my feeling for most of the numerical applications)

These Days are Now Over

I But rigid patterns do not scale! We now have to release the grip

I But this is dangerous! We now have to explicitly seek for correctness

Slowly, old ignored problems resurface. . .
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Model Checking and Dynamic Veri�cation

These are Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults

I If you �nd a fault, then you have something to work on

I If don't �nd any after an exhaustive search, correctness experimentally proved

I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
1
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MC_RANDOM
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4 4
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4 5
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Test FALSE

Model Checking: the Big Idea

I My preferred outcome: a counter-example
If not, I fear my property to be wrongly expressed

I We tend to bug �nding, not certi�cation
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Formal Properties

Safety Properties

I �A given bad behavior never occurs�

I Can be expressed as boolean (assertion): no deadlock, x 6= 0, . . .

I Work on all states separately

I Counter example: a faulty state

Liveness Properties

I �An expected behavior will happen in all cases�

I Example: Any process that asks a resource will obtain it eventually

I Must be expressed in a temporal logic such as CTL (safety ones could too)

I Work on execution path

I Counter example: an in�nite path (ie, a cycle) that violates the property

Liveness properties are much more challenging to verify in practice
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SimGrid and SMPI

SIMIX

SURF
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{



CL2

CLm CL1

Cp

I SMPI can run complex C/C++/Fortran applications on top of SimGrid

I Let's leverage this unconventional virtualization layer for veri�cation!

I + collective code scavenging ; verify even runtime's collectives
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SimGridMC: Formal Methods in SimGrid

Verify any application that would run in SimGrid

I Replace the simulation kernel underneath with a model checker

I Tests all causally possible orders of events to dynamically verify the app

I Reuse the mediation mechanism that base the simulator

I System-level checkpoints the app to then rewind and explore another path

I Works with SMPI, and MSG (our simple API for the study of CSP algorithms)
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Example: Out of order receive

I Two processes send a message to a third one

I The receiver expects the message to be in order

I This may happen. . . or not

rank1

rank2

rank0

send(1)

send(2)

x ← 1 y ← 2

x < y

if (MPI_rank() == 0) {

MPI_Recv(&x , MPI_ANY_SOURCE);

MPI_Recv(&y , MPI_ANY_SOURCE);

MC_assert(x < y);

} else {

MPI_Send (&rank , 0);

}

rank1

rank2

rank0

send(1)

send(2)

x ← 2 y ← 1

x 6< y

**************************

*** PROPERTY NOT VALID ***

**************************

Counter-example execution trace:

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(3)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(3)sender -> (1)recver])

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(2)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(2)sender -> (1)recver])
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Mitigating the State Space Explosion
Many execution paths are redundant ; cut exploration when possible

Dynamic Partial Ordering Reduction (DPOR)

I Works on histories: test only one transitions' interleaving if independent

I Independence theorems: Local events are independent; iSend+iRecv also; . . .

I Must be conservative (exploration soundness at risk!)

I It works well (for safety properties)

System-Level State Equality

I Works on states: detect when a given space was previously explored

I Complementary to DPOR (but not compatible yet)

I Introspect the C/C++/Fortran app just like gdb (+some black magic)
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OS-level Challenges of State Equality Detection

I Memory over-provisioning
allocated size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes: Data structure alignment

struct foo {
char c;
int i;
short s;
void *p;
}

1 3 4 2 6 8

Padding bytes

size (bytes)

c i s pstruct member

I Irrelevant di�erences: system-level PID, fd, . . .

I Syntactic di�erences / semantic equalities:

0x10

0x10

0x20

0x20

0x30

0x30

0x40

0x40

0x50

0x50

1234

1234

aSbY

aSbY

�e

gcc

gcc

�e

= = = =Solutions

Issue Heap solution Stack solution

Overprovisioning memset 0 (customized mmalloc) Stack pointer detection

Padding bytes memset 0 (customized mmalloc) DWARF + libunwind

Irrelevant di�erences Ignore explicit areas DWARF + libunwind + ignore

Syntactic di�erences Heuristic for semantic comparison N/A (sequential access)
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Some Results

Wild safety bug in our Chord implementation (≈ 500 lines of C)

I Simulation: bug on large instances only; MC �nds small trace (1s with DPOR)

Mocked liveness bug

I Buggy centralized mutual exclusion: last client never obtains the CS

I About 100 lines � state snapshot size: 5Mib

I Veri�ed with up to 7 processes (12,000 states, 9 minutes, 45Gb).

Verifying MPICH3 complience tests

I Looking for assertion failures, deadlocks and non-progressive cycles

I 6 tests; ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

I With no reduction: no test concluded in a few hours

I With state equality: Exhaustive exploration up to 10 procs, but no error found

I With memory compaction: use only dozen of Gb in RAM, not hundreds

I We veri�ed several MPI2 collectives too © (but all good so far /)
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Veri�cation of Protocol-wide Properties

Motivation
I Clever checkpoint algorithms exist, provided that the application is nice enough

I On communication determinism in parallel HPC applications,
F. Cappello, A. Guermouche and M. Snir (2010)

I Manual inspection of 27 HPC applications, seeking for such properties

Protocol-wide properties

I deterministic: On each node, send and receive events are always in same order

I send deterministic: ∀ node, send are always the same, no matter the recv order

I Not liveness, not even LTL: quanti�es for all execution paths within property

Status report: we can verify such properties in SimGrid

I Explore one path to learn the communication order, deduce the property

I Enforce that this order holds on all other execution path

I We reproduced the conclusions of previous paper on several benchmarks
I All good /
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More on Formal Veri�cation

We've built a really cool tool

I We can verify many unmodi�ed MPI applications (C/C++/Fortran)

I State space reduction: DPOR or State equality (not together yet)

I Properties: safety, liveness or protocol-wide

Many remaining Research Leads

I Other reductions, HPC-speci�c properties, statistical model-checking, . . .

I Interactive tool to get gdb-like info on each state in the execution graph

We need more use cases
I We are done with all the ones provided by the practitioners we know

I We could make it even better with really relevant use cases

I We don't know what properties are relevant
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Much more to say about SimGrid (too little time)

Hybrid Network Models

I Fluid model: model contention in steady state for large messages

I LogOP model: model intra-node delays and synchronization

I Also: MPI collectives, TCP (slow-start, cross-tra�c), soon IB

Realistic Emulation
I SMPI: Study real MPI applications within SimGrid

I Simterpose: Study real arbitrary applications (ongoing)

High Performance Simulation

I Fast Enough: Innovative PDES; E�cient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

Formal Veri�cation of Distributed Apps

I Safety, Liveness or CTL properties, with DPOR or state equality
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Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; AGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

apt-get install simgrid now! (or get the jar�le)
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