
Computational Science of Computer Systems
Méthodologies d'expérimentation pour l'informatique distribuée à large échelle

Martin Quinson

(with the SimGrid Team and others)

October 16th 2014

Mons

What is Science anyway?

Doing Science = Acquiring Knowledge

Experimental Science Theoretical Science Computational Science

I Thousand years ago

I Observations-based

I Can describe

I Prediction tedious

I Last few centuries

I Equations-based

I Can understand

I Prediction long

I Nowadays

I Compute-intensive

I Can simulate

I Prediction easier

Prediction is very di�cult, especially about the future. � Niels Bohr

Computational Science of Computer Systems Introduction CS2 Models Formal CC 2/27

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

this requires

large computers

Computational Science of Computer Systems Introduction CS2 Models Formal CC 3/27

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

this requires

large computers

Computational Science of Computer Systems Introduction CS2 Models Formal CC 3/27

Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

this requires

large computers

Computational Science of Computer Systems Introduction CS2 Models Formal CC 3/27

Modern Computers are Large and Complex

Massive Parallelism
I Cannot miniaturize further (atom limit)

I Cannot increase frequency (energy limit)

I Solution: Multiply compute cores!

I Sequoia, third fastest computer: 1,572,864 cores

ExaScale Systems, used in Computational Science
I Systems doing one Exa�op per second by the end of the decade

I 1 Exa�op = 1018 operations. One million million million operations. . .
At humanly doable speed, that requires 10 times the age of the universe

I Each node: 20 millions lines of code (10× Encyclopedia Britannica)

Other very large computer systems in the wide
I Google computers dissipate 300MW on average (150,000 households, 1

3
reactor)

I Botnets: BredoLab estimated to control 30 millions of zombie computers

I In addition, these systems are heterogeneous and dynamic

So, how do we study these beasts?
Computational Science of Computer Systems Introduction CS2 Models Formal CC 4/27

Computational Science of Computer Systems

My Research Field: Methodologies of Experimentation

I Goal: assess the performance and correctness of large-scale computer systems

I Question: Are we really producing scienti�cally sound results?

I Main contribution: SimGrid, a simulator of large-scale computer system

My approach: I am a physicist

I Empirically consider large-scale computer systems as natural objects

I Eminently arti�cial artifacts, but complexity reaches �natural� levels

I Other sciences routinely use computers to understand complex systems

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 5/27

Assessing Distributed Applications

Performance Study ; Experimentation
I Maths: Often not su�cient to fully understand these systems

B
y
L
.
N
u
ss
b
a
u
m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system's Models (in silico)

Correctness Study ; Formal Methods

I Tests: Unable to provide de�nitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 6/27

Assessing Distributed Applications

Performance Study ; Experimentation
I Maths: Often not su�cient to fully understand these systems

B
y
L
.
N
u
ss
b
a
u
m

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system's Models (in silico)

Correctness Study ; Formal Methods

I Tests: Unable to provide de�nitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 6/27

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol

I No heisenbug: (Simulated) time does not change when you capture more data

I Clairevoyance: Observe every bits of your application and platform

I High Reproducibility: No or very few variability

I Capacity planning: Can we save on component? What if network were faster

I Don't waste resources to debug and test (up to 50% on some production infra)

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 7/27

Simulating Distributed Systems

Simulation: Fastest Path from Idea to Data
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: Easiest Way to Study Distributed Applications
I Everything is actually centralized: Partially mock parts of your protocol

I No heisenbug: (Simulated) time does not change when you capture more data

I Clairevoyance: Observe every bits of your application and platform

I High Reproducibility: No or very few variability

I Capacity planning: Can we save on component? What if network were faster

I Don't waste resources to debug and test (up to 50% on some production infra)
Computational Science of Computer Systems Introduction CS

2 Models Formal CC 7/27

Simulation Challenges

Idea or
MPI code

Experimental
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges for the Tool Makers
I Validity: Get realistic results (controlled experimental bias). That's hard.

I Scalability: Fast enough and Big enough

I Tooling: runner, post-processing, integrated lab notes

Major Components of any Simulation-based Experiment

I An observation of your application: either a trace, prototype or live application

I A con�guration describing the experimental settings

I Models of your platform: CPU, Network, Disk, any other relevant resource

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 8/27

SimGrid: Versatile Simulator of Distributed Apps

Scienti�c Instrument
I Versatile: Grid, P2P, IaaS Clouds, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Ready to use: Integrated to Debian/Ubuntu, self-contained Jar, win installer

Scienti�c Object

I Allows comparison of network models on non-trivial applications

I High-Performance Simulation on realistic workload

I Full model checker of distributed applications; Emulator under way

Open Project with a Large Community

I Community-driven: 30 contributors (5 not a�liated), 5 contributed tools, GPL

I Impact: 120 publications (110 distinct authors, 5 continents), 4 PhD

I Started in 1998 at UCSD; Now collab accross many individuals and institutions

I 7 partners, 20+ researchers (CNRS, Universities, Inria)

I Public funding (≈ 3M¿ ANR/Inria); Community based (User days, hackfests)

Computational Science of Computer Systems Introduction CS
2 Models Formal CC 9/27

Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton;

I GridSim/CloudSim: naive packet level or buggy �ow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Dimemas: aim at performance trends and bottleneck identi�cation

SimGrid: 10-years e�ort on validity

I Same methodology than physicist:
try to (in)validat our models

I Observe, analyze, hypothesis, test
HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

SampledSimGrid provides several Network Models

I Flow-based: Contention, Slow-start, TCP congestion, Cross-tra�c e�ects

I Constant time: A bit faster, but no hope of realism

I Coordinate-based: Easier to instantiate in P2P scenarios

I Packet-level: NS3 bindings
Computational Science of Computer Systems Introduction CS2 Models Formal CC 10/27

SimGrid Network Model
Measurements

Small

Medium1
Medium2

Detached

Small

Medium1
Medium2

Detached

MPI_Send MPI_Recv

1e−04

1e−02

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Message size (bytes)

D
ur

at
io

n
(s

ec
on

ds
) group

Small

Medium1

Medium2

Detached

Large

Model hybridizing LogP. . .

Asynchronous (k 6 Sa)

T3

Pr

Ps

T1

T2

Detached (Sa < k 6 Sd)

Ps

Pr

T2T4

T1

Synchronous (k > Sd)

Ps

Pr

T4 T2

. . . and Fluid model: account for contention and network topology

1-39 40-74 105-14475-104

1G
10G

;

DownUp DownUp DownUp DownUp

10G
1G

1−39 40−74 105−14475−104

13G

10G

Limiter

...
1.5G

1G

Limiter

DownUp

Computational Science of Computer Systems Introduction CS2 Models Formal CC 11/27

SimGrid Validity Limits

Sometimes, it work rather well

App: BigDFT (physics)
Host: Tibidabo (ARM + Ethernet 10G)

Tibidabo

q
q

q

q

q

50

100

S
m

all

8 16 32 64 128
Number of nodes

S
pe

ed
up

Model
q Real

SMPI

LogGPS

Sometimes, Simulation sucks
I Model limits, Bad instanciation, Applicative model faulty

Sometimes, Reality sucks

I NAS PB benchmark. Left: simulation; Right real execution

I Discrepancy: Reality experiences timeouts that are probably due to TCP RTO
Computational Science of Computer Systems Introduction CS2 Models Formal CC 12/27

Agenda

Introduction

Modern Large Computing Facilities

Computational Science of Computer Systems (CS2)

Simulation Models

Dynamic Veri�cation of Distributed Applications

Conclusion

Computational Science of Computer Systems Introduction CS2 Models Formal CC 13/27

Assessing the Correctness of HPC codes?

Writing Distributed Apps is notoriously di�cult, but:

The Good Old Days

I MPI codes circumvented the di�culty with rigid communication patterns

I Correctness established through testing

I Only performance matters anyway:
I Most prefer a fast code that rarely fail-stop to a slow code that always work
I (at least, that's my feeling for most of the numerical applications)

These Days are Now Over

I But rigid patterns do not scale! We now have to release the grip

I But this is dangerous! We now have to explicitly seek for correctness

Slowly, old ignored problems resurface. . .
Computational Science of Computer Systems Introduction CS2 Models Formal CC 14/27

Model Checking and Dynamic Veri�cation

These are Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults

I If you �nd a fault, then you have something to work on

I If don't �nd any after an exhaustive search, correctness experimentally proved

I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

Model Checking: the Big Idea

I My preferred outcome: a counter-example
If not, I fear my property to be wrongly expressed

I We tend to bug �nding, not certi�cation

Computational Science of Computer Systems Introduction CS2 Models Formal CC 15/27

Model Checking and Dynamic Veri�cation

These are Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults

I If you �nd a fault, then you have something to work on

I If don't �nd any after an exhaustive search, correctness experimentally proved

I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

Model Checking: the Big Idea

I My preferred outcome: a counter-example
If not, I fear my property to be wrongly expressed

I We tend to bug �nding, not certi�cation

Computational Science of Computer Systems Introduction CS2 Models Formal CC 15/27

Formal Properties

Safety Properties

I �A given bad behavior never occurs�

I Can be expressed as boolean (assertion): no deadlock, x 6= 0, . . .

I Work on all states separately

I Counter example: a faulty state

Liveness Properties

I �An expected behavior will happen in all cases�

I Example: Any process that asks a resource will obtain it eventually

I Must be expressed in a temporal logic such as CTL (safety ones could too)

I Work on execution path

I Counter example: an in�nite path (ie, a cycle) that violates the property

Liveness properties are much more challenging to verify in practice

Computational Science of Computer Systems Introduction CS2 Models Formal CC 16/27

SimGrid and SMPI

SIMIX

SURF

MSG SMPI SIMDAG

User Code

Platform

Description372
435work

remaining

variable

530
530

50
664

245
245

Concurrent
processes

Synchro.
abstractions

...

...

...

App. spec. as concurrent code

App. spec. as
task graph

...

x1
x2

x3

x3

+

xn

...

+

+ xn
Variables Resource

Constraints

6 CLm

6 CL2

6 CP

6 CL1x1

... ...

Activities

...

{

CL2

CLm CL1

Cp

I SMPI can run complex C/C++/Fortran applications on top of SimGrid

I Let's leverage this unconventional virtualization layer for veri�cation!

I + collective code scavenging ; verify even runtime's collectives

Computational Science of Computer Systems Introduction CS2 Models Formal CC 17/27

SimGridMC: Formal Methods in SimGrid

Verify any application that would run in SimGrid

I Replace the simulation kernel underneath with a model checker

I Tests all causally possible orders of events to dynamically verify the app

I Reuse the mediation mechanism that base the simulator

I System-level checkpoints the app to then rewind and explore another path

I Works with SMPI, and MSG (our simple API for the study of CSP algorithms)

1

2

iSend

3

iRecv

4

Wait

5

iRecv

1 5 3

Test TRUE

6

Test TRUE

7

iSend

8

Wait

9

iRecv

1 0

Test FALSE

1 1

MC_RANDOM (0)

1 1 5

MC_RANDOM (1)

1 2 2

iRecv

1 2

MC_RANDOM (0)

1 0 5

MC_RANDOM (1) 1 1 2

iRecv

1 3

MC_RANDOM (0)MC_RANDOM (1)

1 0 7

iRecv

MC_RANDOM (0)

1 5

MC_RANDOM (1)

2 4

iRecv

1 6

iSend

1 7

iRecv

1 8

Wait

1 9

Test TRUE

2 0

iSend

2 1

Wait

2 2

iRecv

Test FALSE

2 5

MC_RANDOM (0)

1 0 3

MC_RANDOM (1)

2 6

Test FALSE

2 7

MC_RANDOM (0)

6 6

MC_RANDOM (1)

2 8

MC_RANDOM (0)

6 2

MC_RANDOM (1)

2 9

MC_RANDOM (0)MC_RANDOM (1)

MC_RANDOM (0)

3 1

MC_RANDOM (1)

3 2

iSend

3 5

Test FALSE

3 3

Wait

Test TRUE

3 6

iSend

5 8

MC_RANDOM (0)

6 0

MC_RANDOM (1)

3 7

Wait

5 4

MC_RANDOM (0)

5 6

MC_RANDOM (1)

3 8

MC_RANDOM (0)

5 2

MC_RANDOM (1)

3 9

MC_RANDOM (0)

4 4

MC_RANDOM (1)

4 0

MC_RANDOM (0)

MC_RANDOM (1)

4 1

MC_RANDOM (0) MC_RANDOM (1)

4 2

Test TRUE

iSend

4 5

Test TRUE

4 6

iSend

4 7

Wait

4 8

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

6 3

Test FALSE

Test FALSE

6 7

iSend

7 5

Test FALSE

6 8

Wait

6 9

Test TRUE

7 0

iSend

7 1

Wait

7 2

iSend

7 3

iRecv

Test FALSE

7 6

iSend

9 9

MC_RANDOM (0)

1 0 1

MC_RANDOM (1)

7 7

Wait

9 5

MC_RANDOM (0)

9 7

MC_RANDOM (1)

7 8

MC_RANDOM (0)

9 3

MC_RANDOM (1)

7 9

MC_RANDOM (0)

8 4

MC_RANDOM (1)

8 0

MC_RANDOM (0)

MC_RANDOM (1)

8 1

MC_RANDOM (0) MC_RANDOM (1)

8 2

Test TRUE

iSend

8 5

Test TRUE

8 6

iSend

8 7

Wait

8 8

iSend

8 9

iRecv

Test FALSE

Test TRUE

Wait Wait

iSend iSend

iSend

Test FALSE

MC_RANDOM (0)

1 0 9

MC_RANDOM (1)

Test FALSE

MC_RANDOM (0)

MC_RANDOM (1)

1 1 6

iSend

1 1 7

iRecv

1 1 8

Wait

1 1 9

Test TRUE

1 2 0

iSend

Wait

MC_RANDOM (0)

1 2 4

MC_RANDOM (1)

1 2 5

iSend

1 2 8

Test FALSE

1 2 6

Wait

Test TRUE

1 2 9

iSend

1 4 9

MC_RANDOM (0)

1 5 1

MC_RANDOM (1)

1 3 0

Wait

1 4 5

MC_RANDOM (0)

1 4 7

MC_RANDOM (1)

1 3 1

MC_RANDOM (0)

1 4 3

MC_RANDOM (1)

1 3 2

MC_RANDOM (0)

1 3 7

MC_RANDOM (1)

1 3 3

MC_RANDOM (0)

MC_RANDOM (1)

1 3 4

MC_RANDOM (0) MC_RANDOM (1)

1 3 5

Test TRUE

iSend

1 3 8

Test TRUE

1 3 9

iSend

Wait

Test TRUE

Wait Wait

iSend iSend

iRecv

1

2

iSend

3

WaitTimeout

1 1

iRecv

4

iRecv

5

Test FALSE

6

MC_RANDOM

7

MC_RANDOM

8

MC_RANDOM

9

MC_RANDOM

Test FALSE

1 2

Wait

1 3

iRecv

2 4

Test TRUE

1 4

WaitTimeout

1 5

Test TRUE

1 6

iSend

1 7

iRecv

1 8

Test FALSE

1 9

MC_RANDOM

2 0

MC_RANDOM

2 1

MC_RANDOM

2 2

MC_RANDOM

Test FALSE

2 5

iRecv

2 6

WaitTimeout

2 9

iSend

2 7

iSend

iRecv

3 0

Wait

3 8

iRecv

3 1

iRecv

3 2

Test FALSE

3 3

MC_RANDOM

3 4

MC_RANDOM

3 5

MC_RANDOM

3 6

MC_RANDOM

Test FALSE

3 9

Wait

4 0

iRecv

4 1

Test FALSE

4 2

MC_RANDOM

4 3

MC_RANDOM

4 4

MC_RANDOM

4 5

MC_RANDOM

Test FALSE

1

2

[(1)c-1.me] iRecv

3

[(2)c-2.me] iSend

4

[(1)c-1.me] Wait [(2)->(1)]

5

[(1)c-1.me] iSend

6

[(2)c-2.me] Wait [(2)->(1)]

7

[(2)c-2.me] iRecv

8

[(1)c-1.me] Wait [(1)->(2)]

9

[(1)c-1.me] iRecv

10

[(2)c-2.me] Wait [(1)->(2)]

11

[(2)c-2.me] iSend

12

[(1)c-1.me] Wait [(2)->(1)]

13

[(1)c-1.me] iRecv

14

[(2)c-2.me] Wait [(2)->(1)]

15

[(2)c-2.me] iSend

[(1)c-1.me] Wait [(2)->(1)]

17

[(2)c-2.me] Wait [(2)->(1)]

18

[(1)c-1.me] Wait [(2)->(1)]

[(1)c-1.me] iSend

20

[(2)c-2.me] iRecv

21

[(1)c-1.me] iSend

22

[(1)c-1.me] Wait [(1)->(2)]

23

[(1)c-1.me] iRecv

[(2)c-2.me] Wait [(1)->(2)]

25

[(3)c-3.me] iSend

26

[(1)c-1.me] Wait [(3)->(1)]

27

[(1)c-1.me] iRecv

28

[(2)c-2.me] Wait [(1)->(2)]

29

[(2)c-2.me] iSend

30

[(1)c-1.me] Wait [(2)->(1)]

31

[(1)c-1.me] iRecv

32

[(2)c-2.me] Wait [(2)->(1)]

33

[(2)c-2.me] iSend

34

[(1)c-1.me] Wait [(2)->(1)]

35

[(1)c-1.me] iSend

36

[(2)c-2.me] Wait [(2)->(1)]

37

[(2)c-2.me] iRecv

38

[(1)c-1.me] Wait [(1)->(2)]

39

[(1)c-1.me] iRecv

40

[(2)c-2.me] Wait [(1)->(2)]

41

[(2)c-2.me] iSend

[(1)c-1.me] Wait [(2)->(1)]

43

[(2)c-2.me] Wait [(2)->(1)]

44

[(1)c-1.me] Wait [(2)->(1)]

[(1)c-1.me] iRecv

46

[(2)c-2.me] iSend

47

[(1)c-1.me] iRecv

48

[(1)c-1.me] Wait [(2)->(1)]

49

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]

51

[(3)c-3.me] Wait [(3)->(1)]

52

[(2)c-2.me] Wait [(2)->(1)]

53

[(2)c-2.me] iRecv

54

[(1)c-1.me] Wait [(1)->(2)]

55

[(1)c-1.me] iRecv

56

[(2)c-2.me] Wait [(1)->(2)]

57

[(2)c-2.me] iSend

58

[(1)c-1.me] Wait [(2)->(1)]

59

[(1)c-1.me] iRecv

60

[(2)c-2.me] Wait [(2)->(1)]

61

[(2)c-2.me] iSend

62

[(1)c-1.me] Wait [(2)->(1)]

63

[(1)c-1.me] iSend

[(2)c-2.me] Wait [(2)->(1)]

Computational Science of Computer Systems Introduction CS2 Models Formal CC 18/27

Example: Out of order receive

I Two processes send a message to a third one

I The receiver expects the message to be in order

I This may happen. . . or not

rank1

rank2

rank0

send(1)

send(2)

x ← 1 y ← 2

x < y

if (MPI_rank() == 0) {

MPI_Recv(&x , MPI_ANY_SOURCE);

MPI_Recv(&y , MPI_ANY_SOURCE);

MC_assert(x < y);

} else {

MPI_Send (&rank , 0);

}

rank1

rank2

rank0

send(1)

send(2)

x ← 2 y ← 1

x 6< y

*** PROPERTY NOT VALID ***

Counter-example execution trace:

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(3)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(3)sender -> (1)recver])

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(2)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(2)sender -> (1)recver])

Computational Science of Computer Systems Introduction CS2 Models Formal CC 19/27

Mitigating the State Space Explosion
Many execution paths are redundant ; cut exploration when possible

Dynamic Partial Ordering Reduction (DPOR)

I Works on histories: test only one transitions' interleaving if independent

I Independence theorems: Local events are independent; iSend+iRecv also; . . .

I Must be conservative (exploration soundness at risk!)

I It works well (for safety properties)

System-Level State Equality

I Works on states: detect when a given space was previously explored

I Complementary to DPOR (but not compatible yet)

I Introspect the C/C++/Fortran app just like gdb (+some black magic)

Computational Science of Computer Systems Introduction CS2 Models Formal CC 20/27

OS-level Challenges of State Equality Detection

I Memory over-provisioning
allocated size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes: Data structure alignment

struct foo {
char c;
int i;
short s;
void *p;
}

1 3 4 2 6 8

Padding bytes

size (bytes)

c i s pstruct member

I Irrelevant di�erences: system-level PID, fd, . . .

I Syntactic di�erences / semantic equalities:

0x10

0x10

0x20

0x20

0x30

0x30

0x40

0x40

0x50

0x50

1234

1234

aSbY

aSbY

�e

gcc

gcc

�e

= = = =Solutions

Issue Heap solution Stack solution

Overprovisioning memset 0 (customized mmalloc) Stack pointer detection

Padding bytes memset 0 (customized mmalloc) DWARF + libunwind

Irrelevant di�erences Ignore explicit areas DWARF + libunwind + ignore

Syntactic di�erences Heuristic for semantic comparison N/A (sequential access)

Computational Science of Computer Systems Introduction CS2 Models Formal CC 21/27

Some Results

Wild safety bug in our Chord implementation (≈ 500 lines of C)

I Simulation: bug on large instances only; MC �nds small trace (1s with DPOR)

Mocked liveness bug

I Buggy centralized mutual exclusion: last client never obtains the CS

I About 100 lines � state snapshot size: 5Mib

I Veri�ed with up to 7 processes (12,000 states, 9 minutes, 45Gb).

Verifying MPICH3 complience tests

I Looking for assertion failures, deadlocks and non-progressive cycles

I 6 tests; ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

I With no reduction: no test concluded in a few hours

I With state equality: Exhaustive exploration up to 10 procs, but no error found

I With memory compaction: use only dozen of Gb in RAM, not hundreds

I We veri�ed several MPI2 collectives too © (but all good so far /)

Computational Science of Computer Systems Introduction CS2 Models Formal CC 22/27

Veri�cation of Protocol-wide Properties

Motivation
I Clever checkpoint algorithms exist, provided that the application is nice enough

I On communication determinism in parallel HPC applications,
F. Cappello, A. Guermouche and M. Snir (2010)

I Manual inspection of 27 HPC applications, seeking for such properties

Protocol-wide properties

I deterministic: On each node, send and receive events are always in same order

I send deterministic: ∀ node, send are always the same, no matter the recv order

I Not liveness, not even LTL: quanti�es for all execution paths within property

Status report: we can verify such properties in SimGrid

I Explore one path to learn the communication order, deduce the property

I Enforce that this order holds on all other execution path

I We reproduced the conclusions of previous paper on several benchmarks
I All good /

Computational Science of Computer Systems Introduction CS2 Models Formal CC 23/27

More on Formal Veri�cation

We've built a really cool tool

I We can verify many unmodi�ed MPI applications (C/C++/Fortran)

I State space reduction: DPOR or State equality (not together yet)

I Properties: safety, liveness or protocol-wide

Many remaining Research Leads

I Other reductions, HPC-speci�c properties, statistical model-checking, . . .

I Interactive tool to get gdb-like info on each state in the execution graph

We need more use cases
I We are done with all the ones provided by the practitioners we know

I We could make it even better with really relevant use cases

I We don't know what properties are relevant

Computational Science of Computer Systems Introduction CS2 Models Formal CC 24/27

Agenda

Introduction

Modern Large Computing Facilities

Computational Science of Computer Systems (CS2)

Simulation Models

Dynamic Veri�cation of Distributed Applications

Conclusion

Computational Science of Computer Systems Introduction CS2 Models Formal CC 25/27

Much more to say about SimGrid (too little time)

Hybrid Network Models

I Fluid model: model contention in steady state for large messages

I LogOP model: model intra-node delays and synchronization

I Also: MPI collectives, TCP (slow-start, cross-tra�c), soon IB

Realistic Emulation
I SMPI: Study real MPI applications within SimGrid

I Simterpose: Study real arbitrary applications (ongoing)

High Performance Simulation

I Fast Enough: Innovative PDES; E�cient algorithms and implementations

I Big Enough: Scalable and versatile platform representation

Formal Veri�cation of Distributed Apps

I Safety, Liveness or CTL properties, with DPOR or state equality

Computational Science of Computer Systems Introduction CS2 Models Formal CC 26/27

Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; AGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

apt-get install simgrid now! (or get the jar�le)

Computational Science of Computer Systems Introduction CS2 Models Formal CC 27/27

http://simgrid.gforge.inria.fr/

	Introduction
	Modern Large Computing Facilities
	Computational Science of Computer Systems (CS2)
	Simulation Models
	Dynamic Verification of Distributed Applications
	Conclusion

