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What is Science anyway?

Doing Science = Acquiring Knowledge

Experimental Science Theoretical Science Computational Science

I Thousand years ago

I Observations-based

I Can describe

I Prediction tedious

I Last few centuries

I Equations-based

I Can understand

I Prediction long

I Nowadays

I Compute-intensive

I Can simulate

I Prediction easier

Prediction is very di�cult, especially about the future. � Niels Bohr
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Observation still bases Science

Space telescope Large Hadron Collider Mars Explorer

Tsunamis Earthquake vs. Bridge Climate vs. Ecosystems

(who said that science is not fun??)
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Computational Science

Understanding the Climate Change with Predictions

Models complexity grows

this requires

large computers
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How Big are SuperCompting Facilities?

I Size unit: Floating point Operation per Second (FLOP/S)

I Ranking of biggest computers: TOP500. (Bench: Linpack)

Exponential increase of power

I Laptop ≈ 10-year old SuperComputer (smartphone ≈ 10-year old laptop)
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If there is a Ranking, there is a Race

I Leading IT (≈ and CS) since 20 years
I Moore law: Power doubles every 18 months
I US �ght hard to keep pole position (Japan 2002�2004, China since 2013)
I Used to be a tough game for founders, increasing transistors per CPU

But nowadays, hardware makers lazily stack up components

I Category "+128k processor": 9 machines out of 500, 19% of computing power

I Programming e�ciently 128k processors is a tremendous challenge

I ExaScale systems with billions processors expected before 2020!

I And as software programmers, we have to deal with the resulting mess

Why did founders gave up on us? What did they try before?

Computational Science of Computer Systems Introduction HPC CS2 Models Emulation Formal CC 6/71



If there is a Ranking, there is a Race

I Leading IT (≈ and CS) since 20 years
I Moore law: Power doubles every 18 months
I US �ght hard to keep pole position (Japan 2002�2004, China since 2013)
I Used to be a tough game for founders, increasing transistors per CPU

But nowadays, hardware makers lazily stack up components

I Category "+128k processor": 9 machines out of 500, 19% of computing power

I Programming e�ciently 128k processors is a tremendous challenge

I ExaScale systems with billions processors expected before 2020!

I And as software programmers, we have to deal with the resulting mess

Why did founders gave up on us? What did they try before?
Computational Science of Computer Systems Introduction HPC CS2 Models Emulation Formal CC 6/71



At �rst, they reduced the transistor size

Intel 4004 (1971)

With todays technologies, we could put
15 complete processors on each transistor
of the original

But there is limits
I Current wire size: dozens of atoms

Show Must Go On
I Intel and co business plan:

I Computers last only 3 years

I (not only for the TOP500 race)

Then they increased the electric frequency
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But it failed! Because of Energy

Limit #1: Power density

I Increasing frequency consumes and dissipates too much energy

I When frequency ↗, Computation ↗ linearly; Energy ↑ quadratically
I More energy means higher temperature
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Electric Power becomes THE problem

Limit #2: Energy costs

I IT industry dissipate 1% of world wide electric production

I 1Mw/h is 1M$ per year, and data centers dissipate hundreds of

I Microsoft's DataCenter in Chicago: 198Mw (Nuclear Power Plant: 1000-1500Mw)

I Power becomes more expensive than servers!

I Can soon put more transistors on chip than can a�ord to turn on. � Patterson'07
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Stacking up components to save energy

PowerPerformance

Given processor

This explains why our program must go parallel

I That's a real pain to program though

I Good news: There is no physical limit to fear anymore
Bad news: Nobody knows how to leverage millions of cores e�ciently

I Good news: this actually saves energy nowadays (greener is cheaper)
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Stacking up components to save energy

and use 2 units
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Energy-E�cient Performance

Super Computer in 1996

I Performance: 1 TeraFlop

I E�ciency: 1,000 Flop per watt

Mainstream component in 2009

I Performance: 2.4 TeraFlop

I E�ciency: 1,600,000 Flop per watt

And there is a lot of further power savings to do
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Data Center Energy Losses

Where go all that energy that data centers consume?

100w

This is a HUGE waste of resource
I Data centers are 1 to 5% e�cient only

I Steam engines are 10-15% e�cient
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From Idling Computers to Cloud Computing

I Big vendors on the Internet are subject to �ash crowd e�ects
People tend to buy at day, and more December 20. than on August 15.

I To not loose clients, vendors over-dimension their servers

power
wasted

Lost clients
Servers capacity

Amazon idea
I Rent unused power to others!

I Computers better amortized
Buy bigger ones, loose no client

I Infrastructure as a Service (IaaS)

I Highly Cost-E�cient Computing

I Elastic Computing: Pay only what you need/use

I Cloud Computing: Rent Infra (IaaS), OS+apps (PaaS) or even Software (SaaS)

I Virtualization: ease things, allows optimization (=hardware over booking)

I IT services gets externalized to specialists, that cut costs through scale
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What about Domestic Systems?

Laptops

I 2.7 billions of transistors

I 5 kind of parallelism

I 15 sorts of memory

I 4 programming models
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Gaming Systems

I Cell processors
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I Heterogeneous cores
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A hardware issue turned into a software one
I Intel would sell 1024+ core CPUs, if someone could have any use of these
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What is Parallelism in practice??

I It's about splitting the work to do in sub-elements

I and letting several entities do these tasks

I Hard points: Spliting work, Coordinating entities

To build a wall, you could

I Do it alone, but it's slow!

I (a) and (b) take one stone after the other
They hinder each other

I Split the space correctly for better interactions

I Numerical analysis: split your data while preserving data dependencies

I Data Parallelism can be near to impossible on some problem

I You can often combine it with Task Parallellism
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Problème de l’exclusion mutuelle

Exemple : deux banques modifient un compte en même temps

Agence Nancy

1. courant = get account(1867A)
2. nouveau = courant + 10
3. update account (1867A, nouveau)

Agence Karlsruhe

1. aktuelles = get account(1867A)
2. neue = aktuelles - 10
3. update account(1867A, neue)

I variables partagées + exécutions parallèles entremêlées ⇒ différents résultats :

I ( 0 ; ? ; ?) N1( 0 ; 0 ; ? ) N2( 0 ;10 ; ? ) N3(10 ;10 ; ?)

K1(10 ;10 ;10)K2(10 ;10 ;0) K3( 0 ;10 ; 0)
→ compte inchangé

I (0 ; ? ; ?)N1 (0 ;0 ; ?) K1 (0 ;0 ;0) N2 (0 ;10 ;0)

K2 (0 ;10 ;-10) N3 (10 ;10 ;-10) K3 (-10 ;10 ;-10)
→ compte –= 10

I (0 ; ? ; ?)K1 (0 ; ? ;0) N1 (0 ;0 ;0) K2(0 ;0 ;-10)
N2(0 ;10 ;-10) K3(-10 ;10 ;-10)N3(10 ;10 ;-10)

→ compte += 10

C’est une condition de compétition (race condition)

I Solution : opérations atomiques ; pas d’exécutions entremêlées

I Cette opération est une section critique à exécuter en exclusion mutuelle
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Réalisation d’une section critique

Schéma général
Processus 1
...
entrée en section critique

section critique
sortie de section critique
...

Processus 2
...
entrée en section critique

section critique
sortie de section critique
...

I Exclusion mutuelle garantie par les opérations
(entrée en section critique) et (sortie de section critique)

Réalisation
I Attente active : processus à l’entrée section critique boucle un test d’entrée

I Inefficace (sur mono-processeur)
I Parfois utilisé dans conditions praticulière dans le noyau

I Primitives spéciales : fournies par le système

I Primitives générales : sémaphores, mutex (on y revient)
I Mécanismes spécifiques : comme verrouillage de fichiers (idem)
I Les primitives doivent être atomiques...
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Notion d’interblocage

Utilisation simultanée de plusieurs verrous ⇒ problème potentiel

Situation
I Deux processus verrouillent deux fichiers

Processus 1
...
verrouille (f1) /* 1A */
accès à f1
...
verrouille (f2) /* 1B */
accès à f1 et f2
deverrouille (f2)
deverrouille (f1)

Processus 2
...
verrouille (f2) /* 2A */
accès à f2
...
verrouille (f1) /* 2B */
accès à f1 et f2
deverrouille (f2)
deverrouille (f1)

Déroulement
Exécution (pseudo-)parallèle

I Première possibilité :
1a ; 1b ; 2a ; 2b

I Seconde possibilité :
2a ; 2b ; 1a ; 1b

I Troisième possibilité :
1a ; 2a ; 1b ; 2b

Exécution de 1a ;2a ;1b ;2b

verrouille(f2)

interblocage

verrouille(f2) verrouille(f1)

verrouille(f1)
P1

P2

I P1 et P2 sont bloqués ad vitam eternam :
I P1 attend le deverrouille(f2) de P2
I P2 attend le deverrouille(f1) de P1

I C’est un interblocage (deadlock)
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Situation d’interblocage

Définition
I Plusieurs processus bloqués dans l’attente d’une action de l’un des autres

I Impossible de sortir d’un interblocage sans intervention extérieure

Conditions d’apparitions

I Plusieurs processus en compétition pour les mêmes ressources

I Cycle dans la châıne des attentes

Exemple : carrefour lyonnais un vendredi à 18h

1

2

4

3

Exercice : quelles sont les ressources ?

chaque quart du carrefour

Exercice : comment sortir de l’interblocage ?

impossible (sans bate de baseball)
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Situation réelle d’interblocage
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Problèmes de synchronisation (résumé)

I Condition de compétition (race condition)

I Définition : le résultat change avec l’ordre des instructions
I Difficile à corriger car difficile à reproduire (ordre �aléatoire�)
I Également type de problème de sécurité :

I Un programme crée un fichier temporaire, le remplit puis utilise le contenu
I L’attaquant crée le fichier avant le programme pour contrôler le contenu

I Interblocage (deadlock)

I Définition : un groupe de processus bloqués en attente mutuelle

I Évitement parfois difficile (correction de l’algorithme)
I Détection assez simple, mais pas de guérison sans perte

I Famine (starvation)

I Définition : un processus attend indéfiniment une ressource pourtant libre
I Servir équitablement les processus demandeurs
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Schémas de synchronisation

Situations usuelles se retrouvant lors de coopérations inter-processus
I Exclusion mutuelle : ressource accessible par une seule entitée à la fois

I Compte bancaire ; Carte son

I Problème de cohorte : ressource partagée par au plus N utilisateurs
I Un parking souterrain peut accueillir 500 voitures (pas une de plus)
I Un serveur doom peut accueillir 2000 joueurs

I Rendez-vous : des processus collaborant doivent s’attendre mutuellement
I Roméo et Juliette ne peuvent se prendre la main que s’ils se rencontrent
I Le GIGN doit entrer en même temps par le toit, la porte et la fenêtre
I Processus devant échanger des informations entre les étapes de l’algorithme

I Producteurs/Consommateurs : un processus doit attendre la fin d’un autre
I Une Formule 1 ne repart que quand tous les mécaniciens ont le bras levé
I Réception de données sur le réseau puis traitement

I Lecteurs/Rédacteurs : notion d’accès exclusif entre catégories d’utilisateurs
I Sur une section de voie unique, tous les trains doivent rouler dans le même sens
I Un fichier pouvant être lu par plusieurs, si personne ne le modifie
I Tâches de maintenance (défragmentation) quand pas de tâches interactives

Comment résoudre ces problèmes avec les sémaphores ?
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Modern Computers are Large and Complex

Massive Parallelism
I Cannot miniaturize further (atom limit)

I Cannot increase frequency (energy limit)

I Solution: Multiply compute cores!

I Sequoia, third fastest computer: 1,572,864 cores

ExaScale Systems, used in Computational Science
I Systems doing one Exa�op per second by the end of the decade

I 1 Exa�op = 1018 operations. One million million million operations. . .
At humanly doable speed, that requires 10 times the age of the universe

I Each node: 20 millions lines of code (10× Encyclopedia Britannica)

Other very large computer systems in the wide
I Google computers dissipate 300MW on average (150,000 households, 1

3
reactor)

I Botnets: BredoLab estimated to control 30 millions of zombie computers

I In addition, these systems are heterogeneous and dynamic

So, how do we study these beasts?
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Computational Science of Computer Systems

My Research Field: Methodologies of Experimentation

I Assessing the performance and correctness of large-scale computer systems

I Meta-research on producing scienti�cally sound results

I Main contribution: SimGrid, a large-scale computer systems simulator

First title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Epistemological Stance

I Empirically consider large-scale computer systems as natural objects

I Eminently arti�cial artifacts, but complexity reaches �natural� levels

I Other sciences routinely use computers to understand complex systems
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Assessing Distributed Applications

Correctness Study ; Formal Methods

I Tests: Unable to provide de�nitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not su�cient to fully understand these systems
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I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system's Models (in silico)
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Simulating Distributed Systems

Simulation: fastest path from idea to data
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scienti�c idea, don't �ddle with technical subtleties (yet)

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Simulation: easiest way to study distributed applications
I Everything is actually centralized: Partially mock parts of your protocol

I No heisenbug: (Simulated) time does not change when you capture more data

I Clairevoyance: Observe every bits of your application and platform

I High Reproducibility: No or very few variability

I Capacity planning: Can we save on component? What if network were faster

I Don't waste resources to debug and test (up to 50% on some production infra)
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Simulation Challenges

Idea or 
MPI code

Experimental 
Setup

+ ⇝
Scientific Results

Models

Simulation

Challenges for the Tool Makers
I Validity: Get realistic results (controlled experimental bias). That's hard.

I Scalability: Fast enough and Big enough

I Tooling: runner, post-processing, integrated lab notes

Major Components of any Simulation-based Experiment

I An observation of your application: either a trace or the live application

I Models of your platform: CPU, network, any other relevant resource

I A con�guration describing the experimental settings
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SimGrid: Versatile Simulator of Distributed Apps

Scienti�c Instrument
I Versatile: Grid, P2P, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Community-driven: 30 contributors (5 not a�liated), 5 contributed tools, GPL

Scienti�c Object
I Allows comparison of network models on non-trivial applications

I High-Performance Simulation on realistic workload

I Full model checker of distributed applications; Emulator under way

Large Established Project

I Impact: 120 publications (110 distinct authors, 5 continents), 4 PhD

I Started in 1998 at UCSD; Now collab accross many individuals and institutions

I 7 partners, 20+ researchers (CNRS, Universities, Inria)

I Public funding (≈3M¿ ANR/Inria); Community based (User days, hackfests)
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Simulation Validity

SotA: Models in most simulators are either simplistic, wrong or not assessed
I PeerSim: discrete time, application as automaton;

I GridSim/CloudSim: naive packet level or buggy �ow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Dimemas: aim at performance trends and bottleneck identi�cation

I SimGrid
I 10-years e�ort on validity
I Same methodology than physicist:

we try to (in)validat our models
I Observe, analyze, hypothesis

HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

Sampled

We need to combine
I Usage model: Predict ending time of each task in isolation

I On Network, both one hop models, and multi-hops paths

I Contention model: predicts how tasks interfere with each others
I On Network, needs to take topology (and routing) into account

I Applicative model: Complex operations (eg, MPI global communications)

I For both CPU and Network, and disks if possible
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I GridSim/CloudSim: naive packet level or buggy �ow sharing

I OptorSim, GroudSim: documented as wrong on heterogeneous platforms

I Dimemas: aim at performance trends and bottleneck identi�cation

I SimGrid
I 10-years e�ort on validity
I Same methodology than physicist:

we try to (in)validat our models
I Observe, analyze, hypothesis

HypothesisHypothesis

Experiments CampaignExperiments Campaign

H1' H2 Hn'

Analysis

Observations

Neglected observation

Sampled

We need to combine
I Usage model: Predict ending time of each task in isolation

I On Network, both one hop models, and multi-hops paths

I Contention model: predicts how tasks interfere with each others
I On Network, needs to take topology (and routing) into account

I Applicative model: Complex operations (eg, MPI global communications)

I For both CPU and Network, and disks if possible
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Fine-grain Simulation of CPU

Many Cycle-accurate Models and Simulators exist

I We could simulate entirely each core, each node, each site, etc.

I Most resources are modeled separately: cores, buses, networks, disks

I Popular belief: more details means more accurate simulation

we could combine these tools together!

Microscopic Modeling (only) is not an option
I Immensely slow: x1000 slowdown when host machine ≈ studied system

I So folding a larger system into a smaller host machine is impossible
I This approach is sensible, for other scienti�c work�ows

I More details actually bring more chaos and less insight
I Complex models are hard to instantiate and fragile (Flash project)
I Phase e�ects: clean simulations lead to resonance e�ects [Floyd 91]
I A wealth of information creates a poverty of attention [Simon 71]

I Mixing macro and micro models sounds appealing but di�cult
I As done in SST project and also by the BSC group
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Simplistic CPU Model

How it works
I Computation load measured in Flops; CPU's power measured in Flops/s

I Timing is obtained by simply dividing one by the other

I Basically, this is just like reinjecting timing.

What is this Model Good for?
I Allows to see what you would get with a CPU twice faster

I Almost every projects does this (SimGrid, Dimemas, . . . )

Known Limits
I Hardware extrapolation to other kind of CPUs, w/ cache contention

I Dimemas can adjust per SEB; PSINS extrapolates from hardware counters
I SST mixes Micro (cycle accurate) and Macro models to that extend

I Multicore memory contention (could hack something but haphazard)

I Scalability extrapolation: what would happen with more nodes
I BigSim can model the SEB perf as a polynomial of #processes
I PSINS tries to �t a model from the SEB's parameters
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Elaborate Analytic CPU Model

The Promise
I Get a bunch of hardware-level counters while benchmarking the SEBs

I Automatically build portable performance models out of it

The (many) Challenges

I Relating the hardware counters you see to the actual timing you get

I You need a performance model taking the counters as an input
I PSINS has the convolver for that, but hard to get and understand it
I Our preliminary results: encouraging for some kernels, deceiving for others

I How to obtain the hardware counters?
I Measurements? SimGrid/Dimemas use PAPI on real runs (hard to extrapolate)
I Cache simulation? PSINS goes this way
I Code analysis? Maqao does it

I How generic and portable will the models be?
I Things are very di�erent e.g. on ARM
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More on CPU modeling

Upcoming complexity is somehow depressing

I Multicores, Implicit Mem Accesses, OpenMP, Memory/ PCI contention

I Modern processors overclock themselves when only one core is used

I GPU, SOC systems, dedicated accelerators

Don't seek for a complete model

I KISS is better, and the advantage of more complex CPU models is unclear

I At least in the use-cases that we target (at our scale)

I We are not competing with cycle-accurate simulators

I So simply re�ne your simple models, only when the need is blatant

Essentially, all models are wrong, but some are useful. � G. Box

Much more insight can be injected into the Network Models

I Things are very complex too, but maybe less integrated by vendors

I We can work at the level of standard protocols (TCP, In�niBand)
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Agenda

Introduction

Modern Large Computing Facilities

Computational Science of Computer Systems (CS2)

Simulation Models
CPU models
Modeling Communications
MPI Operations

Emulation with SMPI

Dynamic Veri�cation of Distributed Applications

Conclusion

Components of a good model

I Point to point communications: latency, protocol switch

I Topology: shared memory 6= remote, latency penalty for remote cabinets

I Contention
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Fine Grain Network Simulation

Packet-level simulators run the full protocol stack

I Hopefully perfect, since "everything's taken into account"

I But complex models ; hard to instantiate and unstable

Flores Lucio, Paredes-Farrera, Jammeh, Fleury, Reed. Opnet modeler and ns-2: Comparing the

accuracy of network simulators for packet-level analysis using a network testbed. WSEAS Trans-
actions on Computers 2, no. 3 (2003)

I Inherently slow, and parallelism won't save you here!
BigSim proved that distribution is for size (memory) issues, but sequential is faster

I Sometimes wrongly implemented

I Not really helping to understand the macroscopic behavior

Same bias and drawbacks than cycle-accurate CPU simulation

I Perfectly �tted to study TCP variants or wireless algorithms

I Very bad choice to study MPI algorithms (IMHO)
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Modeling Point to Point Networks

Basic Model: Time = L+ size
B

I Resource work at given rate (B, in Mb/s); Uses have a given latency (L, in s)

I Very similar to the basic CPU model (simply adds latency)

I This somehow works for Multi-Hops Networks

Better Model of TCP Multi-Hops Networks

I Several models proposed in Networking Literature, such as [Krusoe 2000]

B = min

(
Wmax

RTT
,

1

RTT
√
2bp/3+ T0 ×min(1, 3

√
3bp/8)× p(1+ 32p2)

)

I T0: retransmission timeout; RTT: round-trip t; Wmax max window size
I p: loss rate; b: #packages acknowledged per ACK (hard to instanciate)

I Keep It Instanciable, Silly: use β′ = min(β, Wmax

RTT ) (TCP windowing)
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Taking the Network Topology into Account

Store & Forward
S

l1

l3

l2

I Sounds Natural:
cf. time to go from city to city

I But Plainly Wrong:
Data not stored on routers

Wormhole

pi ,j

MTU

S

l1

l3

l2

I Appealing: (& widely used /)
Remember networking class?

I Really inaccurate:
TCP congestion, etc

What's in between these two approaches?

Packet-level Simulators
I ©: Realism commonly accepted; /: Sloooooow

I No usable models of HPC networks in generic tools (NS2/3)
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Exclusive Resource Usage

Buses / BW

Local

Memory

CPU

Links / Latency

CPU

CPU

Local

Memory

CPU

Links / Latency

CPU

CPU

Local

Memory

CPU

Links / Latency

CPU

CPU

• BW / Buses

• Links: IN/OUT

• Buses: Concurrent communications

• Bandwidth (BW): Network Speed

• Number of CPUs

• CPU speed factor (CPUratio)

• Links (IN/OUT): accesses to network

• Latency (L): SW/HW start-up time

I In Dimemas, resources are allocated exclusively with more than one token

I Nicely models buses' backplane: up to N �ows get through, others do wait

I Then a delay-model computes the time of each communication

I Applied at each models (memory, networks), with no overlap between both

I Similar mechanism in BigFastSim (?)
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Analytic Network Models

x1

CPU1

x2, x3

CPU2

link1

ρ1, ρ2

link2

ρ1, ρ3

x1 6 Power_CPU1 (1a)

x2 + x3 6 Power_CPU2 (1b)

ρ1 + ρ2 6 Power_link1 (1c)

ρ1 + ρ3 6 Power_link2 (1d)

Computing the sharing between �ows

I Objective function: maximize min
f∈F

(ρf ) [Massoulié & Roberts 2003]

I Equilibrium: increasing any ρf decreases a ρ′f (with ρf > ρ′f )

I (actually, that's a simpli�cation of SimGrid's real objective function)

E�cient Algorithm

1. Search for the bottleneck link l so that:
Cl

nl
= min

{
Ck

nk
, k ∈ L

}
2. This determines any �ow f on this link: ρf =

Cl

nl

3. Update all nl and Cl to remove these �ows; Loop until all ρf are �xed
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Max-Min Fairness

Homogeneous Linear Network

flow 2flow 1

flow 0
link 1 link 2

C1 = C n1 = 2
C2 = C n2 = 2

ρ0 =
ρ1 =
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let's choose link 1.

I This sets ρ0 and ρ1. Remove �ows 0 and 1; Update links' capacity and uses

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

SimGrid Implementation is e�cient
I Dedicated LMM solver with Lazy updates, Trace integration, and Cache locality
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Max-Min Fairness

Homogeneous Linear Network

������������
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flow 2

C1 = 0 n1 = 0
C2 = C/2 n2 = 1

ρ0 = C/2
ρ1 = C/2
ρ2 =

I All links have the same capacity C

I Each of them is limiting. Let's choose link 1.

I This sets ρ0 and ρ1. Remove �ows 0 and 1; Update links' capacity and uses

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

SimGrid Implementation is e�cient
I Dedicated LMM solver with Lazy updates, Trace integration, and Cache locality
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flow 2

C1 = 0 n1 = 0
C2 = 0 n2 = 0

ρ0 = C/2
ρ1 = C/2
ρ2 = C/2

I All links have the same capacity C

I Each of them is limiting. Let's choose link 1.

I This sets ρ0 and ρ1. Remove �ows 0 and 1; Update links' capacity and uses

I Link 2 sets ρ1 = C/2.

I We are done computing the bandwidths ρi

SimGrid Implementation is e�cient
I Dedicated LMM solver with Lazy updates, Trace integration, and Cache locality
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Flow-level Models Facts
Several sharing methods are possible, many have been evaluated in SimGrid

Pros
I rather �exible (add linear limiters whenever you need one)

I account for network topology

I account for many non-trivial phenomena
e.g., RTT-unfairness of TCP and even reverse-tra�c interference to some extent

Cons
I ignores protocol oscillations, TCP slow start

I ignores all transient phases

I does not model well very unstable situations

I does not model computation/communication overlap

Conclusion
I Common belief: this cannot scale, so often ruled out

I Yet, when correctly implemented and optimized, it's a strong alternative

I Captures contention if TCP is in steady state (when size > 1Mb)
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MPI Point-to-Point Communication on Ethernet

Randomized measurements (OpenMPI/TCP/Eth1GB) since we are not interested
in peak performance but in performance characterization

Small

Medium1
Medium2

Detached

Small

Medium1
Medium2

Detached

MPI_Send MPI_Recv

1e−04

1e−02

1e+01 1e+03 1e+05 1e+01 1e+03 1e+05
Message size (bytes)

D
ur

at
io

n 
(s

ec
on

ds
) group

Small

Medium1

Medium2

Detached

Large

I There is a quite important variability

I There are at least 4 di�erent modes, each is piece-wise linear and discontinuous
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LogGPS in a Nutshell

I LogP model initially designed for complexity analysis and algorithm design
I Many variations account for protocol switch through continuous linear functions

Pr

Ps

T1 T2 T3 T2 T3T5 T1T4

Ps

Pr

ts

tr

Asynchronous mode (k 6 S) Rendez-vous mode (k > S)

T1 = o+kOs T4 = max(L+o, tr−ts)+o

T2 =

{
L+ kg if k < s

L+ sg + (k − s)G otherwise

T3 = o+kOr T5 = 2o + L

Routine Condition Cost
MPI_Send k 6 S T1

k > S T4 + T5 + T1

MPI_Recv k 6 S max(T1 + T2 − (tr − ts), 0) + T3

k > S max(o + L− (tr − ts), 0) + o+
T5 + T1 + T2 + T3

MPI_Isend o
MPI_Irecv o

I May re�ect the operation of specialized HPC networks from the early 1990s. . .
I Ignores many factors: contention, topology, complex protocol stack, . . .
I So? What's the best? Fluid or LogP? None! They are complementary!
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SimGrid Network Model
Measurements

Small
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Hybrid Model

Asynchronous (k 6 Sa)

T3

Pr

Ps

T1

T2

Detached (Sa < k 6 Sd)

Ps

Pr

T2T4

T1

Synchronous (k > Sd)

Ps

Pr

T4 T2

Fluid model: account for contention and network topology
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MPI Point-to-Point Communication on IB

IB have supposedly simpler and more predictable performance

I It should be clean and stable, with less intelligence in the protocol

I Indeed, it's faster and cleaner than TCP, but IB is not that di�erent
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Surprisingly, Modeling In�niBand is complex wrt Bandwidth Sharing!

I Strictly fair share of IB bu�ers (in and out)

I Preliminary feelings: bandwidth is not fairly shared, but handling time is

I Counter-intuitive results, but results got con�rmed (+ we have a candidate model)
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Conclusion on Network Modeling

Analytic Models are possible

I TCP: Algorithmic model for synchronization + Equation-based for sharing

I IB: Still ongoing but encouraging (even with strange sharing)

Models are Getting Complex (but that's ok)

For today's complex simulations [from Computational Sciences], the com-
puter program is the model. Questions such as Does program X correctly

implement model A?, a question that made perfect sense in the 1960s,
have become meaningless. � Konrad Hinsen

The runtime also induce protocol switches

I e.g. Eager mode vs. Rendez-vous mode

I Presented (SimGrid) Results are somehow speci�c to MPI

I MPI collective operations absolutely have to be modeled too
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Analytic Collective Models (1/2)

Dimemas' Simple Models
I Regular and similar Algorithms:

I Some Fan In, a middle operation, and some Fan Out

I To model a given collective algorithm, you specify
I Amount of Fan In/Out and cost of each tree level
I Cost of the middle operation

I Example of Scatter/Gather:⌈
logN

log fanin

⌉
×
(
latency+ size

bw

)
+
⌈

logN
log fanout

⌉
×
(
latency+ size

bw

)
I Cost of All2All: (no FAN in/out but similar)

N(N − 1)×
(
latency+ size

bw

)
I Add a barrier before to nicely �t to the picture

Computation

Blocking (Barrier)

Communication

FAN_IN

FAN_OUT
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Analytic Collective Models (2/2)

Cons of Dimemas' Collective Models
I Models are simplistic compared to algorithms' sophistication, barrier is arti�cial

I Topology not taken into account, Contention through bus' tokens

Approach of [Grove, Coddington 2003]

I Don't model performance, benchmark and replay it

I On given cluster, benchmark every communicator size

I Also benchmark communicator geometries

I This gives the self-interference of collectives

I Could be extended to interference between collectives 0

2

4
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e 
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Message size (bytes)

Perseus: Average times for MPI_Isend

64x2
32x2
16x2

8x2
4x2
2x2

64x1
32x1
16x1

8x1
4x1
2x1
min

Pros of Dimemas' Collective Models
I You can easily extrapolate to other network characteristics and topology

I Easy to instanciate on a given platform
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Collective Communications Through Trace Replay

Improving the realism while enabling extrapolation

I Decompose any collective into a set of point-to-point comms

I Tracing is not trivial, as staying at PMPI level is not enough

I LogGOPSim: collectives are rewritten in a DSL called GOAL

I BigSim: traces are collected in Charm++, underneath

rank 0 {

l1: calc 100 cpu 0

l2: send 10b to 1 tag 0 cpu 0 nic 0

l3: recv 10b from 1 tag 0 cpu 0 nic 0

l2 requires l1

}

rank 1 {...
Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Rank 7

Linear Broadcast/Scatter Pattern.

Rank 0

Rank 1

Rank 2

Rank 3

Rank 4

Rank 5

Rank 6

Rank 7

Binomial Tree Pattern.
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Collectives' Code Scavenging

SimGrid's Approach

I SimGrid implements more than 120 algorithms for the 10 main MPI collectives

This code was . . . integrated (OpenMPI, MPICH, and StarMPI)

I Selection logic from OpenMPI, MPICH can be reproduced

Future Work
I Expand this selection logic and autotuning possibilities to allow better selection

I See how all of this behaves on Multicore systems, with SMP-aware algorithms

I Implement MVAPICH2 Selector

I (In)validation on real platforms, with In�niband, torus networks
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Dynamic Veri�cation of Distributed Applications

Conclusion
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What is SMPI?
I Reimplementation of MPI on top of SimGrid

I Imagine a VM running real MPI applications on
platforms that does not exist

I Horrible over-simpli�cation, but you get the idea

I Computations run for real on your laptop,
Communications are faked

What is it good for?
I Performance Prediction (�what-if?� scenarios)

I Platform dimensioning; Apps' parameter tuning

I Teaching parallel programming and HPC
I Reduced technical burden
I No need for real hardware, or hack your hardware

Studies that you should NOT attempt with SMPI

I Predict the impact of L2 caches' size on your code

I Interactions of TCP Reno vs. TCP Vegas vs. UDP

I Claiming a simulation of 1000 billions nodes
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Features and Limitations

Features
I Complex C/C++/F77/F90 applications can run unmodi�ed out of the box

I MPI ranks folded as threads in an unique UNIX process
I Global variables automatically privatized

I Traces from various projects can be used o�ine

I Basic but sound coarse-grain CPU models (with multicores)

I Extensively tested on Linux, Mac and Windows

Limitations
I Partial MPI API coverage: ≈ 100 primitives supported (more to come on need)

I No MPI-IO, no one-sided, MPI3 collectives, spawning ranks, . . .
I Still passes many of MPICH3 standard complience tests

I Non-multithreaded applications, neither pthread nor OpenMP

Success Story

I Accurate Ethernet (soon IB) models, accurate collectives, mid-range apps

I Misprediction of BigDFT on Tibidabo turned out to be a hardware issue
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Observing the Application

Timed Trace
[0.001000] 0 compute 1e6 0.01000
[0.010028] 0 send 1 1e6 0.009028
[0.040113] 0 recv 3 1e6 0.030085

[0.010028] 1 recv 0 1e6 0.010028
...

time slice

Visualization

Paje

TRIVA

<?xml version=1.0?>
<!DOCTYPE platform SYSTEM "simgrid.dtd">
<platform version="3">
<cluster id="griffon" prefix="griffon-"
               suffix=".grid5000.fr" radical="1-144"
               power="286.087kf" bw="125MBps" lat="24us"
               bb_bw="1.25GBps" bb_lat="0" sharing_policy="FULLDUPLEX" />

Platform Description
DownUp DownUp DownUp DownUp

10G
1G

1−39 40−74 105−14475−104

13G

10G

Limiter

... ...... ...
1.5G
1G

Limiter

DownUp

Simulated Execution Time
43.232 seconds

Model the machine 
of your dreams

mpirun 
tau, PAPI 

Trace once on a

simple cluster

SMPI
Simulated or Emulated 

Computations

Simulated 
Communications

Time Independent
Trace

0 compute 1e6
0 send 1 1e6
0 recv 3 1e6

1 recv 0 1e6
1 compute 1e6
1 send 2 1e6

2 recv 1 1e6
2 compute 1e6
2 send 3 1e6

3 recv 2 1e6
3 compute 1e6
3 send 0 1e6

Replay the trace
as many times as

you want

MPI Application

On-line: simulate/emulate unmodified 
complex applications

- Possible memory folding and shadow execution
- Handles non-deterministic applications

Off-line: trace replay

O�ine Simulation
I Obtain a trace of your application

I Replay quickly and easily that trace

I Hard to extrapolate, adaptative apps?

Online Simulation
I Directly run your application

I Technically very challenging

I No limit (but the resources)

Most existing tools go for o�ine simulation
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Challenges in Observing Applications

O�ine: Many contributions in the literature

I Reduce intrusiveness while capturing the traces to avoid heisenbugs

I Compact the traces (that can grow very quickly)

I Extrapolate the trace to new conditions

Online: HPC codes are resource hungry

I It does not �t easily on single laptop or node

I Sometimes, host machine must be larger than studied machine

I Some tricks allow to cheat here
I Memory folding to allocate once, and share between processes
I Kernel sampling to reduce execution time
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Challenges in Observing Applications Online (2/2)

Folding the application is di�cult
I Global variables of distributed processes hard to fold into thread locals

I Manual modi�cation: works but burdensome
I Source-to-Source: turn globals into arrays of locals
I Compiler's pass: move globals into TLS area

changes toolchain (no icc) ; alters SEBs (as any previous solution)
I GOT injection: rewrite the ELF symbol table when switching contextes

static variables are not part of the GOT unfortunately
I mmap of .data and .bss: preserves SEBs but forces sequential exec
I Run real processes, MPI interactions turned into external mmap. Perf?

Architecture (in AMPI)

Real Processors

MPI Ranks

Implemented 
as user-level 
migratable 
threads 

(VPs: virtual 
processors)

Approaches implemented

I AMPI: Source-to-source with Photran
GOT injection; Compiler's pass for TLS

I SMPI: source-to-source (coccinelle, f2c)

Recently implemented mmaping

I Full processes not implemented yet (?)
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Assessing the Correctness of HPC codes?

Writing Distributed Apps is notoriously di�cult, but:

The Good Old Days

I MPI codes circumvented the di�culty with rigid communication patterns

I Correctness established through testing

I Only performance matters anyway:
I Most prefer a fast code that rarely fail-stop to a slow code that always work
I (at least, that's my feeling for most of the numerical applications)

These Days are Now Over

I But rigid patterns do not scale! We now have to release the grip

I But this is dangerous! We now have to explicitly seek for correctness

Slowly, old ignored problems resurface. . .
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Model Checking and Dynamic Veri�cation

These are Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults

I If you �nd a fault, then you have something to work on

I If don't �nd any after an exhaustive search, correctness experimentally proved

I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
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Model Checking: the Big Idea

I My preferred outcome: a counter-example
If not, I fear my property to be wrongly expressed

I We tend to bug �nding, not certi�cation
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Model Checking and Dynamic Veri�cation

These are Automated Formal Methods
I Try to assess the correctness of a system by actively searching for faults

I If you �nd a fault, then you have something to work on

I If don't �nd any after an exhaustive search, correctness experimentally proved

I Dynamic Veri�cation: Model Checking applied to real applications

Exhaustive Exploration
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4 1
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Model Checking: the Big Idea

I My preferred outcome: a counter-example
If not, I fear my property to be wrongly expressed

I We tend to bug �nding, not certi�cation
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Formal Properties

Safety Properties

I �A given bad behavior never occurs�

I Can be expressed as boolean (assertion): no deadlock, x 6= 0, . . .

I Work on all states separately

I Counter example: a faulty state

Liveness Properties

I �An expected behavior will happen in all cases�

I Example: Any process that asks a resource will obtain it eventually

I Must be expressed in a temporal logic such as CTL (safety ones could too)

I Work on execution path

I Counter example: an in�nite path (ie, a cycle) that violates the property

Liveness properties are much more challenging to verify in practice
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SimGrid and SMPI

SIMIX

SURF

MSG SMPI SIMDAG

User Code

Platform

Description372
435work

remaining

variable

530
530

50
664

245
245

Concurrent
processes

Synchro.
abstractions

...

...

...

App. spec. as concurrent code

App. spec. as
task graph

...

x1
x2

x3

x3

+

xn

...

+

+ xn                                       
Variables Resource

Constraints

6 CLm

6 CL2

6 CP

6 CL1x1




... ...

Activities

...

{



CL2

CLm CL1

Cp

I SMPI can run complex C/C++/Fortran applications on top of SimGrid

I Let's leverage this unconventional virtualization layer for veri�cation!

I + collective code scavenging ; verify even runtime's collectives
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SimGridMC: Formal Methods in SimGrid

Verify any application that would run in SimGrid

I Replace the simulation kernel underneath with a model checker

I Tests all causally possible orders of events to dynamically verify the app

I Reuse the mediation mechanism that base the simulator

I System-level checkpoints the app to then rewind and explore another path

I Works with SMPI, and MSG (our simple API for the study of CSP algorithms)
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Example: Out of order receive

I Two processes send a message to a third one

I The receiver expects the message to be in order

I This may happen. . . or not

rank1

rank2

rank0

send(1)

send(2)

x ← 1 y ← 2

x < y

if (MPI_rank() == 0) {

MPI_Recv(&x , MPI_ANY_SOURCE);

MPI_Recv(&y , MPI_ANY_SOURCE);

MC_assert(x < y);

} else {

MPI_Send (&rank , 0);

}

rank1

rank2

rank0

send(1)

send(2)

x ← 2 y ← 1

x 6< y

**************************

*** PROPERTY NOT VALID ***

**************************

Counter-example execution trace:

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(3)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(3)sender -> (1)recver])

[(1)recver] iRecv (dst=recver, buff=(verbose only), size=(verbose only))

[(2)sender] iSend (src=sender, buff=(verbose only), size=(verbose only))

[(1)recver] Wait (comm=(verbose only) [(2)sender -> (1)recver])
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Mitigating the State Space Explosion
Many execution paths are redundant ; cut exploration when possible

Dynamic Partial Ordering Reduction (DPOR)

I Works on histories: test only one transitions' interleaving if independent

I Independence theorems: Local events are independent; iSend+iRecv also; . . .

I Must be conservative (exploration soundness at risk!)

I It works well (for safety properties)

System-Level State Equality

I Works on states: detect when a given space was previously explored

I Complementary to DPOR (but not compatible yet)

I Introspect the C/C++/Fortran app just like gdb (+some black magic)
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OS-level Challenges of State Equality Detection

I Memory over-provisioning
allocated size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes: Data structure alignment

struct foo {
char c;
int i;
short s;
void *p;
}

1 3 4 2 6 8

Padding bytes

size (bytes)

c i s pstruct member

I Irrelevant di�erences: system-level PID, fd, . . .

I Syntactic di�erences / semantic equalities:

0x10

0x10

0x20

0x20

0x30

0x30

0x40

0x40

0x50

0x50

1234

1234

aSbY

aSbY

�e

gcc

gcc

�e

= = = =Solutions

Issue Heap solution Stack solution

Overprovisioning memset 0 (customized mmalloc) Stack pointer detection

Padding bytes memset 0 (customized mmalloc) DWARF + libunwind

Irrelevant di�erences Ignore explicit areas DWARF + libunwind + ignore

Syntactic di�erences Heuristic for semantic comparison N/A (sequential access)
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Some Results

Wild safety bug in our Chord implementation (≈ 500 lines of C)

I Simulation: bug on large instances only; MC �nds small trace (1s with DPOR)

Mocked liveness bug

I Buggy centralized mutual exclusion: last client never obtains the CS

I About 100 lines � state snapshot size: 5Mib

I Veri�ed with up to 7 processes (12,000 states, 9 minutes, 45Gb).

Verifying MPICH3 complience tests

I Looking for assertion failures, deadlocks and non-progressive cycles

I 6 tests; ≈ 1300 LOCs (per test) � State snapshot size: ≈ 4MB

I With no reduction: no test concluded in a few hours

I With state equality: Exhaustive exploration up to 10 procs, but no error found

I With memory compaction: use only dozen of Gb in RAM, not hundreds

I We veri�ed several MPI2 collectives too © (but all good so far /)
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Veri�cation of Protocol-wide Properties

Motivation
I Clever checkpoint algorithms exist, provided that the application is nice enough

I On communication determinism in parallel HPC applications,
F. Cappello, A. Guermouche and M. Snir (2010)

I Manual inspection of 27 HPC applications, seeking for such properties

Protocol-wide properties

I deterministic: On each node, send and receive events are always in same order

I send deterministic: ∀ node, send are always the same, no matter the recv order

I Not liveness, not even LTL: quanti�es for all execution paths within property

Status report: we can verify such properties in SimGrid

I Explore one path to learn the communication order, deduce the property

I Enforce that this order holds on all other execution path

I We reproduced the conclusions of previous paper on several benchmarks
I All good /
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More on Formal Veri�cation

We've built a really cool tool

I We can verify many unmodi�ed MPI applications (C/C++/Fortran)

I State space reduction: DPOR or State equality (not together yet)

I Properties: safety, liveness or protocol-wide

Many remaining Research Leads

I Other reductions, HPC-speci�c properties, statistical model-checking, . . .

I Interactive tool to get gdb-like info on each state in the execution graph

We need more use cases
I We are done with all the ones provided by the practitioners we know

I We could make it even better with really relevant use cases

I We don't know what properties are relevant
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Take Away Messages

Modern Computer Systems

I Tremendous societal impact: science, industry, R&D � 1% of energy world wide

I Energy is the new challenge (in addition to time performance)

I Large, Complex, Hierarchical, Heterogeneous, Dynamic ; challenging to study

Experimental Methodologies

I Hard to have both Correctness and Performance in a given framework

I Simulation promising (and widely used), but models are hard

I Fine-grained models not better than coarse, hybrid, ad-hoc models.

I Simulation nicely combines with Dynamic Veri�cation

Some SimGrids' Success Stories
I Simulate many MPI applications out of the box (+faster than sota, +in parallel)

I Misprediction of BigDFT on Tibidabo turned out to be a hardware issue (!)

I Automated veri�cation of assertions, liveness and protocol-wide properties

I SimGrid: many di�erent aspects (models, systems, HPC, formal); Community
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Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; AGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)

apt-get install simgrid now! (or get the jar�le)
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