Candidature à un poste de Directeur de Recherche au CNRS

Martin Quinson

Université de Lorraine

March 6, 2013

Computational Science of Computer Systems

Curriculum Vitæ

Martin Quinson, 37 years old, Married, 3 kids.

Professional Experience

- ▶ Since 2011: On leave at Inria, Nancy
- Since 2005: Assistant Professor of the Université de Lorraine (LORIA)
- > 2004: Temporary teaching assistant at Université de Grenoble (LIG)
- > 2004: Post-doc at University of California, Santa Barbara (USA)

Education

- Ph.D. ENS-Lyon, december 2003
- ▶ M.S. ENS-Lyon, 2000
- B.S. Université de Saint-Étienne, 1998

I defend my HDR at Université de Lorraine in two days (on 8. March 2013)

Research Topic: Methodologies of Experimentation

Assessing the performance and correctness of Large-Scale Distributed Systems

Scientific Objects

Large Scale Distributed Systems

► Scientific Computing ► High Performance Computing ► Grids

Peer-to-peer Systems > Volunteer Computing > Clouds

Scientific Questions

Scientific Objects

Large Scale Distributed Systems

- ► Scientific Computing ► High Performance Computing ► Grids
- Peer-to-peer Systems > Volunteer Computing > Clouds

Scientific Questions

Performance

- Questions ► User/Provider ► Time/Energy
 - Throughput/Makespan/#Msg
 - Worst case/Avg/Amortized

Correction

- Safety: bad things don't happen
- Liveness: good things do happen

Scientific Objects

Large Scale Distributed Systems

- ► Scientific Computing ► High Performance Computing ► Grids
- Peer-to-peer Systems > Volunteer Computing > Clouds

Scientific Questions

Performance

- Questions User/Provider Time/Energy
 - Throughput/Makespan/#Msg
 - Worst case/Avg/Amortized

Correction

- Safety: bad things don't happen
- Liveness: good things do happen

Methodo.

- Theoretical proofs
- Direct execution
- Experimental facilities
- Simulation
- Emulation

- Tests (manual/automated)
- Theorem proving
- Model checking
- Dynamic verification

Scientific Objects

Large Scale Distributed Systems

- ► Scientific Computing ► High Performance Computing ► Grids
- ▶ Peer-to-peer Systems ▶ Volunteer Computing ▶ Clouds

Scientific

Performance

- Questions \blacktriangleright User/Provider \blacktriangleright Time/Energy
 - Throughput/Makespan/#Msg
 - Worst case/Avg/Amortized

Methodo. ► Theoretical proofs

- Direct execution
- Experimental facilities
- Simulation
- Emulation

Correction

- Safety: bad things don't happen
- Liveness: good things do happen
- Tests (manual/automated)
- ▶ Theorem proving
- Model checking
- Dynamic verification
- My Research Interests: Experimental Methodologies
 - Meta-research about how to produce scientifically sound research
 - Strive at developing ready-to-use tools addressing methodological challenges

Quinson Computational Science of Computer Systems

cv Context SimGrid Contribs Zoom Record Project

3/8

SimGrid: Simulator of Large-Scale Applications

Scientific Instrument to assess LS Apps through simulation

Main Features

- Versatile: Grid, P2P, HPC, Volunteer Computing, Clouds,
- Valid: Accuracy limits studied and pushed further for years
- ► Scalable: 3M chord nodes; 1000× faster than other (despite precise models)
- ▶ Usable: Tooling (generators, runner, visu); Open-Source, Portable,

Large Established Project

- Impact (2008-2012): 63 publications (98 distinct authors, 4 continents), 4 PhD
- Community-driven: 26 contributors (5 not affiliated), 5 contributed tools
- Co-leader with A. Legrand (CNRS Grenoble) and F. Suter (CNRS IN2P3)

Major Contributions

SimGrid Scalability

- ► Fast Enough: Innovative parallelization, efficient algorithms and implem.
- Big Enough: Scalable and versatile platform representation

Correctness Studies in SimGrid

- Seamless integration of a complete Model Checker (enforces code invariants)
- > Exhaustive reachability analysis, with innovative versatile DPOR technique

Assessing Real Applications

- ► GRAS: Middleware to run simulation prototypes on real platforms
- SMPI: Study real MPI applications within SimGrid

Scientific Community Management

- ▶ Project Coordinator: 2 ANR projects, 1 regional CPER project (total: 4M€)
- Methodological convergence: Board member of Grid'5000 experimental grid
- Scientific Animation (SimGrid, Grid'5000): 4 summer schools, 3 R&D engineers

Also leader of several projects in scientific outreach, pedagogical tools and didactic Quinson Computational Science of Computer Systems CV Context SimGrid Contribe Zoom Record Project 45/8

Zoom: Parallel P2P Simulation

State of the Art: dPeerSim (best known PDES of P2P)

- Spreads the load over Logical Processes (LP)
- \blacktriangleright 2LP \rightsquigarrow 4h / 16LP \rightsquigarrow 1h. But 47s in sequential PeerSim!!

Our approach: Run user processes in parallel; keep kernel sequential

Processes separation through a OS-oriented approach: simcalls

Evaluation: Chord simulations (normalized workload)

Simulator	size	time (seq/par)
PeerSim	100k	4h36
OverSim	300k	10h
SimGrid	300k	32mn
	2 M	6h23 / 5h50

6/8

Early Track Record

Publications and other Professional Activities

- ► 5 journals: PPL'10 on methodologies (cited 22), ParCo'01 (cited 26).
- ▶ 2 book chapters: HDR chapter in book on philosophy of sciences
- 28 conferences: CCGrid'12 (twice, rate: 27%), Forte'11, IPDPS'11 (rate: 19%, cited 6), UkSim'08 (cited 213), EuroPar'07 (rate: 26%, cited 14), PDCS'06 (best paper, cited 19), IPDPS'02 (cited 61), EuroPar'02 (cited 118).
- Dissemination: 4 Keynotes, 1 tutorial, 4 invited presentations
- Supervision of Research: 4 post-docs, 2 Ph.D., 11 masters, 4 R&D engineers
- ► Teaching: OS and programming at Telecom Nancy; Coordinator of first year

Service to the Community

- ► Leader of research group on Grids performance (10 members) since 2013
- ► 7 ACM/IEEE conferences: CCGrid, IPDPS, SIMUTools, PADS
- ▶ 3 international workshops: WATERS'13 (Analysis Tools and Methodologies)
- Committee member: 7 Ph.D. (France and Belgium), 4 recruitments.
- ► Leader of a working group on the didactic of computer science (6 members)

Quinson Computational Science of Computer Systems

CV Context SimGrid Contribs Zoom Record Project

roject 🛛 🖣 7/8 🕨

Research Program

Computational Science of Computer Systems convergence of Simulation, Dynamic Verification and Emulation

1/ Modeling of Large-Scale Systems

- Scalability and Accuracy still not enough for Exascale studies
- Semantic modeling of MPI 3.0 collectives (implementation-depend)

2/ Simulation of Real Applications

- OS Virtualization layer for the simulation of legacy code
- Distributed simulation, and increase parallelism in our simulation
- 3/ Formal Methods for Large-Scale and HPC Systems
 - Liveness properties on legacy code (OS-level introspection tooling)
 - Domain-specific properties and reduction techniques
- 4/ Scientific Instrument and Open Science
 - Produce a de facto standard tool, with associated tools
 - Foster the emergence of a vivid research community, with best practices

(ERC project currently under evaluation) CV Context SimGrid Contribs Zoom Record | Project

4 8/8

Quinson Computational Science of Computer Systems