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Initial title (rejected)

Simulating Applications for Research in
Simulation Applications for Research

Simulation Applications for Research
I Simulation is the third pillar of science (with theory and experiment)

I Computational Science = many simulations + big data

I Grids and HPC: parameter sweeps and simulations by scientists

Simulating Application

I Assessing CS ideas through real experiments: long, difficult, bothersome

I Simulation makes it easy (but sometimes unsound)

I SimGrid is Versatile, Sound and Open

Computational Science of Distributed Systems

I Large-Scale Infrastructures complexity ; Scientific assessment

I All available methodologies must be combined
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Research Context

Scientific
Objects

Large Scale Distributed Systems
• Scientific Computing • High Performance Computing • Grids
• Peer-to-peer Systems • Volunteer Computing • Cloud Computing

Scientific
Questions

Performance
• Time/Energy • User/Provider
• Throughput/Makespan/#Msg
• Worst case/Avg/Amortized

Correction

• Safety: bad things don’t happen

• Liveness: good things do happen
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Assessing Distributed Systems

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Research Interests: Experimental Methodologies
I Meta-research about how to produce scientifically sound research

I Strive at developing ready-to-use tools addressing methodological challenges
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Simulation? Theory is enough for Artificial Artifacts!

Computers contain only what we’ve put in!

Modern computer systems present an unpreceded complexity

I Heterogeneous components, Dynamic and Complex platforms

I Numerous: milions of cores expected within the decade (ExaScale)

I Large: kernel+jvm+tomcat ; 50M lines (25 times Encyclopedia Britanica)

Toward a Computational Science of Distributed Computer Systems

I Empirically consider Distributed Systems as “Natural” Objects

I Other sciences routinely use computers to understand complex systems

Claim: simulation is both sound and convenient
I Less simplistic than proposed theoretical models

I Easier and faster than experimental platforms

I It should be part of your methodology
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Simulating Distributed Systems

Big Idea: Simulation is the fastest path from ideas to scientific results
Idea to test

1
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End

+
Experimental setup
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Simulation Model

⇒
Scientific results
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number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Comfort to the user
I Get preliminary results from partial implementations

I Experimental campaign with thousands of runs within the week

I Test your scientific idea, don’t fiddle with technical subtleties (yet)

Challenges for the tools

I Validity: Get realistic results (controlled experimental bias)

I Scalability: Simulate fast enough problems big enough

I Associated tools: campaign mgmt, result analysis, settings generation, . . .

I Applicability: If it doesn’t simulate what is important to the user, it’s void
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Computational Science of Distributed Systems?

Requirements for a Scientific Approach

I Reproducible results: read a paper, reproduce the results and improve

I Standard tools that Grad students can learn quickly

Current practice in the field is quite different

I Experimental settings not detailed enough in literature

I Many short-lived simulators; few sound and established tools

Domain CPU Disk Network Application Scale
OptorSim (Data)Grid Analytic Amount. (buggy) Analytic Programmatic 1,000
GridSim Grid

Analytic Analytic
(buggy) wormhole

Programmatic 1,000
CloudSim Cloud (buggy) Analytic

OverSim P2P None None Euclidian or Pkt-lvl Programmatic 100,000
PeerSim P2P None None Constant time State machine 1,000,000

SimGrid
Grid, VC, P2P,

HPC, cloud, . . .
Analytic Amount

Flow, Cste-time or
Packet-level (NS3)

Program, Trace

or Emulation
1,000,000
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SimGrid Framework

Scientific Instrument
I Versatile: Grid, P2P, HPC, Volunteer Computing and others

I Sound: Validated, Scalable, Usable; Modular; Portable

I Open: Grounded +100 papers; 100 members on simgrid-user@; LGPL

Scientific Object (and lab)
I Workbench for Network Models; Model-Checker; soon Emulator

Scientific Project since 12 years
I Collaboration Loria / Inria Rhône-Alpes / CC-IN2P3 / U. Hawaii

I Fundings INRIA; ANR: USS SimGrid (08-11), SONGS (12-16)

Coming next: SimGrid as a Reliable Scientific Instrument

I High-Performance Simulation for Computer Science

I Formal analysis and Dynamic verification of real applications

I Unified experimental workbench of real applications
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SimGrid Scalability (Grids and Volunter Computing)

Simulation Versatility should not hinder Scalability

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

How Big?
P2P 2,500 peers with Vivaldi coordinates 294KB
VC 5120 volunteers 435KB + 90MB

Grid Grid5000: 10 sites, 40 clusters, 1500 nodes 22KB
HPC 1 cluster of 262144 nodes 5KB
HPC Hierarchy of 4096 clusters of 64 nodes 27MB
Cloud 3 small data centers + Vivaldi 10KB

How Fast?

Round robin of 500, 000 jobs to 2, 000 workers
GridSim SimGrid

Network model delay-based model flow model
Topology none Grid5000
Time 1h 14s
Memory 4.4GB 165MB
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SimGrid Scalability (Peer-to-Peer)

I Scenario: Initialize Chord, and simulate 1000 seconds of protocol

I Arbitrary Time Limit: 12 hours (kill simulation afterward)
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Number of nodes

Oversim (OMNeT++ underlay)
Oversim (simple underlay)

PeerSim
SimGrid (flow-based)

SimGrid (delay-based)

Largest simulated scenario

Simulator size time
OverSim (OMNeT++) 10k 1h40

OverSim (simple) 300k 10h
PeerSim 100k 4h36

10k 130s
SG (flow-based) 300k 32mn

2M∗ 6h23
SG (delay-based) 2M 5h30

∗ 36GB = 18kB/ process (16kB for the stack)

I Orders of magnitude more scalable than state-of-the-art P2P simulators

I Precise model incurs a ≈ 20% slowdown, but accuracy is not comparable

I Next: Can parallel simulation be faster?
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Parallel Simulation of Discrete Event Systems
I 30 years of literature on efficient Simulation Engines, FES and distribution

I Yet, all DES simulator for P2P were sequential (but dPeerSim)

The dPeerSim attempt

I Parallel implementation of PeerSim/DES (not by PeerSim main authors)

I Classical parallelization: spreads the load over several Logical Processes (LP)

LP #1 LP #2

LP #3 LP #4

Evaluation
I Uses Chord as a standard workload: e.g. 320,000 nodes ; 320,000 requests

I Very good speedup results: 4h10 on 2 LPs, only 1h06 using 16 LPs

I But 47s in the original sequential PeerSim (and 5s in precise SimGrid)

I Yet, best previously known parallelization of DES simulator of P2P systems
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New Parallelization Schema for DES

Classical Understanding of Parallel DES

Simulation
Workload

Simulation
Engine

Execution
Environment

I Granularity, Communication Pattern

I Events population, probability & delay

I #simulation objects, #processors

I Parallel protocol, if any:
– Conservative (lookahead, . . . )
– Optimistic (state save & restore, . . . )

I Event list mgnt, Timing model. . .

I OS, Programming Language (C, Java. . . ),
Networking Interface (MPI, . . . )

I Hardware aspects (CPU, mem., net)

Our way of life

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Our models are hard to parallelize

I Full linear programs instead of static queues; Evt completion date changes

I They are overly optimized (Cache oblivious, lazy updates)

That’s not the problem anyway

I Performance killer is simulated application itself, not event handling

Martin Quinson Computational Science of Distributed Systems Context Simulation SimGrid HPS Formal Emulation Conclusion 12/28



New Parallelization Schema for DES

Classical Understanding of Parallel DES

Simulation
Workload

Simulation
Engine

Execution
Environment

I Granularity, Communication Pattern

I Events population, probability & delay

I #simulation objects, #processors

I Parallel protocol, if any:
– Conservative (lookahead, . . . )
– Optimistic (state save & restore, . . . )

I Event list mgnt, Timing model. . .

I OS, Programming Language (C, Java. . . ),
Networking Interface (MPI, . . . )

I Hardware aspects (CPU, mem., net)

Our way of life

S
im

u
la

ti
o

n
W

o
rk

lo
a

d User Code

Virtualization Layer

Networking Models

Simulation Engine

Execution
Environment

Our models are hard to parallelize

I Full linear programs instead of static queues; Evt completion date changes

I They are overly optimized (Cache oblivious, lazy updates)

That’s not the problem anyway

I Performance killer is simulated application itself, not event handling

Martin Quinson Computational Science of Distributed Systems Context Simulation SimGrid HPS Formal Emulation Conclusion 12/28



Toward Parallel P2P Simulation in SimGrid

Overall Goal
I Parallelization for speed. Multithreaded on shared memory

I P2P = worst case (fine grain ; cannot hide issues with app-level parallelism)

I Actually, P2P may not need this but if we succeed here, it works everywhere

OS-inspired Approach

I Keep models sequential, parallelize the workload: execute processes in parallel

I Processes separation through a OS-oriented approach: simcalls

Functional View

Process Process Process

SimCall Interface

Maestro
Simulation Modelske

rn
e
l

Temporal View

Models+Engines

Virtualization + Synchro
User (isolated)

simcall
request answer

actual interaction

M

U2

U1

U3
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Efficient Parallel Simulation

Leveraging Multicores

I More processes than cores ; Worker Threads (execute co-routines ;)

Worker Worker Worker

Maestro
Simulation Modelske

rn
e
l

Processes

Functional View

T1
tn

T2

tn+1M

Temporal View

... ...T2

Tn

T1

fetch_add()
futex_wait()
futex_wake()

Ideal Algorithm

Reducing Synchronization Costs

I syscalls toward synchronization are the performance killer to optimize

I Assembly reimplementation of ucontext: no syscall on context switch

I Synchronize only at scheduling round boundaries using futexes

I Dynamic load distribution: hardware fetch-and-add next process’ index
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Assessing Distributed Systems

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers

I Model-Checking: Exhaustive and automated exploration of state space

Performance Study ; Experimentation
I Maths: Often not sufficient to fully understand these systems

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system’s Models (in silico)

Research Interests: Experimental Methodologies
I Meta-research about how to produce scientifically sound research

I Strive at developing ready-to-use tools addressing methodological challenges
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Formal Algorithm Verification

Model-Checking

I Automatically checks whether a given model of a system satisfies a property

I Gives a counter-example in case of violation of the property

Property (safety or liveness)System model

Model checker

Property satisfied Property not satisfied

Counter-example

Fail (out of memory, out of time, ...)

+

Safety property
I “Bad things do not append during the execution”

I Assertion on reachabled states

Liveness property
I “Good things will eventually happen in all cases”

I Verification on an execution path

I Temporal logic formula (LTL, CTL, ...)

s

s1 s2

r

α β

αβ
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The Problem with Model-Checking

I use programs, not models

I Model-checking usually done on logical models, e.g. expressed with TLA+

I Some technics require the full graph, that I never have

Liveness Properties

I Nice properties are liveness ones, not safeties, but that’s much harder

I Counter example must be of infinite length, so encoded as Buchi automaton

×

q0

q1

¬cs && r

1

¬cs

I r: request

I cs: critical section

I LTL property: 2(r ⇒ 3cs)
“Any process that asks the critical
section must obtain it”

State-space Explosion

I Nice problems are not feasible in practice in less than 22100

years

I Several reduction technics exists, but often not for liveness properties
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Dynamic Verification in SimGrid

Current state
I Can verify safeties on unmodified programs (model explored implicitely)

I DPOR-based reduction technique integrated

I Found wild bugs in medium-sized programs (Chord protocol)

Ongoing work: toward liveness properties

I Problem: detect when the system reenters an (accepting) state

Kernel space

Stack

Memory Mapping Segment

Dynamic libraries

Heap

BSS segment
Uninitialized static variables

Data segment
Initialized static variables

Text segment
Executable

Text

Internal data

Data

BSS

Text

Internal data

Data

BSS

libc.so

libsimgrid.so

Anonymous mapping

Anonymous mapping

User mode space

Dynamic system state

Challenges

I Memory overprovisionning

I Padding bytes

I Irrelevant OS differences

I Syntaxic differences
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Challenges of System-level State Equality

I Overprovisionning

fragment size 256 256 512 1024 256 256 1024 512

size used 240 200 400 924 256 648

I Padding bytes

I Irrelevant differences about simulation

I Syntactic differences

0x100

0x100

0x200

0x200

0x300

0x300

0x400

0x400

0x500

0x500

123456

123456

aSd25

aSdYY

ffe

gcc

gcc

ffe

= 6= = =
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Toward Liveness Properties in SimGrid

System Solutions to this Formal Problem

Problem Heap solution Stack solution

Overprovisionning Memset 0 +
requested size

Stack pointer

Padding bytes Memset 0 DWARF + Libunwind
Irrelevant OS differences MC ignore DWARF + libunwind +

MC ignore
Syntactic differences Canonicalization N/A

Preliminary results

I Toy artificial bugs found; Toy property on non-tivial code (NeverJoin in Chord)

I State equality gives a new reduction that works on liveness, too

I Difficulty: we are also model-checking SimGrid; hidden bugs strike back

Future
I MPI3 asynchrone collective operations are a call for semantic bugs

I Assessing properties on communication schema toward easier checkpointing
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Assessing Distributed Systems

Correction Study ; Formal Methods

I Tests: Unable to provide definitive answers
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No Experimental Methodology is Sufficient

Methodologies must be Combined

Whiteboard

Simulator

Experimental

Facility

Production

Platform

Idea Algorithm Prototype Application

One Workbench to Rule Them All
I Share XP description, DoE and visualization tools

I Dream: seamlessly switch to the most adapted tool

I Ambitious goal, but science is a team game, isn’t it?

Coming next: bridging the gap between simulation and real world

Martin Quinson Computational Science of Distributed Systems Context Simulation SimGrid HPS Formal Emulation Conclusion 22/28



No Experimental Methodology is Sufficient

Methodologies must be Combined

Whiteboard

Simulator

Experimental

Facility

Production

Platform

Idea Algorithm Prototype Application
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Emulation as an Experimental Methodology

Execute real application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let’s look at what engineers do in other fields

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country . . . . . . you can simulate it.

But then, you have

I To assess models

I Technical burden

I No real car

Why don’t you. . . just control the climate? or tweak the car’s reality?
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Simulated MPI: Simulating real applications

Online simulation of unmodified MPI application within SimGrid

I Algorithm prototyping; Platform dimensionning; What-if analysis . . .

PB 1: Enable this mode of MPI execution
I (partially) Reimplement MPI on top of SimGrid

I Fold MPI processes as threads

I Allow to manually factorize data memory

PB 2: Useless if not realistic enough

I Improve model ; piece-wise linear model
Accurate also for small messages

I Preserve good modeling of network contention
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SMPI Future Work

Improve the enabling of MPI simulation

I Passes (almost) all MPICH tests

I Privatization of variable still difficult ; separate MPI processes

I Simulate 106 MPI Linpack processes within SimGrid?

I Distribute simulation to achieve this size-up

Push the validity limit further

I Validity is acceptable on toy examples

I Improve the modeling of one-to-one communications

I Model global communications (OpenMPI vs. MPICH2)

I Model CPU and memory performance (with MESCAL team)

Vision

I Be the best alternative to simulate ExaScale Systems

I ANR SONGS project coordinates these efforts (tool versatility considered helpful)
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How to Emulate Any Application?

Limits of existing approaches

I SMPI is obviously limited to MPI applications (J2EE?)

I Emulation through degradation only reduces the host platform

Possible Approaches

Linux kernel

Interface to syscalls

C library (libc)

Shared Libraries

Application

int $0x80

printf()

gprintf()

ptrace interception

SMPI interception

LD PRELOAD interception

Valgrind

interception

• SMPI: Source-to-source rewrite; • Valgrind: Binary rewrite (slow!)

• LD PRELOAD: Dynamic loader tricks; • ptrace: syscall trapping

Current State of simterpose

I Working POC on top of SimGrid, but student code quality for now
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ptrace interception

SMPI interception

LD PRELOAD interception

Valgrind

interception

• SMPI: Source-to-source rewrite; • Valgrind: Binary rewrite (slow!)

• LD PRELOAD: Dynamic loader tricks; • ptrace: syscall trapping

Current State of simterpose

I Working POC on top of SimGrid, but student code quality for now
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Take Away Messages

SimGrid will prove helpful to your research

I Versatile: Used in several communities (scheduling, GridRPC, HPC, P2P, Clouds)

I Accurate: Model limits known thanks to validation studies

I Sound: Easy to use, extensible, fast to execute, scalable to death, well tested

I Open: User-community much larger than contributors group; LGPL

I Around since over 10 years, and ready for at least 10 more years

Welcome to the Age of (Sound) Computational Science

I Discover: http://simgrid.gforge.inria.fr/

I Learn: 101 tutorials, user manuals and examples

I Join: user mailing list, #simgrid on irc.debian.org
We even have some open positions ;)
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One Methodology to Rule Them All

Several scientific instruments implementing different scientific methodologies

M
et

h
o

d
o

lo
g

ic
a

l
st

a
ck

Substrate /

hardware

Sensors

& actuators

Run one

experiment

Describe one

experiment

Answer

a question

E
M

U
L

A
B

Cluster nodes

+

switches

Topology

script

Home-made

Grid’5000

Distem

G5K Monitoring infra

...

XPFlow

HP Simulation

Virtualization/Folding

Models

Model-checking

→ exhaustive simulation

→ tactical simulation

(no need for complex runner)

Reality

Facts

Understanding

Hypothesis

Analyse (Viz., Data Mining)

Test (DoE, MC)⇒

Experiment description

Conclusions

I There is no alternative to Computational Science of Distributed Systems

I Science is Team Game: I have elements, but need a (full) team support

Martin Quinson Computational Science of Distributed Systems Context Simulation SimGrid HPS Formal Emulation Conclusion 28/28


