Expérimentations et calculs Distribués à Grande Échelle Projet EDGE du CPER MISN

Lead by Martin Quinson, Lucas Nussbaum

LORIA

10 juin 2011

How does Science work?

Proposed theories remain valid until proved false (or better proposed)

Classical approaches in science and engineering

- 1. Theoretical work: equations on a board
- 2. Experimental study on an scientific instrument

How does Science work?

Proposed theories remain valid until proved false (or better proposed)

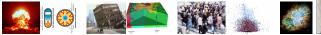
Classical approaches in science and engineering

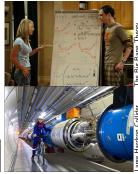
- 1. Theoretical work: equations on a board
- 2. Experimental study on an scientific instrument

Not always desirable / possible

- Some phenomenons are intractable theoretically
- Experiments too expensive, difficult, slow, dangerous

How does Science work?


Proposed theories remain valid until proved false (or better proposed)


Classical approaches in science and engineering

- 1. Theoretical work: equations on a board
- 2. Experimental study on an scientific instrument

Not always desirable / possible

- Some phenomenons are intractable theoretically
- Experiments too expensive, difficult, slow, dangerous

irge Hardron Collider

The third scientific way: Computational Science

- 3. Use computers (in silico study)
 - Modeling / Simulation of the phenomenon
 - Data Mining to find interesting subject of studies
 - Automated theorem proving

Martin Quinson

Our Scientific Objects: Distributed Systems

Scientific Computing: High Performance Computing / Computational Grids

- ► Infrastructure underlying *Computational science*: Massive / Federated systems
- ► Main issues: Have the world's biggest one / compatibility, trust, accountability

Cloud Computing

- Large infrastructures underlying commercial Internet (eBay, Amazon, Google)
- Main issues: Optimize costs; Keep up with the load (flash crowds)

P2P Systems

- ► Exploit resources at network edges (storage, CPU, human presence)
- Main issues: Intermittent connectivity (churn); Network locality; Anonymity

Systems already in use, but characteristics hard to assess

- Performance: everyone want to maximize it, but definition differs
- ► Correction: absence of crash, race conditions, deadlocks and other defects

Assessing Distributed Applications

Classical Scientific Pillars Apply

- Theoretical Approach: Mathematical study of algorithms
- Experimental Science: Study applications on scientific instrument
- Computational Science: Simulation of a system model

Performance Study \rightsquigarrow Experimentation

- ► Maths: these artificial artifacts contain what we've put in it But complex, dynamic, heterogeneous, scale ~> beyond our capacities
- Experimental Facilities: Real applications on Real platform
- Emulation: Real applications on Synthetic platforms
- Simulation: Prototypes of applications on system's Models

	Experimental Facilities	Emulation	Simulation
Experimental Bias	00	Û	٢
Experimental Control	88	Û	00
Ease of Use	\odot	33	00

► Correction Study ~> Formal Methods (model-checking, proof, static evaluation)

Martin Quinson

(in vivo) (in vitro) (in silico)

EDGE Project

Experimentation and Distributed systems at Large Scale

- 1. Experimental methodologies for large scale computer systems
 - Facilities: large scale administration
 - Emulation: WrekAvoc and Simterpose projects
 - Simulation: SimGrid project
 - Overall Organization: Scalable Laboratory
- 2. Reasoned usage of modern computational platforms
 - Applications:
 - Analysis of crypto-systems
 - Theorem provers
 - P2P systems
 - Animation of the community:
 - Project Bootstraping (first year in CPER)
 - Towards academics
 - Towards industries
 - Towards production grids

EDGE Project

Experimentation and Distributed systems at Large Scale

- 1. Experimental methodologies for large scale computer systems
 - Facilities: large scale administration (new: graphene cluster many nodes)
 - Emulation: WrekAvoc (new: rewrite) and Simterpose (new: feasibility)
 - Simulation: SimGrid project (new: SMPI now mature)
 - Overall Organization: Scalable Laboratory (new operation)
- 2. Reasoned usage of modern computational platforms
 - Applications:
 - Analysis of crypto-systems (new: RSA 768 broken)
 - \blacktriangleright Theorem provers (new: testing framework \rightsquigarrow prover comparison/competitions)
 - P2P systems (new: evaluation of a P2P wiki with concurrent editing)
 - Animation of the community:
 - Project Bootstraping (first year in CPER)
 - ► Towards academics (new: user day / courses targeting prospective users)
 - Towards industries (new: ad hoc intl; Accelor-Mital in vain so far)
 - Towards production grids (new: study EGEE on Grid'5000; contact INRA)

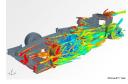
NOW: 2 focuses on 2010 work and one future project

Emulation as an Experimental Methodology

Execute real application in a perfectly controlled environment

- Real platforms are not controllable, so how to achieve this?
- Let's look at what engineers do in other fields

When you want to build a race car...


... adapted to wet tracks ... in a dry country ... you can simulate it.

But then, you have

- To assess models
- Technical burden
- No real car

Why don't you...

just control the climate?

That's Emulation

Martin Quinson

Emulation in each Science

Studying earthquake effects on bridges

Studying tsunamis

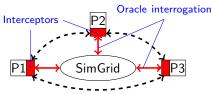
Studying Coriolis effect and stratification vs. viscosity

(who said that science is not fun??)

Studying climate change effects on ecosystems

Emulating Distributed Computer Systems

Possible Approaches in the literature


- Performance Degradation: resource burners, usage capping
- Complete Emulation: trick applications into virtual realities

Emulation in EDGE

- WrekAvoc: degradation and capping
- SimTerpose: emulation by mediation through the SimGrid simulator

New results in 2010

- WrekAvoc: Complete rework to handle multi cores properly
- SimTerpose: Several feasibility studies (Java, Unix)

Applicative communications

Agenda for 2011

- WrekAvoc: rework the network
- SimTerpose: finish / polish
 Use to study MPI runtimes

Martin Quinson

Breaking RSA-768 cryptosystems on Grid'5000 (1/2)

VS.

Context: Integer factorization problem \rightsquigarrow security of the RSA cryptosystem

This is no production settings ;)

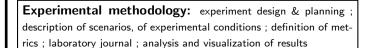
- > We care about feasibility limits, not about people's private data
- ▶ Here: given access to a shared resource like a grid, is the task any easier?
- Also, the amount of required resources for factoring matters.

Big picture

- Previous record 663 bits, 2005.
- Used algorithm: Number Field Sieve.
- ▶ Core is linear algebra: solve an homogeneous linear system over GF(2)
 - $\blacktriangleright~\approx$ 10 years ago: supercomputer; since 2007: "in-house" HPC cluster
 - > 2009: do it on Grid'5000. Prove that we can.

Martin Quinson

Breaking RSA-768 cryptosystems on Grid'5000 (2/2)


Initial Workplan: split the computation between groups

- ▶ EPFL (Lausanne, Switzerland); uses lab cluster; $\sim 50\%$
- ▶ NTT (Tokyo, Japan); uses lab cluster; $\sim 10\%$
- ► INRIA/CARAMEL (Nancy, France) uses grid platform; ~ 40%

Conclusions

- ► The cryptosystem were broken, resulting in a very large press coverage
- ▶ Grid'5000 did 40% of the work; 3 calendar months, 2 months fully working
- First time such a computation (partly) on a grid (for the linear system)
- Proved the viability of a grid setup for this purpose.
- Many rough edges were found and fixed in Grid'5000
- This helped understanding what needs to be improved in our infrastructure

Future: ScaLab (industrializing the experiments)

Layer 2

-ayer 3

Orchestration of experiments: organize the execution of complex and large-scale experiments ; run experiments unattended and efficiently ; handles failures ; compose experiments

Basic services: common tools required by most experiments				
Interact w/ testbed find/reserve/configure resources	Control a large	Change experimental conditions		
Check resources before using them	Manage data	Instrument and monitor; extract data		

-ayer 1

-ayer 0

Experimental testbed (Grid'5000): provides reconfigurable hardware and network, isolation, some instrumentation and monitoring

Martin Quinson

Conclusion

Computer Science is just like other Sciences

- Experimental facilities are mandatory (even if somehow rigid)
- Emulators are the ultimate scientific instruments (even if very complex)
- Computational Science is extremely powerful (even if tedious to get right)
- ► All available research methodologies must be combined and leveraged
- Grid'5000 and SimGrid are world leading tools (more to come ;)

	Whiteboard	Simulation	Experimental Facilities	Emulation	Production Platforms
Idea	00				
Algorithm	٢	00			
Prototype		٢	00		
Application			00	٢	
Product					٢

Mutual benefices of collaborations within the community

- Applications become possible, tackle new challenges, strategic advantage
- ► Fundamental work gets concrete implications, and invaluable feedback
- Our project still a bit young (2010), but getting full gear

Martin Quinson

EDGE Project in 2011

Experimentation and Distributed systems at Large Scale

- 1. Experimental methodologies for large scale computer systems
 - ► Facilities: large scale administration (*new:* graphene cluster many nodes)
 - Emulation: WrekAvoc (new: rewrite) and Simterpose (new: feasibility)
 - Simulation: SimGrid project (new: SMPI now mature)
 - Overall Organization: Scalable Laboratory (new operation)

2. Reasoned usage of modern computational platforms

- Applications:
 - Analysis of crypto-systems (new: RSA 768 broken)
 - ▶ Theorem provers (*new:* testing framework ~> prover comparison/competitions)
 - P2P systems (new: evaluation of a P2P wiki with concurrent editing)
- Animation of the community:
 - Project bootstraping (first year in CPER)
 - ► Towards academics (*new:* user day / courses targeting prospective users)
 - Towards industries (new: ad hoc intl; Accelor-Mital in vain so far)
 - ► Towards production grids (new: study EGEE on Grid'5000; contact INRA)

Question slides

Studying Computer Systems

Computers are eminently artificial artifacts

- Humans built them completely, they contain only what we've put in it
- \Rightarrow Theoretical (maths) methodology to study it

Computer systems complexity getting tremendous

- Heterogeneity of components (hosts, links)
 - Quantitative: CPU clock, link bandwidth and latency
 - Qualitative: ethernet vs myrinet vs quadrics; amd64 vs ARM vs GPU
- Dynamicity
 - \blacktriangleright Quantitative: resource sharing \leadsto availability variation
 - Qualitative: resource come and go (churn, failures)
- Complexity
 - ► Hierarchical systems: grids of clusters of multi-processors being multi-cores
 - Deep software stacks: Middleware, Web Services, mashups
 - Multi-hop nets, high latencies; Interference comput./comm. (disk/memory)

Computer Systems as Natural Objects

- ▶ The complexity is so high that we cannot understand them fully anymore
- > Frankenstein effect, but allows to use computers to understand computers

Assessing Distributed Applications Correction

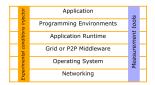
- Absence of crash / data corruption (like always)
- Absence of race condition / deadlocks / livelocks (classic in multi-entities)
- Feal with lack of central time and central memory (specific to distributed)

Correction Assessment \rightsquigarrow Formal Methods

- ► Facilities: Experience plans limited, by abilities or by time
- Simulation: How to decide if coverage is sufficient?
- Proof assistants: semi-automated proof demonstration (tedious for users)
- ► Model checking: Exhaustive state space exploration, search counter examples

	Experimental Facilities	Emulation	Simulation	Proofs	Model Checking
Performance Assessment	00	00	00	00	88
Experimental Bias	00	٢	٢	(n/a)	(n/a)
Experimental Control	88	Û	00	(n/a)	(n/a)
Ease of Use	٢	88	00	00	Û
Correction Assessment	88	٢	٢	00	Û
Result if failed	(n/a)	(n/a)	(n/a)	\odot	00

Martin Quinson


In vivo approach: Direct Experimentation

- Principle: Real applications, Real environment (with reduced external noise)
- ► Challenges: Not trivial nor immediate. Experimental control? Reproducibility?

Grid'5000 project: world leading scientific instrument for dist. apps

- Instrument for research in computer science (deploy your own OS)
- ▶ 9 sites, 1500 nodes (3000 cpus, 4000 cores); dedicated 10Gb links

Other existing platforms

- ▶ PlanetLab: No experimental control ⇒ no reproducibility
- Production Platforms (EGEE/EGI): must use provided middleware
- ► FutureGrid: US experimental platform loosely inspired from Grid'5000

Martin Quinson

Projet Expérimentations et calculs Distribués à Grande Échelle (EDGE)

14/13

In silico approach: Simulated Experiments

- Principle: Prototypes of applications, models of platforms
- Challenges: Get realistic results (experimental bias)

SimGrid: generic simulation framework for distributed applications

- ► Scalable (time and memory), modular, portable. +70 publications.
- Collaboration Loria / Inria Rhône-Alpes / CCIN2P3 / U. Hawaii

Other existing tools

- Large amount of existing simulator for distributed platforms: GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS.
- ▶ Few are really usable: Diffusion, Software Quality Assurance, Long-term availability
- No other study the validity, the induced experimental bias

Martin Quinson

System Administration Challenges

Goals and means

- Automating to factorize From 12 to 6 people
- Unique domain Intervention range unlimited
- Receipts in a central git
 - Puppet for servers
 - Chef for images
- Capistrano to push configs

Results

- Most know how encoded in receipts (young engineers-friendly)
- Hard to handle HPC hosts this way