
Distributed Applications' Study:

Experimentation, Simulation and Formal methods

Martin Quinson (team AlGorille)

Université Henri Poincaré � Nancy I

April 15, 2011

Context: Distributed Systems Taxonomy

Cloud Computing
I Large infrastructures underlying commercial Internet (eBay, Amazon, Google)

I Main issue: Optimize costs; Keep up with the load (�ash crowds)

High Performance Computing and Exascale
I Have the world's biggest computer, to lead CS and IT world's research

I Main issues: do the biggest possible numerical simulations [justify investment]

Grid Computing
I Infrastructure for computational science: lot of sequential simulation jobs

I Main issues: compatibility, virtual organizations (trust and accountability mgmt)

Peer-to-peer Systems (P2P)
I Exploit resources at network edges (storage, CPU, human presence)

I Main issues: Intermittent connectivity (churn); Network locality; Anonymity

Systems already in use, but characteristics hard to assess
I Performance: everyone want to maximize it, but de�nition di�ers
I Correction: absence of crash, race conditions, deadlocks and other defects

M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Context 2/8

Assessing Distributed Applications Performance

Classical Scienti�c Pillars Apply

I Theoretical Approach: Mathematical study of algorithms

I Experimental Science: Study applications on scienti�c instrument

I Computational Science: Simulation of a system model

Performance Study ; Experimentation
I Theory still mandatory, but everything's NP-hard

I Experimental Facilities: Real applications on Real platform (in vivo)

I Emulation: Real applications on Synthetic platforms (in vitro)

I Simulation: Prototypes of applications on system's Models (in silico)

Experimental
Emulation Simulation

Facilities
Experimental Bias ,, , /
Experimental Control // , ,,
Ease of Use / // ,,

M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Context 3/8

Assessing Distributed Applications Correction

I Absence of crash / data corruption (like always)

I Absence of race condition / deadlocks / livelocks (classic in multi-entities)

I Feal with lack of central time and central memory (speci�c to distributed)

Correction Assessment ; Formal Methods
I Facilities: Experience plans limited, by abilities or by time

I Simulation: How to decide if coverage is su�cient?

I Proof assistants: semi-automated proof demonstration (tedious for users)

I Model checking: Exhaustive state space exploration, search counter examples

Experimental
Emulation Simulation Proofs

Model
Facilities Checking

Performance Assessment ,, ,, ,, // //
Experimental Bias ,, , / (n/a) (n/a)

Experimental Control // , ,, (n/a) (n/a)

Ease of Use / // ,, // ,
Correction Assessment // / / ,, ,
Result if failed (n/a) (n/a) (n/a) / ,,

M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Context 4/8

Contributions to the simulation of dist apps (in silico)

SimGrid: simulator of applications' prototype on models of platforms

I Scalable (big enough, fast enough); Modular (TCP and others); Portable

I +70 papers; 100 members on simgrid-user@

G
R
E
:

G
R

A
S

 in
 s

itu

SURF

SimIX

SMURF

SMPI GRAS
MSGSimDag

XBT

"POSIX-like" API on a virtual platform

SimIX network proxy

virtual platform simulator

6

3

2

1

4

5

1

3 4 5

6

2

A

B

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Personal Contributions (collaboration with A. Legrand and F. Suter)

I Leader of the federating ANR project (7 labs 19 partners 800ke: P2P scalability)

I Main Software Architect Parallel Simulation, Applicative validation, MPI, energy

I Collaborations: CERN, IBM, U. Anvers; Dissemination: User Days; Tutorials

Project: Simulation Of Next Generation Systems (SONGS)

I Federate Grids, P2P, Clouds & HPC simulation within the same framework

I Leader of ANR project under evaluation (7 labs, 21 scientists, 1.8Me)
M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Contributions&Projects 5/8

Contributions to Experimental Facilities (in vivo)

Grid'5000 Project: world leading scienti�c instrument for dist. apps
I Instrument for research in computer science (deployment of customized OSes)

1500 nodes (2800 cpus, 7200 cores), 9 sites; dedicated 10Gb network

Personal Contributions
I National steering committee; Local project co-leader (CPER, Aladdin, Hemera)

I Scienti�c animation, event co-organization: Nancy is a leading site

I Collaboration: Production grids (IdG), CEA, Arcelor-Mittal

Project: Experimentation Process Industrialization (with L. Nussbaum)

I Open science: ensure that experiments can be shared, reviewed, improved

I Convergence of simulation and direct execution

I Methodological framework and practical tools (+administrative duties)
M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Contributions&Projects 6/8

Other Contributions

Model-Checking (collaboration with S. Merz and C. Rosa)

I Goal: democratize Formal Methods to non specialists through SimGrid
I Achievements:

I Model-checking mode in SimGrid; Generic modeling of communications API
I DPOR implementation �ghting combinatorial explosion regardless of used API

I Projects:
I Integrate Liveness Properties; Automatically bridge code ↔ model variables
I Long Term: semantic debugger of distributed applications within SimGrid
I Very Long term: Performance checking (time discrete at best in MC)

Simulated MPI (collaboration with S. Genaud, H. Casanova, F. Suter, P.N. Clauss)

I Goal: study real applications based on MPI within SimGrid
I Achievements: Partial implem of MPI; Assessment of LAN models
I Projects: Modeling collectives' Semantic (; MPI-3); Trace based simulation

Study of Real Applications: SimTerpose (collaboration with L. Nussbaum)

I Goal: intercept every actions of the application, and study them online
I Achievements: Prototype of interceptor; Projects: TBC, and used

+ PlusCal (MC→Sim with Lamport); GRAS, Alnem; Energy, DistSim; JLM, CLE
M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Contributions&Projects 7/8

Conclusion: Une délégation pour une HDR

IMHO, writting an HDR is about making 3 points
I Ability to do research yourself

I 1 book chapter, 4 journals, 17 confs&wshops, 7 tutorials & invited talks
I Pragmatic approach leading to several tools, with large user bases

I Ability to collaborate with peers; Integration in scienti�c community
I Academic collabs: Nancy, Grenoble, Lyon, Bdx, Nice, Nantes, Strasbrg, Hawai'i
I Industrial collabs: CERN, adhoc intl, IBM, (arcelor-mittal)
I Project leader of several large scale projects (1,5Me since 2005)
I Member of Steering Committees, Program Committees and PhD defense juries

I Ability to advise young researchers
I 3 postdocs, 2 ongoing PhDs, 4 M2R Loria, 6 other M2R; 3 engineers (IJD)
I (Coordinator of �rst year curriculum at ESIAL and of 7 teaching modules)

Why asking a délégation now?

I I need to �nish what's ongoing, and get published the ideas that emerged
Publication �le may not really re�ect my production yet

I I need to write the manuscript

I I'm short on time with 200-250 hours of teaching duty per year
M. Quinson Distributed Applications' Study: Experimentation, Simulation and Formal methods. Contributions&Projects 8/8

Agenda

Context
Distributed Systems Taxonomy
Assessing Distributed Applications Performance
Assessing Distributed Applications Correction

Contributions: Methodologies for the study of Distributed Applications
Simulating Distributed Applications
Experimental Facilities
Other Contributions

Annexes
SONGS: Simulation Of Next Generation Systems
Emulation

Emulation through Degradation or through Simulation

How to intercept application actions?

Simulating Next Generation Systems

Network CPU
quantitative qualitative quantitative qualitative

�Old grids� dozen NREN hundreds spare
P2P large scale Internet large scale spare

New grids large scale NREN hundreds clusters

Clouds large scale Internet hundreds clusters
HPC large scale LAN thousands clusters

GridsP2P

CloudsHPC

A
na

ly
si

s

Models

O
pen

 S
cience

Core

Emulation as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let's look at what engineers do in other �elds

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country you can simulate it.

But then, you have

I To assess your
models

I Technical burden

I No real car

Why don't you. . .
just control the climate?

That's Emulation

C
o
u
rte

sy
o
f
L
u
c
a
s
N
u
ssb

a
u
m

Emulation as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let's look at what engineers do in other �elds

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country you can simulate it.

But then, you have

I To assess your
models

I Technical burden

I No real car

Why don't you. . .
just control the climate?

That's Emulation

C
o
u
rte

sy
o
f
L
u
c
a
s
N
u
ssb

a
u
m

Emulation as an Experimental Methodology

Execute your application in a perfectly controlled environment

I Real platforms are not controllable, so how to achieve this?

I Let's look at what engineers do in other �elds

When you want to build a race car. . .

. . . adapted to wet tracks . . . in a dry country you can simulate it.

But then, you have

I To assess your
models

I Technical burden

I No real car

Why don't you. . .
just control the climate? That's Emulation

C
o
u
rte

sy
o
f
L
u
c
a
s
N
u
ssb

a
u
m

Emulating Distributed Systems

Such Emulation through Degradation is quite classical

I Degrade the performance of the host platform (CPU burners, Network capping)

I WrekAvoc (LORIA � Lucas Nussbaum et Al.) works this way

, Real application, controlled environment

/ Complex technologies, heavy infrastructures, tedious tool assessment

/ Reeeeally hard to emulate faster/larger platforms than host platform

Another approach: Emulation through Simulation

I Intercept what the application does, Compute answer by simulation, Apply it

I This is what you do to assess the breaking system of your car

P1 P3

P2

SimGrid

Applicative communications

Interceptors
Oracle interrogation

This is SimTerpose

Emulating Distributed Systems

Such Emulation through Degradation is quite classical

I Degrade the performance of the host platform (CPU burners, Network capping)

I WrekAvoc (LORIA � Lucas Nussbaum et Al.) works this way

, Real application, controlled environment

/ Complex technologies, heavy infrastructures, tedious tool assessment

/ Reeeeally hard to emulate faster/larger platforms than host platform

Another approach: Emulation through Simulation

I Intercept what the application does, Compute answer by simulation, Apply it

I This is what you do to assess the breaking system of your car

P1 P3

P2

SimGrid

Applicative communications

Interceptors
Oracle interrogation

This is SimTerpose

Emulating Distributed Systems

Such Emulation through Degradation is quite classical

I Degrade the performance of the host platform (CPU burners, Network capping)

I WrekAvoc (LORIA � Lucas Nussbaum et Al.) works this way

, Real application, controlled environment

/ Complex technologies, heavy infrastructures, tedious tool assessment

/ Reeeeally hard to emulate faster/larger platforms than host platform

Another approach: Emulation through Simulation

I Intercept what the application does, Compute answer by simulation, Apply it

I This is what you do to assess the breaking system of your car

P1 P3

P2

SimGrid

Applicative communications

Interceptors
Oracle interrogation

This is SimTerpose

How to intercept application actions?

Several approaches exist

Linux kernel

Interface to syscalls

C library (libc)

Shared Libraries

Application

int $0x80

printf()

gprintf()

ptrace interception

LD_PRELOAD interception

Valgrind
interception

I Valgrind: Binary rewrite before execution
Very slow!

I LD_PRELOAD: Dynamic loader trick (≈ DLL injection)
Library calls only (lot of them can be used to communicate)

I ptrace: SysCall trapping by kernel (approach used by gdb or strace)
Quite tricky to setup correctly � but possible

	Context
	Distributed Systems Taxonomy
	Assessing Distributed Applications Performance
	Assessing Distributed Applications Correction

	Contributions: Methodologies for the study of Distributed Applications
	Simulating Distributed Applications
	Experimental Facilities
	Other Contributions

	Annexes
	SONGS: Simulation Of Next Generation Systems
	Emulation
	Emulation through Degradation or through Simulation
	How to intercept application actions?

