
Ultra Scalable Simulation with SimGrid
USS SimGrid (ANR 08 SEGI 022)

http://uss-simgrid.gforge.inria.fr

Coordinated by Martin Quinson (Nancy University)

Paris, September 17 2010

http://uss-simgrid.gforge.inria.fr

Context: Large-Scale Distributed Systems

Cloud Computing

I Large infrastructures underlying the commercial Internet

I Examples: eBay, Amazon, Facebook, Google, ViaMichelin, Voyages-SNCF, etc.

I Main issue: keep up with the load, even when facing flash crowd effects

Peer-to-peer Systems (P2P)

I Goal: Exploit resources at network edges (storage, CPU, human presence)

I Approach: Decentralized Systems (not Clients/Server; each node does both)

I Promises: Organic growth, infrastructure independence, scalability, robustness

I Issues: Nodes’ intermittent connectivity (churn); Network locality; Anonymity

These systems are in use today, but badly understood

I They deserve a thorough scientific analysis

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 2/32

How to perform this study

T
h

e
B

ig
B

a
n

g
T

h
eo

ry
L

ar
g

e
H

ar
d

ro
n

C
o

ll
id

er
C

ar
M

es
h

Classical approaches in science and engineering

1. Theoretical work: equations on a board

2. Experimental study on an scientific instrument

That’s not always desirable (or even possible)

I Some phenomenons are intractable theoretically

I Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

3. Study in silico using computers
Modeling / Simulation of the phenomenon or data-mining

; High Performance Computing Systems

These systems deserve very advanced analysis

I Debugging and tuning technically difficult; Induce methodological challenges

I Science of the in silico science

I Same benefits for our study as for other sciences

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 3/32

How to perform this study

T
h

e
B

ig
B

a
n

g
T

h
eo

ry
L

ar
g

e
H

ar
d

ro
n

C
o

ll
id

er
C

ar
M

es
h

Classical approaches in science and engineering

1. Theoretical work: equations on a board

2. Experimental study on an scientific instrument

That’s not always desirable (or even possible)

I Some phenomenons are intractable theoretically

I Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

3. Study in silico using computers
Modeling / Simulation of the phenomenon or data-mining

; High Performance Computing Systems

These systems deserve very advanced analysis

I Debugging and tuning technically difficult; Induce methodological challenges

I Science of the in silico science

I Same benefits for our study as for other sciences

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 3/32

Large-Scale Distributed Systems Science?

Requirements for a Scientific Approach
I Reproducible results

I You can read a paper, reproduce a subset of its results and improve

I Standard tools and methodologies
I Grad students can learn their use and become operational quickly
I Experimental scenario can be compared accurately

Current practice in the field: quite different
I Very little common methodologies and tools, large load of (ad-hoc) tools

I GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS
From 141 P2P sim.papers: 30% custom tool, 50% don’t report tool [Naicken06]

I Few are really usable: Diffusion, Software Quality Assurance, Long-term availability
I Most rely on straightforward models with no validity assessment

I Experimental settings rarely detailed enough in literature

Purpose of the SimGrid Project

I Allow a scientific approach of Large-Scale Distributed Systems simulation

I Propose ready to use tools enforcing methodological best practices

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 4/32

Large-Scale Distributed Systems Science?

Requirements for a Scientific Approach
I Reproducible results

I You can read a paper, reproduce a subset of its results and improve

I Standard tools and methodologies
I Grad students can learn their use and become operational quickly
I Experimental scenario can be compared accurately

Current practice in the field: quite different
I Very little common methodologies and tools, large load of (ad-hoc) tools

I GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS
From 141 P2P sim.papers: 30% custom tool, 50% don’t report tool [Naicken06]

I Few are really usable: Diffusion, Software Quality Assurance, Long-term availability
I Most rely on straightforward models with no validity assessment

I Experimental settings rarely detailed enough in literature

Purpose of the SimGrid Project

I Allow a scientific approach of Large-Scale Distributed Systems simulation

I Propose ready to use tools enforcing methodological best practices

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 4/32

Simulating Distributed Systems

Principle
Idea to test

1

3 4 5

6

2

Root

End

+
System Model

+
Experimental setup

1

2

5

4
3

6 ⇒
Scientific results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000
 10

 20

 40

 80

 160

 320

 640

 1280
 2560
 5120
 10240

ex
ec

u
ti

o
n

 t
im

e
(s

)

number of simulated hosts

Default CPU Model
Partial LMM Invalidation

Lazy Action Management
Trace Integration

Advantages

I Less simplistic than proposed theoretical models (which are useful too)

I Better XP control (; reproducible) than production systems (+ not disruptive)

I Not as tedious, time/labor consuming than experimental platforms

I Plus: Lower technical burden; Quick and easy experiments; What if analysis

Main challenges

I Validity: Get realistic results (controlled experimental bias)

I Scalability: Simulate fast enough problems big enough

I Usability: Associated Tools; Ease of use; Applicability to context of interest

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 5/32

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling
I Perimeter increase from Grid Computing to Peer-to-peer
I Improving simulation scalability: mandatory but not enough
I Campaign data management pre- & post-processing not trivial anymore

Project organization

Axis 1 Models
WP1: New models + validity
WP2: Model instantiation (usability)

Axis 2 Associated tools
WP3: Simulation analysis
WP4: Campaign management

Axis 3 Extreme scalability
WP5: Parallel and distributed simulation

Axis 4 Transfer, dissemination
WP6: Applications

M
o

de
ls

In
st

an
ci

at
io

n

Analysis Campaigns

Par
all

eli
zin

g

Applic
at

io
ns

Coming next: Some scientific achievements on Scalability, Validity and Usability
For each: Challenge; Focus on one result; Envisioned work within the project

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 6/32

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling
I Perimeter increase from Grid Computing to Peer-to-peer
I Improving simulation scalability: mandatory but not enough
I Campaign data management pre- & post-processing not trivial anymore

Project organization

Axis 1 Models
WP1: New models + validity
WP2: Model instantiation (usability)

Axis 2 Associated tools
WP3: Simulation analysis
WP4: Campaign management

Axis 3 Extreme scalability
WP5: Parallel and distributed simulation

Axis 4 Transfer, dissemination
WP6: Applications

M
o

de
ls

In
st

an
ci

at
io

n

Analysis Campaigns

Par
all

eli
zin

g

Applic
at

io
ns

Coming next: Some scientific achievements on Scalability, Validity and Usability
For each: Challenge; Focus on one result; Envisioned work within the project

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 6/32

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling
I Perimeter increase from Grid Computing to Peer-to-peer
I Improving simulation scalability: mandatory but not enough
I Campaign data management pre- & post-processing not trivial anymore

Project organization

Axis 1 Models
WP1: New models + validity
WP2: Model instantiation (usability)

Axis 2 Associated tools
WP3: Simulation analysis
WP4: Campaign management

Axis 3 Extreme scalability
WP5: Parallel and distributed simulation

Axis 4 Transfer, dissemination
WP6: Applications

M
o

de
ls

In
st

an
ci

at
io

n

Analysis Campaigns

Par
all

eli
zin

g

Applic
at

io
ns

Coming next: Some scientific achievements on Scalability, Validity and Usability
For each: Challenge; Focus on one result; Envisioned work within the project

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 6/32

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob
Listen from Bob

Bob

Listen from Alice
Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions

{

372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints

                                  

Variables

Conditions{

... Process







us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 7/32

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob
Listen from Bob

Bob

Listen from Alice
Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions

{

372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints

                                  

Variables

Conditions{

... Process







us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 7/32

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob
Listen from Bob

Bob

Listen from Alice
Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions

{

372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints

                                  

Variables

Conditions{

... Process







us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 7/32

SimGrid Internals in a Nutshell

Example of user code to execute
Alice

Send "toto" to Bob
Listen from Bob

Bob

Listen from Alice
Send "blah" to Alice

SimGrid internal Main Loop

1. Run every ready user process in row
I Each wants to consume resources
I Assign actions on resources

2. Compute share for actions

3. Get earliest finishing action

4. Unlock user code waiting on this action

SimGrid Functional Organization

I MSG: User-friendly syntaxic sugar

I Simix: Processes, synchro (SimPosix)

I SURF: Resources usage interface

I Models: Action completion computation

AliceMaestro Bob
Simulation

Kernel:
who’s next?

(done)

(done)

"blah" to Alice

Receive from Bob

Send "toto" to Bob

from Alice

Send

Receive

��
��
��

��
��
��

���������������
�����
�����
�����
���
���
���
���
������

������������������������������������
����
����
������
����
����

��
��
��
��

���
���
���
���

��
��
��
��
��
��
��
��
���
���
���

���
���
���

Simulated time

�
�
�

�
�
�

LMM

SIMIX

SURF

MSG

Actions

{

372
435

245
245

530
530

50
664work

remaining

variable

...

x1

x2

x2

x2

x3

x3

xn+ +

+

... ≤ CP

≤ CL1

≤ CL4

≤ CL2

≤ CL3

  

Constraints
                                  

Variables

Conditions{

... Process







us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

us
er

co
de

...

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 7/32

Agenda

Introduction, Context and Motivation

Scientific Achievements
Scalability Challenge
Validity Challenge
Usability Challenge

Organizational Aspects
Work Organization
Current Situation
Project Outcomes

Conclusion and Open questions

USS-SimGrid Ultra Scalable Simulation with SimGrid Introduction, Context and Motivation 8/32

Scalability Challenge

Situation before the project
I Timings from CERN guys I Maximal amount of user processes

I GridSim: 10,922 (hard limit)
I SimGrid: 200k (memory limit, 4Gb)

I But needs of the users:
I CERN: 300 × bigger than that (10 days/run)
I BOINC: 600k volatile hosts over a year

I PeerSim simulates millions of processes
I but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

I Possible approaches:
I Algorithmic optimizations: Compact routing representation ⊕ Lazy evaluation
I Multiple computers: Distribution ⊕ Parallelism
I Simpler models (but potential loss of realism)

I USS SimGrid leverages all these approaches

I Coming now: focus on 2 points

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 9/32

Scalability Challenge

Situation before the project
I Timings from CERN guys I Maximal amount of user processes

I GridSim: 10,922 (hard limit)
I SimGrid: 200k (memory limit, 4Gb)

I But needs of the users:
I CERN: 300 × bigger than that (10 days/run)
I BOINC: 600k volatile hosts over a year

I PeerSim simulates millions of processes
I but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

I Possible approaches:
I Algorithmic optimizations: Compact routing representation ⊕ Lazy evaluation
I Multiple computers: Distribution ⊕ Parallelism
I Simpler models (but potential loss of realism)

I USS SimGrid leverages all these approaches

I Coming now: focus on 2 points

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 9/32

Scalability Challenge

Situation before the project
I Timings from CERN guys I Maximal amount of user processes

I GridSim: 10,922 (hard limit)
I SimGrid: 200k (memory limit, 4Gb)

I But needs of the users:
I CERN: 300 × bigger than that (10 days/run)
I BOINC: 600k volatile hosts over a year

I PeerSim simulates millions of processes
I but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

I Possible approaches:
I Algorithmic optimizations: Compact routing representation ⊕ Lazy evaluation
I Multiple computers: Distribution ⊕ Parallelism
I Simpler models (but potential loss of realism)

I USS SimGrid leverages all these approaches

I Coming now: focus on 2 points

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 9/32

Scalability Challenge

Situation before the project
I Timings from CERN guys I Maximal amount of user processes

I GridSim: 10,922 (hard limit)
I SimGrid: 200k (memory limit, 4Gb)

I But needs of the users:
I CERN: 300 × bigger than that (10 days/run)
I BOINC: 600k volatile hosts over a year

I PeerSim simulates millions of processes
I but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

I Two aspects: Big enough (large platforms) ⊕ Fast enough (large workload)

I Possible approaches:
I Algorithmic optimizations: Compact routing representation ⊕ Lazy evaluation
I Multiple computers: Distribution ⊕ Parallelism
I Simpler models (but potential loss of realism)

I USS SimGrid leverages all these approaches

I Coming now: focus on 2 points
USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 9/32

GrenobleSimulation Speed Improvement (1/2)

Context: Volunteer Computing

I One task per CPU; Availability trace; network not relevant to the study

LMM

SURF

SIMIX

x1

x2

x3

! C1

! C2

! C3...
xN ! CN

  

Constraints

                                  

Variables

Actions{

...
P1 P2 P3 PN

Conditions{

Process

{
Figure 2: SimGrid layers and data structures for the
example in Section 3.3.

lation clock, returns the actions that have just completed.
In general, for this example, there is a single such action
since the amount of work for each action is random and
host processing speeds are heterogeneous. Then SIMIX re-
turns control to the corresponding user process, which de-
stroys the action that has just completed. At this point,
the entire LMM system for the CPU simulation model is
invalidated. The user-level MSG_task_execute function re-
turns and is called again immediately by the user process,
to compute the second task on the host. A new action is
created and the user process blocks again. Due to the new
action, the LMM system is invalidated. SIMIX then calls
surf_solve again to determine the next action termination.

The complexity incurred between two SIMIX calls to surf_
solve is thus Θ(1). However, since the system has been com-
pletely invalidated, the complexity of surf_solve is Θ(N)
again, which is true for all subsequent calls as the LMM
system is always invalidated between two calls.

3.3.4 Discussion
Whenever an action ends, the whole resource allocation

is recomputed and all actions are updated. However, there
is very little modification to the system. Indeed when an
action ends on a host, it does not affect the other hosts nor
the other action completion dates. In our example, when a
variable xi is removed from the LMM system it is immedi-
ately replaced by a new xi variable constrained by the same
bound. There will be as many calls to surf_solve as the
total number actions in the simulation. Since there are N
hosts and P tasks per hosts, there is a total of NP actions.
Thus the overall complexity of SimGrid to run such a simple
example is Θ(N2P). One would hope for a complexity that
is much lower than quadratic with respect to N , since in
VC scenarios on expects N to be routinely as high as tens
or hundreds of thousands.

In our example, the computational power of the hosts does
not change over time. Assume that each host is annotated
with a trace with T state change events, where each state
change could be a change in the host’s available computation
power. In this case, there would be a total of NT state
change events. The LMM system would be invalidated at
each state change. The time needed to retrieve an event
would be Θ(log N) (using a heap to store the next event

for each resource), which is negligible when compared to the
calls to surf_solve. Therefore the overall complexity for
running such an example would be Θ(N2(P + T)), which is
also unacceptably high for large N and large traces.

4. IMPROVING THE SIMGRID CORE
In this section we propose solutions for the issues raised in

the previous section. The first improvement removes unnec-
essary LMM system recomputations between two successive
calls to surf_solve (Section 4.1). This improvement is ef-
fective only when combined with a better management of
actions (Section 4.2). Both these improvements are gen-
eral and can be applied to both CPU and network models
within the SimGrid simulation core. We also propose a third
improvement, which is applicable to hosts with CPU avail-
ability that varies over time (Section 4.3).

4.1 Partial LMM Invalidation
For the example in Section 3.3, the LMM system is inval-

idated between each call to surf_solve, mandating a full
solve even though only a few variables have changed. We
say that two variables x and y interfere with each other (de-
noted by x ∼ y) if there exists a constraint C constraining
both x and y. We denote by ∼+ the transitive closure of ∼.
Between two calls to lmm_solve we only need to recompute
all variables belonging to the equivalence classes of variables
that have been added or removed.

Our first improvement is to compute on-the-fly the above
transitive closure in order to recompute only the needed
variables. Using our sparse data structure combined with
efficient set data structures, the overall complexity of in-
validation and resolving becomes linear in the size of the
connected components (this complexity is thus optimal).

In our simple example, only one variable needs to be re-
computed so the cost of lmm_solve is Θ(1) (to be compared
to Θ(N) previously). This optimization also applies to more
general linear systems such as the ones used for network
models. When the interaction between the variables is more
widespread, one may need to recompute up to the whole sys-
tem. In this worst case the overall complexity is still linear
in the system size, i.e., the same complexity as without the
partial invalidation mechanism.

4.2 Lazy Action Management
Partial invalidation makes it possible to reduce the com-

plexity of lmm_solve but the complexity of share_resources
is still Θ(|actions|) as the completion date of each action is
recomputed after the call to lmm_solve. Yet, only the ac-
tions whose resource shares have just been modified in lmm_

solve need to be updated. We introduce a future event set,
implemented as a heap, in which we store the completion
date of the different actions. When a resource share is mod-
ified, all corresponding actions are removed from the set.
The completion date of each such action is then updated and
the action is reinserted into the heap. Removing and insert-
ing elements in the heap has Θ(log(|actions|)) complexity
and computing the minimum completion date to return to
SURF’s main loop is now O(1).

The last remaining expensive function is update_action_
state. This function is supposed to update the state of
all actions, namely remaining work amounts, and return
completed and failed actions. There is thus no hope to re-
duce its Θ(|actions|) complexity if all actions need to be up-

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

Lazy Evaluation

I LMM model is a MaxMin system

I Used to recompute it all on each change

I Waste of time if system is loosely coupled

I Ex: 3h to simulate 2500 hosts for one week
No coupling ; dumb full recomputes

; Invalidate only changed parts of the system

Availability Trace Integration

I Before: ∀step, ∀action, compute if done

I Waste of time if only one action per resource

; Precompute termination date only once

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 10/32

GrenobleSimulation Speed Improvement (2/2)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1
0

 2
0

 4
0

 8
0

 1
6
0

 3
2
0

 6
4
0

 1
2
8
0

 2
5
6
0

 5
1
2
0

 1
0
2
4
0

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

number of simulated hosts

Default CPU Model

Partial LMM Invalidation

Lazy Action Management

Trace Integration

Results
I From 3 hours to 10 seconds to simulate one week of 2500 dynamic hosts

I Arbitrary speedup depending on scenario (less coupling ; more speedup)

I Huge gain in typical P2P and Desktop Grid settings
I 60 times faster than BOINC client simulator
I 20-30 times faster than SimBA (an ad hoc BOINC simulator designed to scale)

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 11/32

Bordeaux, SaclayMemory Scalability: Simpler Models (1/3)

Classical Network Model in SimGrid

I Precise platform graph

I Needs complete routing table: quadratic size

I Limiting factor to consider larger platforms

I Acquisition/Generation is a problem

I P2P community: constant time for all coms
Not enough info available to instanciate this

Simpler models: compact distance labeling

I Assign a label (eg coordinates) to each host

I Evaluate distance between 2 hosts from their labels

I Complexity: linear size, constant time

I Good compact representation for latencies

Ex.: Vivaldi model

x

y

h

A′
B ′

dA,B = ‖A′B ′‖+ hA + hB

A B

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 12/32

Bordeaux, SaclayMemory Scalability: Simpler Models (1/3)

Classical Network Model in SimGrid

I Precise platform graph

I Needs complete routing table: quadratic size

I Limiting factor to consider larger platforms

I Acquisition/Generation is a problem

I P2P community: constant time for all coms
Not enough info available to instanciate this

Simpler models: compact distance labeling

I Assign a label (eg coordinates) to each host

I Evaluate distance between 2 hosts from their labels

I Complexity: linear size, constant time

I Good compact representation for latencies

Ex.: Vivaldi model

x

y

h

A′
B ′

dA,B = ‖A′B ′‖+ hA + hB

A B

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 12/32

Bordeaux, SaclayMemory Scalability: Simpler Models (2/3)

Example of application: Peer-assisted video streaming

I Send a large message to a large number of hosts

I Peers may help by forwarding the message to other peers

I Algorithmic problem: organizing communications to maximize throughput

I Natural value of interest: available bandwidth

Last-mile model
I Hosts are characterized by their incoming and outgoing bandwidth

I BWA,B = min(bout
A , bin

B)

I Allows to model the asymmetry of actual bandwidth measures

I Instanciation is possible from a small number of measurements

I Theoretical result: near-optimal allocation for streaming with bounded degree

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 13/32

Bordeaux, SaclayMemory Scalability: Simpler Models (3/3)

Precision of the simple models

I Assess quality of recomputed values wrt original

I Comparison made from measures from PlanetLab

; Error last mile < 2 for 85% of measurements

I Simple models can provide interesting results

I Asymmetry is an important feature 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error

C
D

F

Last−mile (alpha=0)
Last−mile (alpha=0.25)
Vivaldi
Sequoia−15

Future directions
I Evaluate validity through the behavior of applications

I Combine bandwidth and latency

I Add complexity to the last-mile model for increased precision

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 14/32

Scalability: Planned Work

Hierarchical routing: memory footprint (large platforms)

I The current representation relies on a full N × N routing table
This table alone exhausts gigabytes for 1000 hosts only

I Exploit hierarchy and regularity to gain several orders of magnitude

Distribution and Parallelization (large amount of processes)

I Tweaking stack size enable to reach 200,000 user threads (not always possible)

I Adopt a real OS-like architecture to distribute user code on several machines

I Factorize common parts of simulations

I Exploit semantic independence of events to increase parallelism

Storage modeling

I Modeling the performance of a single hard drive seems impossible

I Stochastic modeling of thousands of tapes and hard drives may be easier
(in collaboration with the CERN team in charge of the data management)

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 15/32

Validity Challenge

Context: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton; GridSim: naive packet level

I OptorSim, GroudSim: documented as being wrong on heterogeneous platforms

Quality Levels of Validity

I Level -1: not validated (probably plainly wrong)

I Level 0 (visually ok): a few curves that look similar (generally hides a lot)

I Level 1 (ratios ok): A < B in Simulation ⇔ A < B in Reality

I Level 2 (prediction abilities): bounded distance between simulation and reality

I Orthogonal to this: need to assess when the model is valid (validity domain)

I Validity evaluation: tricky, requires meticulous attention & sound methodology

SIMGRID validity before USS: Research focus in SimGrid since 2002

Setting: Synthetic App. + Synthetic WAN; Compare against packet-level simulator
I Error in percents if: TCP steady state (flows > 10Mb), latency-bound (WAN)

I Wrong estimations when capacity-bound (suspect: max-min sharing)

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 16/32

Validity Challenge

Context: Models in most simulators are either simplistic, wrong or not assessed

I PeerSim: discrete time, application as automaton; GridSim: naive packet level

I OptorSim, GroudSim: documented as being wrong on heterogeneous platforms

Quality Levels of Validity

I Level -1: not validated (probably plainly wrong)

I Level 0 (visually ok): a few curves that look similar (generally hides a lot)

I Level 1 (ratios ok): A < B in Simulation ⇔ A < B in Reality

I Level 2 (prediction abilities): bounded distance between simulation and reality

I Orthogonal to this: need to assess when the model is valid (validity domain)

I Validity evaluation: tricky, requires meticulous attention & sound methodology

SIMGRID validity before USS: Research focus in SimGrid since 2002

Setting: Synthetic App. + Synthetic WAN; Compare against packet-level simulator
I Error in percents if: TCP steady state (flows > 10Mb), latency-bound (WAN)

I Wrong estimations when capacity-bound (suspect: max-min sharing)

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 16/32

Nancy, Villeurbanne, GrenobleValidation Improvements in USS

First Step: Synthetic App. + Synthetic WAN. Compare against GTNetS

I Some errors were hunted down + unexpected phenomenon were understood

; The model and its instanciation were considerably improved
Widen validity range to flows > 100Kb and WAN with small latencies

I Sharing mechanism from theoretical literature experimentally proved wrong

Going Further: developed SMPI ; Real App. (NAS PB) + clusters (LAN)

I Good prediction for short messages is crucial (piecewise linear)

I Need to accurately implement/model collective operation algorithms

I Evaluating weight of computation phases is tricky, numerical instabilities deadly

I Need to account for MPI overhead; what is Real with several MPI implems?

OpenMPI
SMPI before

SMPI now

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 8 16 32

T
im

e
(s

)

Amount of procs

IS Class B

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 17/32

Nancy, Villeurbanne, GrenobleValidation Improvements in USS

First Step: Synthetic App. + Synthetic WAN. Compare against GTNetS

I Some errors were hunted down + unexpected phenomenon were understood

; The model and its instanciation were considerably improved
Widen validity range to flows > 100Kb and WAN with small latencies

I Sharing mechanism from theoretical literature experimentally proved wrong

Going Further: developed SMPI ; Real App. (NAS PB) + clusters (LAN)

I Good prediction for short messages is crucial (piecewise linear)

I Need to accurately implement/model collective operation algorithms

I Evaluating weight of computation phases is tricky, numerical instabilities deadly

I Need to account for MPI overhead; what is Real with several MPI implems?

OpenMPI
SMPI before

SMPI now

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 8 16 32

T
im

e
(s

)

Amount of procs

IS Class B

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 17/32

Validity: Planned Work

Most of WP1/WP2 done

I Validity is an endless quest and we will pursue our effort on SimGrid validation...

I ...but probably not within the USS project

I Current validity is good enough for P2P and Volunteer Computing settings

I SMPI almost good enough for cluster dimensioning (WP6.1)

Other efforts: New kind of models (FYI)

I Storage elements (collaboration with CERN)

I Multi-core (taking into account memory consumption)

I Stochastic models for availability/unavailability traces (if users need it)

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 18/32

Usability Challenge

Workflow to any Experiments through Simulation

1. Prepare the experimental scenarios (platform, background load, . . .)

2. Launch thousands of simulations

3. Post-processing and result analysis

; Each simulation is only a brick, we must provide more tools

Situation before the project

I Others simulators come with ad hoc tools (but many demowares)

I SimGrid: nothing public/generic, but each user grow home-made scripts

USS-SimGrid Proposal

1. Workload generation:
I Platforms (Simulacrum, PDA, MintCAR, . . .)
I Applicative Workload (trace collection+replay)
I Background Workload

2. Campaign management

3. Single simulation analysis: Visualization

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 19/32

Visualization Challenges
Simulations can produce a lot of logs (even more at large scale)

I Everyone produces ad-hoc parsing scripts
I Not always easy, graphically visualizing more appealing
I Visual inspection to check the correctness of the simulation is crucial

Building a demoware is easy. Helping understanding is harder
I Most of the time ad hoc: developed specifically for one simulator/library
I Do not show the right informations: platform/application state, tracing/profiling
I Cumbersome, nearly impossible to adapt: shows what its author wanted to see
I Scale badly

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 20/32

GrenobleVisualizing SimGrid Simulations
Triva and Paje: separate (established) projects (L. Schnorr, B. Stein)

I Generic and dedicated to visualization: SimGrid only produces adapted traces

I Display the right information: intermediate between monitoring and profiling

I Easy navigation in space and time: selection, aggregation, animation

I Scalable: efficient representation and implementation, allows efficient browsing

computational powerServers
Two Project

thickness means
Links

size means more
Hosts

Separation indicates time proportion at which the resource was used by each task categories

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 21/32

GrenobleUse case driven research

Detecting Anomalies

I Used to study scheduling issues related to BOINC

I Used to track differences in validity study

Most of the time, we set up the visualization to check something

Often, we noticed something else

Fairness of BOINC Bug identification

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 22/32

Usability: Planned Work

Experimental Setup Generation

I Adapt to future hierarchical platform description

I Programmative rather than descriptive-only approach
(from XML files to lua console)

Campaign Management

I Running and managing results on a grid requires an efficient framework

I Design of Experiments: Methodology to decide which and how many experi-
ments to do to gain as much insight as possible

Visualization
I Use case driven research

I Spatial aggregation for graph representations

I Trace comparison: understand what changed from one run to another

USS-SimGrid Ultra Scalable Simulation with SimGrid Scientific Achievements 23/32

Agenda

Introduction, Context and Motivation

Scientific Achievements
Scalability Challenge
Validity Challenge
Usability Challenge

Organizational Aspects
Work Organization
Current Situation
Project Outcomes

Conclusion and Open questions

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 24/32

Collaborative Work
These informations are available in the Mobility livrable, and on the web site

11 Visits (2-3 sites; 3-6 people)
Bordeaux Grenoble Hawai‘i Lyon Nancy Reims Saclay Villeurbanne

Bordeaux – X
Grenoble – X XXX X XX
Hawai‘i – X X

Lyon X X X – XX –
Nancy XXX X XX – X
Reims X –
Saclay –

Villeurbanne XX – X –

(plus monthly audio meetings and daily Instant Messaging)

6 Plenary Meetings (all sites; 20+ people)

I January 15-16, 2009: Kickoff meeting

I March 12, 2009: WP4 kickoff

I Jul 9, 2009: T6 meeting

I Dec 8, 2009: T12 meeting

I Apr 12, 2010: T16 meeting

I Sep 6-7, 2010: Evaluation preparation meeting (leaders only)

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 25/32

Work (re)Distribution

Partner WP0 WP1 WP2 WP3 WP4 WP5 WP6

Bordeaux • • • ••
Grenoble • • •• •• • • • •
Hawai‘i • • • •

Lyon •• •
Nancy •• • • • • • • • •
Reims • • •
Saclay • • •

Villeurbanne • • • • ••
% done – 60 80 50 70 50 80 50 10 50 10 30 30

Planned Work Distribution Actual Investment at T18

small • ; • large small • ; • large

I Initially each partner had its WP of major interest

I In pratice the forces have gathered on WP1, WP2, and WP3
I The same is likely to happen for WP4 and WP5 in the next 18 months

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 26/32

Reorganizations and Difficulties

Consortium Modifications
I At T0: F. Suter moved from Nancy to Villeurbanne (new partner)

I 1-Year engineer funding moved too

I At T18: F. Le Fessant (Saclay) leaved the project (and his researcher position)

I Replaced by a new partner: O. Dalle (Nice)

Scientific Focus Adjustments
I Tremendous improvements on scalability thanks to the force gathering on WP1

I Parallelization (WP5) for scalability is less urgent
; Refocus on the last subtask of WP5 (Simulation of Distributed Forks)
I The remaining currently starting

Hiring Issue

I Reims found a good candidate only at T15 (while WP4 needed it at T0)

I Grenoble found a good candidate for WP4 at T18

; WP4 is now shared between Reims and Grenoble

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 27/32

Hiring and Financial Status

ANR funded positions

I Almost all positions have been taken (but 2 postdocs in Bordeaux and Nice)

Non-ANR funded positions

I Engineers: 2× 2-year positions funded by INRIA ADT program

I PhDs: 2 positions (INRIA and INRIA/Région) related to WP6 and WP2

I Interns: 3 international (WP1) and 1 engineering school (WP2), all INRIA

Financial Status
Spent budget Taken Positions

Bordeaux 22% 12/24 months
Grenoble 29% 36/36 months

Lyon 81% 12/12 months contract ended at T12
Nancy 42% 60/60 months
Reims 11% 24/24 months

Saclay/Nice 0.2% 0/12 months
Villeurbanne 59% 9/12 months convert salaries → dissemination

Note: aggreed at T0 that T0=15 jan 2009, but officially 15 dec 2008. How to fix?

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 28/32

Production and Dissemination

Publications
I 11 international publications (including 2 multi-site publications)

I SIMUTools (2009 and 2010), IPDPS’10, ICDS’09, CCAV’09, LSAP’10, PSTI’10,
AVOCS’10, 3PGCIC’10, ADCIT (Book Chapter)

I 4 submitted articles (including 2 multi-site publications)

Software
I SimGrid: 7 releases (including 2 major releases)

I Visualization: 2 releases of Triva

I Automatic Platform Mapping: release of MintCar and UMCTool

I Synthetic Platform Generation: release of Simulacrum

Dissemination
I 2 Tutorials: HPCS’10, CLCAR’10

I 2 Invited talks: P2P’09, RGE

I 2 SuperComputing presence: @INRIA booth in 2009 and 2010

I 3-day Workshop: The SimGrid User Days (SUD)

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 29/32

SimGrid User Days

I 3 days in April 2010 in Cargese (plus a plenary meeting the day before)
I 39 participants (including 19 invited users)

CERN, Univ. Antwerp, Univ. Neuchâtel, Univ. Pôrto Alegre
I 25 talks (including 10 from users)

I Intense activity period for the project:
I Dissemination and user feedback at days
I Team meetings for permanents and coding parties for temporaries at nights

I To be renewed soon!

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 30/32

USS SimGrid as a Flagship

I Collaboration with the ANR CIP project
I Use SIMGRID to study workload characterization based on static analysis
I Related to WP2.3 and WP6.1; 1 common meeting

I Collaboration with the ANR SPREADS project
I Related to WP1 on scalable models; 1 common meeting

I PHC Tournesol with the University of Antwerp (2k – 2y)
I On Scalable routing related to WP1.1; 2 weeks visit

I PICS CNRS Hawai‘i/Villeurbanne (15k – 3y)
I On on-line and off-line MPI simulation (WP2.3 and WP6.1); 2× 1-week visit

I Institut des Grilles/Aladdin project SimGlite (5k – 1y)
I Simulation/emulation of a gLite production grid
I Related to WP2.3 interception methods; 1 common meeting

I Institut des Grilles/Aladdin project SimData (5k – 1y)
I Simulation of the distributed data management infrastructure of CERN
I Requires new scalable storage models in WP1; 1 common meeting

I INRIA ADT (80k – 2y)
I 2 × 2-year engineer positions to improve the usability of SIMGRID

USS-SimGrid Ultra Scalable Simulation with SimGrid Organizational Aspects 31/32

Conclusion and Open questions

Answers to good questions lead to new questions
I The work planned in this project will be done on time
I But these developments gave us new ideas about going even further
I These new ideas cannot be tackled in the time frame and will remain open

Scalability
I Time parallel: split timeline to parallelize further
I Fluid simulation: aggregate behaviours of groups of processes

Validity
I Endless quest: other application domains can be (even) more challenging

Usability
I Design of experiment: automatically determine the runs answering a question
I Open science: log experiment campaigns, share them, improve other’s ones

Example of domain of application: exascale
I Programming the future supercomputers of billions of cores
I Combine the need of extreme scalability with meticulous validity

USS-SimGrid Ultra Scalable Simulation with SimGrid Conclusion and Open questions 32/32

	Introduction, Context and Motivation
	Scientific Achievements
	Scalability Challenge
	Lazy Evaluation
	Simpler Models

	Validity Challenge
	SMPI

	Usability Challenge
	Visualization

	Organizational Aspects
	Work Organization
	Current Situation
	Project Outcomes

	Conclusion and Open questions

