Ultra Scalable Simulation with SimGrid USS SimGrid (ANR 08 SEGI 022)

http://uss-simgrid.gforge.inria.fr

Coordinated by Martin Quinson (Nancy University)

Paris, September 17 2010

Cloud Computing

- Large infrastructures underlying the commercial Internet
- Examples: eBay, Amazon, Facebook, Google, ViaMichelin, Voyages-SNCF, etc.
- ▶ Main issue: keep up with the load, even when facing flash crowd effects

Peer-to-peer Systems (P2P)

- Goal: Exploit resources at network edges (storage, CPU, human presence)
- Approach: Decentralized Systems (not Clients/Server; each node does both)
- ▶ Promises: Organic growth, infrastructure independence, scalability, robustness
- Issues: Nodes' intermittent connectivity (churn); Network locality; Anonymity

These systems are in use today, but badly understood

They deserve a thorough scientific analysis

How to perform this study

Classical approaches in science and engineering

- 1. Theoretical work: equations on a board
- 2. Experimental study on an scientific instrument

That's not always desirable (or even possible)

- Some phenomenons are intractable theoretically
- Experiments too expensive, difficult, slow, dangerous

The third scientific way: Computational Science

- Study in silico using computers Modeling / Simulation of the phenomenon or data-mining
- \rightsquigarrow High Performance Computing Systems

How to perform this study

- Classical approaches in science and engineering
 - 1. Theoretical work: equations on a board
 - 2. Experimental study on an scientific instrument
- That's not always desirable (or even possible)
 - Some phenomenons are intractable theoretically
 - Experiments too expensive, difficult, slow, dangerous
- The third scientific way: Computational Science
 - Study in silico using computers Modeling / Simulation of the phenomenon or data-mining
 - \rightsquigarrow High Performance Computing Systems
- These systems deserve very advanced analysis
 - Debugging and tuning technically difficult; Induce methodological challenges
 - Science of the *in silico science*
 - Same benefits for our study as for other sciences

Large-Scale Distributed Systems Science?

Requirements for a Scientific Approach

- Reproducible results
 - > You can read a paper, reproduce a subset of its results and improve
- Standard tools and methodologies
 - Grad students can learn their use and become operational quickly
 - Experimental scenario can be compared accurately

Current practice in the field: quite different

- ▶ Very little common methodologies and tools, large load of (ad-hoc) tools
 - GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS
 From 141 P2P sim.papers: 30% custom tool, 50% don't report tool [Naicken06]
 - Few are really usable: Diffusion, Software Quality Assurance, Long-term availability
 - Most rely on straightforward models with no validity assessment
- Experimental settings rarely detailed enough in literature

Large-Scale Distributed Systems Science?

Requirements for a Scientific Approach

- Reproducible results
 - > You can read a paper, reproduce a subset of its results and improve
- Standard tools and methodologies
 - Grad students can learn their use and become operational quickly
 - Experimental scenario can be compared accurately

Current practice in the field: quite different

- Very little common methodologies and tools, large load of (ad-hoc) tools
 - GridSim, ChicSim, GES; P2PSim, PlanetSim, PeerSim; ns-2, GTNetS
 From 141 P2P sim.papers: 30% custom tool, 50% don't report tool [Naicken06]
 - Few are really usable: Diffusion, Software Quality Assurance, Long-term availability
 - Most rely on straightforward models with no validity assessment
- Experimental settings rarely detailed enough in literature

Purpose of the SimGrid Project

- ► Allow a scientific approach of Large-Scale Distributed Systems simulation
- Propose ready to use tools enforcing methodological best practices

USS-SimGrid

Simulating Distributed Systems

Principle

Advantages

- Less simplistic than proposed theoretical models (which are useful too)
- ▶ Better XP control (~ reproducible) than production systems (+ not disruptive)
- Not as tedious, time/labor consuming than experimental platforms
- Plus: Lower technical burden; Quick and easy experiments; What if analysis

Main challenges

- Validity: Get realistic results (controlled experimental bias)
- Scalability: Simulate fast enough problems big enough
- Usability: Associated Tools; Ease of use; Applicability to context of interest

USS-SimGrid

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling

- Perimeter increase from Grid Computing to Peer-to-peer
- Improving simulation scalability: mandatory but not enough
- ► Campaign data management pre- & post-processing not trivial anymore

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling

- Perimeter increase from Grid Computing to Peer-to-peer
- Improving simulation scalability: mandatory but not enough
- ► Campaign data management pre- & post-processing not trivial anymore

Project organization

Axis 1 Models WP1: New models + validity WP2: Model instantiation (usability) Axis 2 Associated tools WP3: Simulation analysis WP4: Campaign management Axis 3 Extreme scalability WP5: Parallel and distributed simulation Axis 4 Transfer, dissemination WP6: Applications

The USS-SimGrid project

Make SimGrid usable in studies mandating extreme scaling

- Perimeter increase from Grid Computing to Peer-to-peer
- Improving simulation scalability: mandatory but not enough
- Campaign data management pre- & post-processing not trivial anymore

Project organization

Axis 1 Models
WP1: New models + validity
WP2: Model instantiation (usability)
Axis 2 Associated tools
WP3: Simulation analysis
WP4: Campaign management
Axis 3 Extreme scalability
WP5: Parallel and distributed simulation
Axis 4 Transfer discomination

Axis 4 Transfer, dissemination WP6: Applications

Coming next: Some scientific achievements on Scalability, Validity and Usability For each: Challenge; Focus on one result; Envisioned work within the project

USS-SimGrid

Introduction, Context and Motivation

6/32

Example of user code to execute

Example of user code to execute

Bob					
Listen from A	Alice				
Send "blah" t	to Alice				

Example of user code to execute

Bob						
Liste	en	from	Ali	ice		
Send	"ł	olah"	to	Alice		

SimGrid internal Main Loop

- $1. \ {\sf Run} \ {\sf every} \ {\sf ready} \ {\sf user} \ {\sf process} \ {\sf in} \ {\sf row}$
 - Each wants to consume resources
 - Assign actions on resources
- 2. Compute share for actions
- 3. Get earliest finishing action
- 4. Unlock user code waiting on this action

Example of user code to execute

Bob						
Liste	en	from	Ali	ice		
Send	"1	olah"	to	Alice		

SimGrid internal Main Loop

- $1. \ {\sf Run}$ every ready user process in row
 - Each wants to consume resources
 - Assign actions on resources
- 2. Compute share for actions
- 3. Get earliest finishing action
- 4. Unlock user code waiting on this action

SimGrid Functional Organization

- MSG: User-friendly syntaxic sugar
- Simix: Processes, synchro (SimPOSIX)
- SURF: Resources usage interface
- Models: Action completion computation

USS-SimGrid

Introduction, Context and Motivation

Agenda

• Introduction, Context and Motivation

Scientific Achievements

Scalability Challenge Validity Challenge Usability Challenge

Organizational Aspects

Work Organization Current Situation Project Outcomes

• Conclusion and Open questions

USS-SimGrid

Situation before the project

Timings from CERN guys

- Maximal amount of user processes
 - GridSim: 10,922 (hard limit)
 - SimGrid: 200k (memory limit, 4Gb)

Situation before the project

► Timings from CERN guys

- Maximal amount of user processes
 - GridSim: 10,922 (hard limit)
 - SimGrid: 200k (memory limit, 4Gb)
- But needs of the users:
 - ► CERN: 300 × bigger than that (10 days/run)
 - BOINC: 600k volatile hosts over a year
- PeerSim simulates millions of processes
 - but with simplistic models only

Situation before the project

Timings from CERN guys

- Maximal amount of user processes
 - GridSim: 10,922 (hard limit)
 - SimGrid: 200k (memory limit, 4Gb)
- But needs of the users:
 - ► CERN: 300 × bigger than that (10 days/run)
 - BOINC: 600k volatile hosts over a year
- PeerSim simulates millions of processes
 - but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

- Two aspects: Big enough (large platforms) \oplus Fast enough (large workload)
- Possible approaches:
 - \blacktriangleright Algorithmic optimizations: Compact routing representation \oplus Lazy evaluation

 - Simpler models (but potential loss of realism)
- USS SimGrid leverages all these approaches

Situation before the project

Timings from CERN guys

- Maximal amount of user processes
 - GridSim: 10,922 (hard limit)
 - SimGrid: 200k (memory limit, 4Gb)
- But needs of the users:
 - ► CERN: 300 × bigger than that (10 days/run)
 - BOINC: 600k volatile hosts over a year
- PeerSim simulates millions of processes
 - but with simplistic models only

Scalability constitutes the main objective of the USS SimGrid

- Two aspects: Big enough (large platforms) \oplus Fast enough (large workload)
- Possible approaches:
 - \blacktriangleright Algorithmic optimizations: Compact routing representation \oplus Lazy evaluation
 - ► Multiple computers: Distribution ⊕ Parallelism
 - Simpler models (but potential loss of realism)
- USS SimGrid leverages all these approaches
- Coming now: focus on 2 points

USS-SimGrid

Context: Volunteer Computing

> One task per CPU; Availability trace; network not relevant to the study

Lazy Evaluation

- LMM model is a MaxMin system
- Used to recompute it all on each change
- Waste of time if system is loosely coupled
- ► Ex: 3h to simulate 2500 hosts for one week No coupling ~> dumb full recomputes
- $\rightsquigarrow\,$ Invalidate only changed parts of the system

Availability Trace Integration

- ► Before: ∀step, ∀action, compute if done
- Waste of time if only one action per resource
- $\rightsquigarrow\,$ Precompute termination date only once

Scientific Achievements

Grenoble

Simulation Speed Improvement (2/2)

Results

- From 3 hours to 10 seconds to simulate one week of 2500 dynamic hosts
- ► Arbitrary speedup depending on scenario (less coupling ~> more speedup)
- Huge gain in typical P2P and Desktop Grid settings
 - ▶ 60 times faster than BOINC client simulator
 - > 20-30 times faster than SimBA (an ad hoc BOINC simulator designed to scale)

USS-SimGrid

Classical Network Model in SimGrid

- Precise platform graph
- Needs complete routing table: quadratic size
- Limiting factor to consider larger platforms
- Acquisition/Generation is a problem
- P2P community: constant time for all coms Not enough info available to instanciate this

Classical Network Model in SimGrid

- Precise platform graph
- Needs complete routing table: quadratic size
- Limiting factor to consider larger platforms
- Acquisition/Generation is a problem
- P2P community: constant time for all coms Not enough info available to instanciate this

Simpler models: compact distance labeling

- Assign a label (eg coordinates) to each host
- Evaluate distance between 2 hosts from their labels
- Complexity: linear size, constant time
- Good compact representation for latencies

Ex.: Vivaldi model

Example of application: Peer-assisted video streaming

- Send a large message to a large number of hosts
- Peers may help by forwarding the message to other peers
- ► Algorithmic problem: organizing communications to maximize throughput
- Natural value of interest: available bandwidth

Last-mile model

- Hosts are characterized by their incoming and outgoing bandwidth
- $\blacktriangleright BW_{A,B} = \min(b_A^{out}, b_B^{in})$
- Allows to model the asymmetry of actual bandwidth measures
- Instanciation is possible from a small number of measurements
- ► Theoretical result: near-optimal allocation for streaming with bounded degree

Precision of the simple models

- Assess quality of recomputed values wrt original
- Comparison made from measures from PlanetLab
- \rightsquigarrow Error $_{\textit{last_mile}} < 2$ for 85% of measurements
 - Simple models can provide interesting results
 - Asymmetry is an important feature

Future directions

Evaluate validity through the behavior of applications

Elltra Scalable Simulation with SimGrid

- Combine bandwidth and latency
- Add complexity to the last-mile model for increased precision

Scalability: Planned Work

Hierarchical routing: memory footprint (large platforms)

- ► The current representation relies on a full N × N routing table This table alone exhausts gigabytes for 1000 hosts only
- > Exploit hierarchy and regularity to gain several orders of magnitude

Distribution and Parallelization (large amount of processes)

- Tweaking stack size enable to reach 200,000 user threads (not always possible)
- Adopt a real OS-like architecture to distribute user code on several machines
- Factorize common parts of simulations
- Exploit semantic independence of events to increase parallelism

Storage modeling

- Modeling the performance of a single hard drive seems impossible
- Stochastic modeling of thousands of tapes and hard drives may be easier (in collaboration with the CERN team in charge of the data management)

Validity Challenge

Context: Models in most simulators are either simplistic, wrong or not assessed

- ▶ PeerSim: discrete time, application as automaton; GridSim: naive packet level
- OptorSim, GroudSim: documented as being wrong on heterogeneous platforms

Quality Levels of Validity

- Level -1: not validated (probably plainly wrong)
- ▶ Level 0 (visually ok): a few curves that look similar (generally hides a lot)
- ▶ Level 1 (ratios ok): A < B in Simulation $\Leftrightarrow A < B$ in Reality
- ▶ Level 2 (prediction abilities): bounded distance between simulation and reality
- Orthogonal to this: need to assess when the model is valid (validity domain)
- ► Validity evaluation: tricky, requires meticulous attention & sound methodology

Validity Challenge

Context: Models in most simulators are either simplistic, wrong or not assessed

- ▶ PeerSim: discrete time, application as automaton; GridSim: naive packet level
- OptorSim, GroudSim: documented as being wrong on heterogeneous platforms

Quality Levels of Validity

- Level -1: not validated (probably plainly wrong)
- ▶ Level 0 (visually ok): a few curves that look similar (generally hides a lot)
- ▶ Level 1 (ratios ok): A < B in Simulation $\Leftrightarrow A < B$ in Reality
- Level 2 (prediction abilities): bounded distance between simulation and reality
- Orthogonal to this: need to assess when the model is valid (validity domain)
- ► Validity evaluation: tricky, requires meticulous attention & sound methodology

SIMGRID validity before USS: Research focus in SimGrid since 2002

Setting: Synthetic App. + Synthetic WAN; Compare against packet-level simulator

- ▶ Error in percents if: TCP steady state (flows > 10Mb), latency-bound (WAN)
- Wrong estimations when capacity-bound (suspect: max-min sharing)

Validation Improvements in USS

First Step: Synthetic App. + Synthetic WAN. Compare against GTNetS

- ► Some errors were hunted down + unexpected phenomenon were understood
- \rightsquigarrow The model and its instanciation were considerably improved Widen validity range to flows > 100Kb and WAN with small latencies
 - > Sharing mechanism from theoretical literature experimentally proved wrong

Validation Improvements in USS

First Step: Synthetic App. + Synthetic WAN. Compare against GTNetS

- \blacktriangleright Some errors were hunted down + unexpected phenomenon were understood
- \rightsquigarrow The model and its instanciation were considerably improved Widen validity range to flows > 100Kb and WAN with small latencies
- Sharing mechanism from theoretical literature experimentally proved wrong

Going Further: developed SMPI \sim Real App. (NAS PB) + clusters (LAN)

- Good prediction for short messages is crucial (piecewise linear)
- Need to accurately implement/model collective operation algorithms
- Evaluating weight of computation phases is tricky, numerical instabilities deadly
- Need to account for MPI overhead; what is Real with several MPI implems?

Most of WP1/WP2 done

- Validity is an endless quest and we will pursue our effort on SimGrid validation...
- ...but probably not within the USS project
- Current validity is good enough for P2P and Volunteer Computing settings
- SMPI almost good enough for cluster dimensioning (WP6.1)

Other efforts: New kind of models (FYI)

- Storage elements (collaboration with CERN)
- Multi-core (taking into account memory consumption)
- Stochastic models for availability/unavailability traces (if users need it)

Usability Challenge

Workflow to any Experiments through Simulation

- 1. Prepare the experimental scenarios (platform, background load, \dots)
- 2. Launch thousands of simulations
- 3. Post-processing and result analysis
- $\rightsquigarrow\,$ Each simulation is only a brick, we must provide more tools

Situation before the project

- Others simulators come with ad hoc tools (but many demowares)
- SimGrid: nothing public/generic, but each user grow home-made scripts

USS-SimGrid Proposal

- 1. Workload generation:
 - Platforms (Simulacrum, PDA, MintCAR, ...)
 - Applicative Workload (trace collection+replay)
 - Background Workload
- 2. Campaign management
- 3. Single simulation analysis: Visualization

USS-SimGrid

Scientific Achievements

Visualization Challenges

Simulations can produce a lot of logs (even more at large scale)

- Everyone produces ad-hoc parsing scripts
- Not always easy, graphically visualizing more appealing
- Visual inspection to check the correctness of the simulation is crucial

Building a *demoware* is easy. Helping understanding is harder

- ▶ Most of the time *ad hoc*: developed specifically for one simulator/library
- Do not show the right informations: platform/application state, tracing/profiling
- Cumbersome, nearly impossible to adapt: shows what its author wanted to see
- Scale badly

\$./my_simulat	or MSG_visualiz	atio	n/colorize.pl
Ε	0.000]	Tremblay:master		Got 3 workers and 6 tasks to process
C	0.000]			Sending 'Task_0' to 'worker-0'
C	0.148]	Tremblay:master		Sending 'Task_1' to 'worker-1'
Ε	0.148]	Jupiter:worker		Processing 'Task_0'
Ε	0.347]	Tremblay:master		Sending 'Task_2' to 'worker-2'
Ε	0.347][Processing 'Task_1'
Ε	0.476]	Tremblay:master		Sending 'Task_3' to 'worker-0'
Ē	0.476]			Processing 'Task_2'
C	0.803]	Jupiter:worker		'Task_0' done
Γ	0.951]	Tremblay:master		Sending 'Task_4' to 'worker-1'
Ē	0.951][Jupiter:worker		Processing 'Task_3'
Ε	1.003][Fafard:worker		'Task_1' done
Ε	1.202]	Tremblay:master		Sending 'Task_5' to 'worker-2'
Ē	1.202][Processing 'Task_4'
Ē	1.507]['Task_2' done
C	1.606]	Jupiter:worker		'Task_3' done
Ε	1.635]			All tasks dispatched. Let's stop workers.
Ε	1.635][Processing 'Task_5'
Ε	1.637]	Jupiter:worker		I'm done. See you!
1	1.857]['Task_4' done
Ē	1.859][I'm done. See you!
E	2.666][
ĩ	2.668]			Goodbye now!
Ē	2.668][
ſ	2.668][Simulation time 2.66766

USS-SimGrid

Visualizing SimGrid Simulations

Grenoble

Triva and Paje: separate (established) projects (L. Schnorr, B. Stein)

- Generic and dedicated to visualization: SimGrid only produces adapted traces
- Display the right information: intermediate between monitoring and profiling
- Easy navigation in space and time: selection, aggregation, animation
- Scalable: efficient representation and implementation, allows efficient browsing

Scientific Achievements

₹ 21/32

Use case driven research

Detecting Anomalies

- Used to study scheduling issues related to BOINC
- Used to track differences in validity study

Most of the time, we set up the visualization to check something

Often, we noticed something else

Fairness of BOINC

Bug identification

Scientific Achievements

₹ 22/32

Ultra Scalable Simulation with SimGrid

Usability: Planned Work

Experimental Setup Generation

- Adapt to future hierarchical platform description
- Programmative rather than descriptive-only approach (from XML files to lua console)

Campaign Management

- ▶ Running and managing results on a grid requires an efficient framework
- Design of Experiments: Methodology to decide which and how many experiments to do to gain as much insight as possible

Visualization

- Use case driven research
- Spatial aggregation for graph representations
- Trace comparison: understand what changed from one run to another

Scientific Achievements

Agenda

• Introduction, Context and Motivation

Scientific Achievements

Scalability Challenge Validity Challenge Usability Challenge

Organizational Aspects

Work Organization Current Situation Project Outcomes

• Conclusion and Open questions

USS-SimGrid

Collaborative Work

These informations are available in the Mobility livrable, and on the web site

11 Visits (2-3 sites; 3-6 people)

	Bordeaux	Grenoble	Hawai'i	Lyon	Nancy	Reims	Saclay	Villeurbanne
Bordeaux	-			X				
Grenoble		-		Х	XXX	X		XX
Hawaiʻi			-	Х	X			
Lyon	Х	Х	Х	-	XX			-
Nancy		XXX	Х	XX	-			X
Reims		Х				-		
Saclay							-	
Villeurbanne		XX		-	Х			-

(plus monthly audio meetings and daily Instant Messaging)

6 Plenary Meetings (all sites; 20+ people)

- January 15-16, 2009: Kickoff meeting
- March 12, 2009: WP4 kickoff
- ▶ Jul 9, 2009: T6 meeting
- Dec 8, 2009: T12 meeting
- Apr 12, 2010: T16 meeting
- Sep 6-7, 2010: Evaluation preparation meeting (leaders only)

Work (re)Distribution

Part	ner	WP0	WP1	WP	2	WP3	WP4	WP5	WP6
Borde	aux	• •							
Grenc	oble	• •					•	• •	•
Hawa	ai'i		• •	•					•
Lyo	n								•
Nan	су		• •	•		•		•	•
Reir	ns		•				•		
Sacl	ау			• •					
Villeurb	banne	•							
% dc	one	-	60 80	50 7	0	50 80	50 10	50 10	30 30
Planned Work Distribution Actu				ctual Inve	estment	at T18			
	small 🛛 ; 🔎 large				small •	; 🔍 la	rge		

- Initially each partner had its WP of major interest
- \blacktriangleright In pratice the forces have gathered on WP1, WP2, and WP3
 - \blacktriangleright The same is likely to happen for WP4 and WP5 in the next 18 months

Reorganizations and Difficulties

Consortium Modifications

- ► At T0: F. Suter moved from Nancy to Villeurbanne (new partner)
 - 1-Year engineer funding moved too
- ▶ At T18: F. Le Fessant (Saclay) leaved the project (and his researcher position)
 - Replaced by a new partner: O. Dalle (Nice)

Scientific Focus Adjustments

- > Tremendous improvements on scalability thanks to the force gathering on WP1
 - Parallelization (WP5) for scalability is less urgent
 - $\sim\,$ Refocus on the last subtask of WP5 (Simulation of Distributed Forks)
 - The remaining currently starting

Hiring Issue

- Reims found a good candidate only at T15 (while WP4 needed it at T0)
- Grenoble found a good candidate for WP4 at T18
 - $\rightsquigarrow\,$ WP4 is now shared between Reims and Grenoble

Hiring and Financial Status

ANR funded positions

Almost all positions have been taken (but 2 postdocs in Bordeaux and Nice)

Non-ANR funded positions

- \blacktriangleright Engineers: 2 \times 2-year positions funded by INRIA ADT program
- ▶ PhDs: 2 positions (INRIA and INRIA/Région) related to WP6 and WP2
- ▶ Interns: 3 international (WP1) and 1 engineering school (WP2), all INRIA

Financial Status

	Spent budget	Taken Positions	
Bordeaux	22%	12/24 months	
Grenoble	29%	36/36 months	
Lyon	81%	12/12 months	contract ended at T12
Nancy	42%	60/60 months	
Reims	11%	24/24 months	
Saclay/Nice	0.2%	0/12 months	
Villeurbanne	59%	9/12 months	convert salaries $ ightarrow$ dissemination

Note: aggreed at T0 that T0=15 jan 2009, but officially 15 dec 2008. How to fix?

Production and Dissemination

Publications

- 11 international publications (including 2 multi-site publications)
 - SIMUTools (2009 and 2010), IPDPS'10, ICDS'09, CCAV'09, LSAP'10, PSTI'10, AVOCS'10, 3PGCIC'10, ADCIT (Book Chapter)
- 4 submitted articles (including 2 multi-site publications)

Software

- SimGrid: 7 releases (including 2 major releases)
- Visualization: 2 releases of Triva
- Automatic Platform Mapping: release of MintCar and UMCTool
- Synthetic Platform Generation: release of Simulacrum

Dissemination

- ▶ 2 Tutorials: HPCS'10, CLCAR'10
- 2 Invited talks: P2P'09, RGE
- 2 SuperComputing presence: @INRIA booth in 2009 and 2010
- 3-day Workshop: The SimGrid User Days (SUD)

USS-SimGrid

SimGrid User Days

▶ 3 days in April 2010 in Cargese (plus a plenary meeting the day before)

- 39 participants (including 19 invited users)
 CERN, Univ. Antwerp, Univ. Neuchâtel, Univ. Pôrto Alegre
- 25 talks (including 10 from users)
- Intense activity period for the project:
 - Dissemination and user feedback at days
 - Team meetings for permanents and coding parties for temporaries at nights
- To be renewed soon!

USS-SimGrid

USS SimGrid as a Flagship

- Collaboration with the ANR CIP project
 - Use SIMGRID to study workload characterization based on static analysis
 - Related to WP2.3 and WP6.1; 1 common meeting
- Collaboration with the ANR SPREADS project
 - Related to WP1 on scalable models; 1 common meeting
- ▶ PHC Tournesol with the University of Antwerp (2k 2y)
 - On Scalable routing related to WP1.1; 2 weeks visit
- PICS CNRS Hawai'i/Villeurbanne (15k 3y)
 - > On on-line and off-line MPI simulation (WP2.3 and WP6.1); $2 \times$ 1-week visit
- Institut des Grilles/Aladdin project SimGlite (5k 1y)
 - Simulation/emulation of a gLite production grid
 - Related to WP2.3 interception methods; 1 common meeting
- Institut des Grilles/Aladdin project SimData (5k 1y)
 - Simulation of the distributed data management infrastructure of CERN
 - Requires new scalable storage models in WP1; 1 common meeting
- INRIA ADT (80k 2y)
 - $\blacktriangleright~2\times2\text{-year}$ engineer positions to improve the usability of SIMGRID

Conclusion and Open questions

Answers to good questions lead to new questions

- ▶ The work planned in this project will be done on time
- ▶ But these developments gave us new ideas about going even further
- ► These new ideas cannot be tackled in the time frame and will remain open

Scalability

- ► Time parallel: split timeline to parallelize further
- Fluid simulation: aggregate behaviours of groups of processes

Validity

Endless quest: other application domains can be (even) more challenging

Usability

- Design of experiment: automatically determine the runs answering a question
- ► Open science: log experiment campaigns, share them, improve other's ones

Example of domain of application: exascale

- Programming the future supercomputers of billions of cores
- Combine the need of extreme scalability with meticulous validity

USS-SimGrid