
Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

An Application-Level Network Mapper

Arnaud Legrand1 Frédéric Mazoit2 Martin Quinson1.

1: ID – UMR 5132 (CNRS – INPG – INRIA – UJF), Grenoble, France.
2: LIP – UMR 5668 (CNRS – ENS-Lyon – UCBL – INRIA), Lyon, France.

IPDPS 2005

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Introduction (1/2)

Motivation

Modern platforms (Grid, P2P systems) heterogeneous and dynamic.

Distributed applications have to be reactive and network-aware.

Quantitative information (bandwidth) well studied [NWS, RPS, ganglia].

Qualitative information (topology) seldom known, but needed for:

Host siting and automatic configuration
Group communication

Definitions of topology

Almost as many as layers in the OSI model.

Physical interconnexion map (wires in the walls)

Routing infrastructure (path of network packets, from router to switch)

Application level (focus on effects – bandwidth, latency – not causes)

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Introduction (2/2)

Our context is at application level

Grid or P2P systems = multi-organization platforms.
System heterogeneity ⇒ cannot rely on specific system feature

Trust issue ⇒ no privileges for grid administrators (“root” or other)

Our Goal is...

Discover What Applications can Expect from the Platform
Given 4 hosts (a, b, c , d), determine whether a → b impact c → d (perfs).
Intuition: if they share a link, they share the bandwidth.

Our goal is not...

Discover network bottleneck and configuration issues

Discover packet paths

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Topology discovery methodologies

State of the art

Method Restriction Focus Routers Notes

SNMP authorized path all passive, LAN

traceroute ICMP path all level 3 of OSI
pathchar root path all link bandwidth, slow
Other no path din 6= dout tree

tomography bipartite [Rabbat03]

ENV no interference some tree only
ALNeM no interference ? complete graph

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Model used

Definition: routed graph G = (V ,E , r)

Non-oriented graph with routing function (r : V × V → V).(
u −→

G
v

)
is the path (set of vertices encountered in the graph G).

Definition: (ab) interfere with (cd) in G

(ab) ��G (cd) ⇐⇒
(

a −→
G

b

)
∩

(
c −→

G
d

)
6= ∅

Symmetric relation: (ab) ��G (cd) ⇔ (cd) ��G (ab)
Routing not symmetric: (ab) ��G (cd) 6⇔ (ab) ��G (dc)

Definition: (ab) does not interfere with (cd) in G

(ab) �G (cd) ⇐⇒ ¬
(
(ab) ��G (cd)

)

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Measurement methodology

Notation

bw(ab): bandwidth on a → b.
bw�cd(ab): bandwidth on a → b when c → d is saturated.

Definition of the measured interference

(ab) ��mes (cd) ⇐⇒ bw�cd (ab)

bw(ab) < 0.7 ; (ab) �mes (cd) if ratio > 0.9

Not symmetric: 10 Mo/s 100 Mo/s 100 Mo/s
a c b d (ab) ��mes (cd) and (cd) �mes (ab).

Definition of the “real” interference (to reintroduce symmetry)

(ab) ��rl (cd) ⇐⇒

{
(ab) ��mes (cd)

(cd) ��mes (ab)
(or) ⇐⇒ ¬(ab) �rl (cd)

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Problem statement

Notations

H : set of nodes
Interference matrix I (H,��rl):

I (H,��rl)(a,b,c,d) =

{
1 if (ab) ��rl (cd)

0 else

Definition

InterferenceGraph: Given H and I (H,��eG), find a routed graph
G = (V ,E , r) such that:

H ⊂ V ;

I (H,��eG) = I (H,��G) ;

|V | is minimal.

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Mathematical tools: Total interference and separators

Definition of the total interference

a ⊥ b ⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (Separation)

a ⊥ b ⇐⇒ ∃ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z) ∩ (b −→ z) .

Such a ρ is said to be a separator of a and b.

Theorem: ⊥ is an equivalence relation (under some assumptions)

Moreover, ∀ equivalence class, ∃ common separator for all pair of elements.

Theorem (Representativity)

Let C be an equivalence class for ⊥ and ρ a separator of its elements.
∀a ∈ C, ∀b, u, v ∈ H, (a, u) ��rl (b, v) ⇔ (ρ, u) ��rl (b, v)

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B

A B C D E F G H I

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B

B D G

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B

B

D G

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B D

G

B

H IFECA

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

β

α

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

I1

I2 I3

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯ I4 = {a; b} or
a

b
u

Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

u
v

v

u
a

b

I1

I2 I3

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1

Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

u
v

v

u
a

b

I1

I2 I3

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
bα βa

b

α

β

a
1 1

}
}
}

u

1

0
0

1
1

0

v

0\1 I2

I3

I1

Topological sort on the graph associated to the matrix slice gives I1, I2, I3

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

I1

I2 I3

Finding out how to cut
. . .

How to connect parts afterward

First step on I1 → Finds 2 classes I1a and I1α ; a ∈ I1a .
First step on I3 → Finds 2 classes I1b

and I1β
; b ∈ I1b

.

Reconnect I1a and I1b
; Reconnect I1α and I1β

.

No demonstration of this...

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut
. . .

How to connect parts afterward

First step on I1 → Finds 2 classes I1a and I1α ; a ∈ I1a .
First step on I3 → Finds 2 classes I1b

and I1β
; b ∈ I1b

.

Reconnect I1a and I1b
; Reconnect I1α and I1β

.

No demonstration of this...

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut
. . .

How to connect parts afterward

First step on I1 → Finds 2 classes I1a and I1α ; a ∈ I1a .
First step on I3 → Finds 2 classes I1b

and I1β
; b ∈ I1b

.

Reconnect I1a and I1b
; Reconnect I1α and I1β

.

No demonstration of this...

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� �
� �
� �

� �
� �
� �

a

b

I1

I2 I3

Finding out how to cut
. . .

How to connect parts afterward

First step on I1 → Finds 2 classes I1a and I1α ; a ∈ I1a .
First step on I3 → Finds 2 classes I1b

and I1β
; b ∈ I1b

.

Reconnect I1a and I1b
; Reconnect I1α and I1β

.

No demonstration of this...

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

0

32

42

5

6

1

8

10

16

100

101

102

103

104

20

105

106

107

108

109

22

11

12

14

19

110

111
112

113

114

39

115

116

117

118

119

120

121

122

123

124

34

125

126

127
128

129

36

13

15

130

131

132

133

134

31

135

136

137

138

139
46

60

140

141

142

143

144

40

145

146

147

148

149

4

7

150

151

152

153

154

47

155

156

157

158

159

44

18

75

160

161

162

163

164

58

17

80

170

171 172

173

174

52

175

176

177

178
179

59

65

70

180

181

182

183

184

53

2

27

3

51

21

25

28

85

95

23

24

29

26

90

30

35

33

37

38

9

45

41

50

55

56

57

6162

63

64

66

67

68

69

71

72

73

74

76

77

78

79

81

82

83

84

86

87

88

89

91

92

93

94

96

97
98

99

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Example of reconstruction

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Data collection

Intuitive algorithm

1 Measure the bandwidth on (ab) ;

2 Measure the bandwidth on (ab) when the link (cd) is saturated ;

3 Compute the ratio.

N4, 30s. per step ⇒ 50 days for 20 hosts.

Speeding things up

Using traceroute or other tomography

• Independent tests in parallel

• Validation of information sets

Refinement of existing graph?

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work

Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Conclusion

Contributions

Retrieve the interference-based topology from direct measurements

Strong mathemathical basements (optimal for cliques of trees)

More generic than ENV (partial cycle handling)

Based on GRAS (development of distributed applications on simulator)

Future work

NP-hardness

Experimentation on real platform (measurements optimization)

Iterative algorithm (modification detection)

Couple measurement and reconstruction phases

Integration within the NWS (auto-configuration; provide information)

	Introduction
	Context
	Motivation and goals
	State of the art

	ALNeM
	Model used
	Measurement methodology
	Problem statement

	Mathematical tools, algorithms
	Total interference and separators
	Reconstruction trees and cliques of trees
	Extension for cycles
	Example

	Implementation
	Data collection

	Conclusion
	Contributions and future work

