An Application-Level Network Mapper

Arnaud Legrand! Frédéric Mazoit?> Martin Quinson?.

1: ID — UMR 5132 (CNRS — INPG — INRIA — UJF), Grenoble, France.
2: LIP — UMR 5668 (CNRS — ENS-Lyon — UCBL — INRIA), Lyon, France.

IPDPS 2005

Introduction

Outline

@ Introduction
o Context
@ Motivation and goals
@ State of the art

Introduction
°

Introduction (1/2)

Motivation

Modern platforms (Grid, P2P systems) heterogeneous and dynamic.

Distributed applications have to be reactive and network-aware.

Quantitative information (bandwidth) well studied [NWS, RPS, ganglia].
Qualitative information (topology) seldom known, but needed for:

e Host siting and automatic configuration
o Group communication

Definition- of topology

Almost as many as layers in the OSI model.
@ Physical interconnexion map (wires in the walls)
@ Routing infrastructure (path of network packets, from router to switch)

@ Application level (focus on effects — bandwidth, latency — not causes)

Introduction
.

Introduction (2/2)

Our context is at application level

Grid or P2P systems = multi-organization platforms.
@ System heterogeneity = cannot rely on specific system feature
@ Trust issue = no privileges for grid administrators (“root” or other)

Our Goal is...

Discover What Applications can Expect from the Platform
Given 4 hosts (a, b, ¢, d), determine whether a — b impact ¢ — d (perfs).
Intuition: if they share a link, they share the bandwidth.

Our goal is not...

@ Discover network bottleneck and configuration issues
@ Discover packet paths

Introduction

Topology discovery methodologies

State of the art

| Method | Restriction | Focus | Routers | Notes \
’ SNMP \ authorized \ path \ all \ passive, LAN ‘
traceroute ICMP path all level 3 of OSI
pathchar root path all link bandwidth, slow
Other no path din # doyt | tree
tomography bipartite [Rabbat03]
ENV no interference some tree only
ALNeM no interference ? complete graph

Outline

o ALNeM
@ Model used
@ Measurement methodology
@ Problem statement

ALNeM
°

Model used

Definition: routed graph G = (V,E,r)
Non-oriented graph with routing function (r: V x V — V).

<u . v> is the path (set of vertices encountered in the graph G).

Definition: (ab) interfere with (cd) in G

(ab)IG(cd)<:><a?b>ﬁ<c?d>7é®

Symmetric relation: (ab) X¢ (cd) < (cd) X (ab)
Routing not symmetric: (ab) X; (cd) ¢ (ab) X (dc)

Definition: (ab) does not interfere with (cd) in G

(ab) / (cd) <= = ((ab) Xc (cd))

ALNeM
°

Measurement methodology

Notation

bw(ab): bandwidth on a — b.
bw) 4(ab): bandwidth on a — b when ¢ — d is saturated.

| \

Definition of the measured interference

(ab) Xoee (cd) 4= ZHLAZL <07 5 (ab) /e (cd) if ratio > 0.9

Not symmetric: , JOMofs 100Mofs “100Mos (ap) X, . (cd) and (cd) [/ mes (ab).

Definition of the “real” interference (to reintroduce symmetry)

(ab) Xnes (cd)

(cd) X (ab) O T 7(2D) [(cd)

(ab) X, (cd) <= {

ALNeM
°

Problem statement

H : set of nodes
Interference matrix /(H, X,):

1 if (ab) X, (cd)

0 else

/(H7 Ir/)(a,b,c,d) = {

Definition

| N\

INTERFERENCEGRAPH: Given H and /(H, Xz), find a routed graph
G = (V, E,r) such that:

HCV;
I(H7IE) = /(HaIG);

|V| is minimal.

Mathematical tools, algorithms

Outline

@ Mathematical tools, algorithms
@ Total interference and separators

@ Reconstruction trees and cliques of trees
@ Extension for cycles

Mathematical tools, algorithms
°

Mathematical tools: Total interference and separators

Definition of the total interference

alb<VY(uv)eH, (au)X, (bv)

Lemma (Separation)

aJ_b<:>3p€V/VZEHZpE(aHZ)ﬂ(bHZ).
Such a p is said to be a separator of a and b.

Theorem: _L is an equivalence relation (under some assumptions)

Moreover, V equivalence class, 3 common separator for all pair of elements.

Theorem (Representativity)

Let C be an equivalence class for | and p a separator of its elements.
VaeC, Vb,u,veH, (a,u) X, (b,v) < (p,u) X, (b,v)

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

®EO0O®OO®O

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees
Equivalence class = greedy algorithm eating the leaves.

©)
® © ®

®
® 9@

° b

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

(B
’ OGG@G

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

® O ® ()
® O)

(B)
’ OGG@G

Theorem: When |G| = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Gne| = 1.
Remark: The graph built is optimal (wrt |V| since V = H)

Mathematical tools, algorithms
°

Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

® O ® ()
® O)

(B)
’ OGG@G

Theorem: When |G| = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Gne| = 1.
Remark: The graph built is optimal (wrt |V| since V = H)

Theorem: When no interferences in /, clique of C; is valid solution
Remark: It is also optimal

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;

<
cut the cycle in between; ’ “
iterate previous algorithm;
b

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;
cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

cut the cycle in between; ’

iterate previous algorithm;

Find a and b close to each other on a cycle; @ ‘
‘ &

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)}
h={ueCi:ag(b—u)andbe(a—u)} a
h={ueC:ag(b—u)andbg(a— u)} /4={a:b}°r<§§'u
Ih={ueC:ae(b—u)andbe(a—u)}

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;

)
\) S
cut the cycle in between;
&

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)} Via_ o B b

h={ueCi:ag(b—u)andbe(a—u)} al 1|1}
h={ueCi:ag(b—u)andbd(a—u)} 0O\ 1]}*%
Ih={ueC:ae(b—u)andbe(a—u)} B() 0[1]}5

b

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

cut the cycle in between; ’

iterate previous algorithm;

Find a and b close to each other on a cycle; @ ‘
‘ &

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)} Via_ o B b

h={ueCi:ag(b—u)andbe(a—u)} al 1|1}
h={ueCi:ag(b—u)andbd(a—u)} 0O\ 1]}*%
Ih={ueC:ae(b—u)andbe(a—u)} B() 0[1]}5

b
Topological sort on the graph associated to the matrix slice gives 1, b, |5

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

cut the cycle in between; ’

iterate previous algorithm;

Find a and b close to each other on a cycle; @ ‘
‘ &

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;
cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward

First step on /1 — Finds 2 classes /1, and h; a € h,.
First step on 3 — Finds 2 classes /;, and llﬁ; bel,.

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;
cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward

First step on /1 — Finds 2 classes /1, and h; a € h,.
First step on 3 — Finds 2 classes /;, and llﬁ; bel,.

Reconnect /1, and /i, ; Reconnect /i, and Ilﬁ.

Mathematical tools, algorithms
°

Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;
cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward

First step on /1 — Finds 2 classes /1, and h; a € h,.
First step on 3 — Finds 2 classes /;, and llﬁ; bel,.

Reconnect /1, and /i, ; Reconnect /i, and Ilﬁ.

No demonstration of this...

Mathematical tools, algorithms
°

Example of reconstruction

- "
)
us ---
L]
O L]
™1 -- - W u -
- i .
[-
B
- - -

. [|
=]
=]

b [|
= =
[|
" om
m = =
Laz]

Mathematical tools, algorithms
°

Example of reconstruction

Mathematical tools, algorithms
°

Example of reconstruction

Mathematical tools, algorithms
°

Example of reconstruction

Mathematical tools, algorithms
°

Example of reconstruction

Mathematical tools, algorithms
°

Example of reconstruction

o .
® <
* Jogpe
o ®
o ° ¢ 4. iy q./
&)
. 2
[y °
[
o . o ° o ~
‘: g
o
e
e ©° °

o g ®

Mathematical tools, algorithms
°

Example of reconstruction

[} o .o.
® .
o Jese
®
AN s 9
) A ™o
a 9 ¥ I <
\ °
. *
Y °
[
e 0 o
\ e ®
)\ \®
\)
o | > ®
e ——— e
®
e
e ‘,/:,,, °
°

Mathematical tools, algorithms
°

Example of reconstruction

o . %
o .
° Jepe
S
- . o :
..o o Qe I o o
e
N)
. °
)
-
[}
[2 Y]
\ o °®
) \®
e
o | > ®
° S A
®
e
e ‘,/:,,, °
®

Mathematical tools, algorithms
°

Example of reconstruction

o . o
ol
® ‘\:..
AL o
o o ? A
) ° e
a e " I o
Yo, ()
. °
o
[S]
[]
o
[2 Y o
\ o °®
! @
s
o | > ®
° ———
[)
e
e ‘,/:,,, °
o

Mathematical tools, algorithms
°

Example of reconstruction

Mathematical tools, algorithms
°

Example of reconstruction

o .
® < N
\ 5
®
o P
'S
AN
@ e (] ®
@
®
(]
Y, ®
®

-y \.
ol o

o

@
e_|

\ s
L]
e
o 9 @

o g ®

Mathematical tools, algorithms
°

Example of reconstruction

o . o
ol
\ "
®
o2
{
° ® ° o
Z)

9 ¥ I «

Mathematical tools, algorithms
°

Example of reconstruction

[} o .o.
® <
° Jepe
. o]
°
a 9 b I q./
/\. ¢ 1
0
(WA \,
o ,
. o o .f’.
\ | o ‘
-
e [,
®
e
e ©° °

o g ®

Mathematical tools, algorithms
°

Example of reconstruction

Implementation

Outline

@ Implementation
@ Data collection

Implementation
°

Data collection

Intuitive algorithm

© Measure the bandwidth on (ab) ;
@ Measure the bandwidth on (ab) when the link (cd) is saturated ;
© Compute the ratio.

N4, 30s. per step = 50 days for 20 hosts.

Speeding things up

| \

Using traceroute or other tomography
e Independent tests in parallel

e Validation of information sets

Refinement of existing graph?

.

Conclusion

Outline

@ Conclusion
@ Contributions and future work

Conclusion
°

Conclusion

Contributions
@ Retrieve the interference-based topology from direct measurements
@ Strong mathemathical basements (optimal for cliques of trees)
@ More generic than ENV (partial cycle handling)
°

Based on GRAS (development of distributed applications on simulator)

@ NP-hardness

Experimentation on real platform (measurements optimization)

lterative algorithm (modification detection)
Couple measurement and reconstruction phases

Integration within the NWS (auto-configuration; provide information)

	Introduction
	Context
	Motivation and goals
	State of the art

	ALNeM
	Model used
	Measurement methodology
	Problem statement

	Mathematical tools, algorithms
	Total interference and separators
	Reconstruction trees and cliques of trees
	Extension for cycles
	Example

	Implementation
	Data collection

	Conclusion
	Contributions and future work

