Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion

An Application-Level Network Mapper

Arnaud Legrand¹ Frédéric Mazoit² Martin Quinson¹.

1: ID – UMR 5132 (CNRS – INPG – INRIA – UJF), Grenoble, France. 2: LIP – UMR 5668 (CNRS – ENS-Lyon – UCBL – INRIA), Lyon, France.

IPDPS 2005

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
	000	0000	O	O
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

- Context
- Motivation and goals
- State of the art
- ALNeM
 - Model used
 - Measurement methodology
 - Problem statement
- Mathematical tools, algorithms
 - Total interference and separators
 - Reconstruction trees and cliques of trees
 - Extension for cycles
- Implementation
 - Data collection
- Conclusion
 - Contributions and future work

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
●○○	000	0000	0	O
Introductio	on $(1/2)$			

Motivation

- Modern platforms (Grid, P2P systems) heterogeneous and dynamic.
- Distributed applications have to be reactive and network-aware.
- Quantitative information (bandwidth) well studied [NWS, RPS, ganglia].
- Qualitative information (topology) seldom known, but needed for:
 - Host siting and automatic configuration
 - Group communication

Definitions of topology

Almost as many as layers in the OSI model.

- Physical interconnexion map (wires in the walls)
- Routing infrastructure (path of network packets, from router to switch)

ヘロト 人間ト 人間ト 人間ト

3

• Application level (focus on effects - bandwidth, latency - not causes)

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
•••	000	0000	0	O
Introductio	on (2/2)			

Our context is at application level

Grid or P2P systems = multi-organization platforms.

- $\bullet~$ System heterogeneity \Rightarrow cannot rely on specific system feature
- Trust issue \Rightarrow no privileges for grid administrators ("root" or other)

Our Goal is...

Discover What Applications can Expect from the Platform

Given 4 hosts (a, b, c, d), determine whether $a \rightarrow b$ impact $c \rightarrow d$ (perfs). Intuition: if they share a link, they share the bandwidth.

Our goal is not...

- Discover network bottleneck and configuration issues
- Discover packet paths

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
○○●	000	0000	0	O
	11			

Topology discovery methodologies

State of the art

Method	Restriction	Focus	Routers	Notes
SNMP	authorized	path	all	passive, LAN
traceroute	ICMP	path	all	level 3 of OSI
pathchar	root	path	all	link bandwidth, <mark>slow</mark>
Other	no	path	$d_{in} eq d_{out}$	tree
tomography				bipartite [Rabbat03]
ENV	no	interference	some	tree only
ALNeM	no	interference	?	complete graph

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	0000	0	O
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Introduction
 - Context
 - Motivation and goals
 - State of the art

• ALNeM

- Model used
- Measurement methodology
- Problem statement
- Mathematical tools, algorithms
 - Total interference and separators
 - Reconstruction trees and cliques of trees
 - Extension for cycles
- Implementation
 - Data collection
- Conclusion
 - Contributions and future work

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	●○○	0000	O	O
Model use	d			

Definition: routed graph G = (V, E, r)

Non-oriented graph with routing function $(r : V \times V \rightarrow V)$.

 $\left(u \xrightarrow[G]{} v\right)$ is the path (set of vertices encountered in the graph G).

Definition: (ab) interfere with (cd) in G

$$(ab) \ \texttt{i}_{G} \ (cd) \Longleftrightarrow \left(a \xrightarrow{G} b \right) \cap \left(c \xrightarrow{G} d \right) \neq \emptyset$$

Symmetric relation: $(ab) \ \ \zeta_G (cd) \Leftrightarrow (cd) \ \ \zeta_G (ab)$ Routing not symmetric: $(ab) \ \ \zeta_G (cd) \not \Rightarrow (ab) \ \ \zeta_G (dc)$

Definition: (ab) does not interfere with (cd) in G

$$(ab) /\!\!/_{\scriptscriptstyle G} (cd) \Longleftrightarrow \neg ((ab) igee_{\scriptscriptstyle G} (cd))$$

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	○●○	0000	O	o
Measure	ment met	hodology		

Notation

bw(ab): bandwidth on $a \rightarrow b$. $bw_{//cd}(ab)$: bandwidth on $a \rightarrow b$ when $c \rightarrow d$ is saturated.

ວງ

Definition of the measured interference

 $(ab) \chi_{mes} (cd) \iff \frac{bw_{/\!/ cd}(ab)}{bw(ab)} < 0.7 \quad ; \quad (ab) //_{mes} (cd) \text{ if ratio } > 0.9$ Not symmetric: $a \xrightarrow{10 \text{ Mo/s}} c \xrightarrow{100 \text{ Mo/s}} b \xrightarrow{100 \text{ Mo/s}} d (ab) \chi_{mes} (cd) \text{ and } (cd) //_{mes} (ab).$

Definition of the "real" interference (to reintroduce symmetry)

$$(ab) \stackrel{\scriptstyle (ab)}{\scriptstyle (cd)} \iff \begin{cases} (ab) \stackrel{\scriptstyle (ab)}{\scriptstyle (cd)} (cd) \\ (cd) \stackrel{\scriptstyle (ab)}{\scriptstyle (ab)} (cd) \end{cases} \iff \neg (ab) /\!\!/_{rl} (cd)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□♥

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	○○●	0000	O	O
Problem	statemen	t		

Notations

 \mathcal{H} : set of nodes Interference matrix $I(\mathcal{H}, \chi_n)$:

$$I(\mathcal{H}, \boldsymbol{\chi}_{rl})_{(a,b,c,d)} = \begin{cases} 1 & \text{if } (ab) \boldsymbol{\chi}_{rl} (cd) \\ 0 & \text{else} \end{cases}$$

Definition

INTERFERENCEGRAPH: Given \mathcal{H} and $I(\mathcal{H}, \check{\lambda}_{\tilde{G}})$, find a routed graph G = (V, E, r) such that:

$$\begin{cases} \mathcal{H} \subset V ;\\ I(\mathcal{H}, \check{\boldsymbol{\chi}}_{\tilde{G}}) = I(\mathcal{H}, \check{\boldsymbol{\chi}}_{G}) ;\\ |V| \text{ is minimal.} \end{cases}$$

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000		O	O
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Introduction
 - Context
 - Motivation and goals
 - State of the art
- ALNeM
 - Model used
 - Measurement methodology
 - Problem statement
- Mathematical tools, algorithms
 - Total interference and separators
 - Reconstruction trees and cliques of trees
 - Extension for cycles
- Implementation
 - Data collection
- Conclusion
 - Contributions and future work

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	●○○○	O	O
Mathemati	cal tools:	Total interference	and separate	ors

Definition of the total interference

$$a \perp b \Longleftrightarrow \forall (u, v) \in \mathcal{H}, \ (au) \downarrow_{rl} (bv)$$

Lemma (Separation)

$$a \perp b \iff \exists \rho \in \widetilde{V} / \forall z \in \mathcal{H} : \rho \in (a \to z) \cap (b \to z).$$

Such a ρ is said to be a separator of a and b.

Theorem: \perp is an equivalence relation (under some assumptions)

Moreover, \forall equivalence class, \exists common separator for all pair of elements.

・ () ・ (う) ・ (う) ・ (し)

Theorem (Representativity)

Let C be an equivalence class for \bot and ρ a separator of its elements. $\forall a \in C, \forall b, u, v \in \mathcal{H}, (a, u) \chi_{rl}(b, v) \Leftrightarrow (\rho, u) \chi_{rl}(b, v)$

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○●○○	O	O
Reconstru	icting alg	gorithm		

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

A B C D E F G H 1

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion				
000	000	○●○○	O	O				
Reconstru	Reconstructing algorithm							

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion				
000	000	○●○○	O	O				
Reconstru	Reconstructing algorithm							

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion				
000	000	○●○○	O	O				
Reconstru	Reconstructing algorithm							

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○●○○	O	O
Reconstru	cting alg	gorithm		

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

Theorem: When $|C_{inf}| = 1$, the graph built is a solution. **Theorem:** If a tree being a solution exists, $|C_{inf}| = 1$. **Remark:** The graph built is optimal (wrt |V| since $V = \mathcal{H}$)

◆□ > ◆□ > ◆豆 > ◆豆 > □ □ ● の < ⊙

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○●○○	O	O
Reconstru	cting alg	gorithm		

Equivalence class \Rightarrow greedy algorithm *eating* the leaves.

Theorem: When $|C_{inf}| = 1$, the graph built is a solution. **Theorem:** If a tree being a solution exists, $|C_{inf}| = 1$. **Remark:** The graph built is optimal (wrt |V| since $V = \mathcal{H}$)

Theorem: When no interferences in I, clique of C_i is valid solution **Remark:** It is also optimal

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

$$\begin{cases} I_1 = \left\{ u \in \mathcal{C}_i : a \in (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_2 = \left\{ u \in \mathcal{C}_i : a \notin (b \to u) \text{ and } b \in (a \to u) \right\} \\ I_3 = \left\{ u \in \mathcal{C}_i : a \notin (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_4 = \left\{ u \in \mathcal{C}_i : a \in (b \to u) \text{ and } b \in (a \to u) \right\} \end{cases}$$

$$I_4 = \{a; b\} \text{ or } \langle b \rangle \bullet u$$

- Find *a* and *b* close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

$$\begin{cases} I_1 = \left\{ u \in \mathcal{C}_i : a \in (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_2 = \left\{ u \in \mathcal{C}_i : a \notin (b \to u) \text{ and } b \in (a \to u) \right\} \\ I_3 = \left\{ u \in \mathcal{C}_i : a \notin (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_4 = \left\{ u \in \mathcal{C}_i : a \in (b \to u) \text{ and } b \in (a \to u) \right\} \end{cases}$$

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

a, *b*: nodes with the most interferences (*i.e.*, maximizing $\{u, v : au \downarrow bv\}$)

$$\begin{cases} I_1 = \left\{ u \in C_i : a \in (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_2 = \left\{ u \in C_i : a \notin (b \to u) \text{ and } b \in (a \to u) \right\} \\ I_3 = \left\{ u \in C_i : a \notin (b \to u) \text{ and } b \notin (a \to u) \right\} \\ I_4 = \left\{ u \in C_i : a \in (b \to u) \text{ and } b \in (a \to u) \right\} \end{cases}$$

Topological sort on the graph associated to the matrix slice gives I_1, I_2, I_3

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○●○	0	0
Doconstr	ucting al	rorithm: Extension f	or oveloc	

Reconstructing algorithm: Extension for cycles

Idea

. . .

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

How to connect parts afterward

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

• • •

How to connect parts afterward

First step on $I_1 \rightarrow$ Finds 2 classes I_{1_a} and $I_{1_{\alpha}}$; $a \in I_{1_a}$. First step on $I_3 \rightarrow$ Finds 2 classes I_{1_b} and $I_{1_{\beta}}$; $b \in I_{1_b}$.

Reconstructing algorithm: Extension for cycles

Idea

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

• • •

How to connect parts afterward

First step on $I_1 \rightarrow$ Finds 2 classes I_{1_a} and $I_{1_{\alpha}}$; $a \in I_{1_a}$. First step on $I_3 \rightarrow$ Finds 2 classes I_{1_b} and $I_{1_{\beta}}$; $b \in I_{1_b}$. Reconnect I_{1_a} and I_{1_b} ; Reconnect $I_{1_{\alpha}}$ and $I_{1_{\beta}}$.

000	000		O	O		
Percentructing algorithm: Extension for evalue						

Reconstructing algorithm: Extension for cycles

Idea

- Find a and b close to each other on a cycle;
- cut the cycle in between;
- iterate previous algorithm;
- reintroduce the cycle: reconnect (*a*, *b*).

Finding out how to cut

• • •

How to connect parts afterward

```
First step on I_1 \rightarrow Finds 2 classes I_{1_a} and I_{1_{\alpha}}; a \in I_{1_a}.
First step on I_3 \rightarrow Finds 2 classes I_{1_b} and I_{1_{\beta}}; b \in I_{1_b}.
Reconnect I_{1_a} and I_{1_b}; Reconnect I_{1_{\alpha}} and I_{1_{\beta}}.
```

No demonstration of this...

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion		
000	000	○○○●	O	O		
Example of reconstruction						

	c		0	0
Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion		
000	000	○○○●	O	O		
Example of reconstruction						

000	ALNeM 000	Mathematical tools, algorithms	O	O		
Example of reconstruction						

Evenable	-f			
Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	0	O

reconstruction

Evenable	-f			
Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	0	O

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion			
000	000	○○○●	O	O			
Evample	Example of reconstruction						

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion			
000	000	○○○●	O	O			
Evample	Example of reconstruction						

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	O	O
Example of	f reconstr			

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion			
000	000	○○○●	O	O			
Example	Example of reconstruction						

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	O	O
Evampla	of recons	truction		

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion			
000	000	○○○●	O	O			
Example	Example of reconstruction						

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	O	O
Evampla	of recons	truction		

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000	○○○●	O	O
Evampla	of recons	truction		

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000		O	O
Outline				

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

Introduction

- Context
- Motivation and goals
- State of the art

• ALNeM

- Model used
- Measurement methodology
- Problem statement
- Mathematical tools, algorithms
 - Total interference and separators
 - Reconstruction trees and cliques of trees
 - Extension for cycles

Implementation

Data collection

- Conclusion
 - Contributions and future work

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000		•	O
Data collection				

Intuitive algorithm

- Measure the bandwidth on (ab);
- 2 Measure the bandwidth on (ab) when the link (cd) is saturated ;

- Ompute the ratio.
- N^4 , 30s. per step \Rightarrow 50 days for 20 hosts.

Speeding things up

Using traceroute or other tomography

- Independent tests in parallel
- Validation of information sets

Refinement of existing graph?

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion
000	000		O	O
Outline				

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへで

Introduction

- Context
- Motivation and goals
- State of the art

• ALNeM

- Model used
- Measurement methodology
- Problem statement
- Mathematical tools, algorithms
 - Total interference and separators
 - Reconstruction trees and cliques of trees
 - Extension for cycles
- Implementation
 - Data collection
- Conclusion
 - Contributions and future work

Introduction	ALNeM	Mathematical tools, algorithms	Implementation	Conclusion		
000	000	0000	0	•		
Conclusion						

Contributions

- Retrieve the interference-based topology from direct measurements
- Strong mathemathical basements (optimal for cliques of trees)
- More generic than ENV (partial cycle handling)
- Based on GRAS (development of distributed applications on simulator)

Future work

- NP-hardness
- Experimentation on real platform (measurements optimization)
- Iterative algorithm (modification detection)
- Couple measurement and reconstruction phases
- Integration within the NWS (auto-configuration; provide information)