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Introduction (1/2)

Motivation

Modern platforms (Grid, P2P systems) heterogeneous and dynamic.

Distributed applications have to be reactive and network-aware.

Quantitative information (bandwidth) well studied [NWS, RPS, ganglia].
Qualitative information (topology) seldom known, but needed for:

e Host siting and automatic configuration
o Group communication

Definition- of topology

Almost as many as layers in the OSI model.
@ Physical interconnexion map (wires in the walls)
@ Routing infrastructure (path of network packets, from router to switch)

@ Application level (focus on effects — bandwidth, latency — not causes)
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Introduction (2/2)

Our context is at application level

Grid or P2P systems = multi-organization platforms.
@ System heterogeneity = cannot rely on specific system feature
@ Trust issue = no privileges for grid administrators (“root” or other)

Our Goal is...

Discover What Applications can Expect from the Platform
Given 4 hosts (a, b, ¢, d), determine whether a — b impact ¢ — d (perfs).
Intuition: if they share a link, they share the bandwidth.

Our goal is not...

@ Discover network bottleneck and configuration issues
@ Discover packet paths
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Topology discovery methodologies

State of the art

| Method | Restriction | Focus | Routers | Notes \
’ SNMP \ authorized \ path \ all \ passive, LAN ‘
traceroute ICMP path all level 3 of OSI
pathchar root path all link bandwidth, slow
Other no path din # doyt | tree
tomography bipartite [Rabbat03]
ENV no interference some tree only
ALNeM no interference ? complete graph
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Model used

Definition: routed graph G = (V,E,r)
Non-oriented graph with routing function (r: V x V — V).

<u . v> is the path (set of vertices encountered in the graph G).

Definition: (ab) interfere with (cd) in G

(ab)IG(cd)<:><a?b>ﬁ<c?d>7é®

Symmetric relation: (ab) X¢ (cd) < (cd) X (ab)
Routing not symmetric:  (ab) X; (cd) ¢ (ab) X (dc)

Definition: (ab) does not interfere with (cd) in G

(ab) / (cd) <= = ((ab) Xc (cd))




ALNeM
°

Measurement methodology

Notation

bw(ab): bandwidth on a — b.
bw) 4(ab): bandwidth on a — b when ¢ — d is saturated.

| \

Definition of the measured interference

(ab) Xoee (cd) 4= ZHLAZL <07 5 (ab) /e (cd) if ratio > 0.9

Not symmetric: , JOMofs  100Mofs  “100Mos  (ap) X, . (cd) and (cd) [/ mes (ab).

Definition of the “real” interference (to reintroduce symmetry)

(ab) Xnes (cd)

(cd) X (ab) O T 7(2D) [ (cd)

(ab) X, (cd) <= {
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Problem statement

H : set of nodes
Interference matrix /(H, X,):

1 if (ab) X, (cd)

0 else

/(H7 Ir/)(a,b,c,d) = {

Definition

| N\

INTERFERENCEGRAPH: Given H and /(H, Xz), find a routed graph
G = (V, E,r) such that:

HCV;
I(H7IE) = /(HaIG);

|V| is minimal.
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@ Total interference and separators

@ Reconstruction trees and cliques of trees
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Mathematical tools: Total interference and separators

Definition of the total interference

alb<VY(uv)eH, (au)X, (bv)

Lemma (Separation)

aJ_b<:>3p€V/VZEHZpE(aHZ)ﬂ(bHZ).
Such a p is said to be a separator of a and b.

Theorem: _L is an equivalence relation (under some assumptions)

Moreover, V equivalence class, 3 common separator for all pair of elements.

Theorem (Representativity)

Let C be an equivalence class for | and p a separator of its elements.
VaeC, Vb,u,veH, (a,u) X, (b,v) < (p,u) X, (b,v)
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Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.
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Reconstructing algorithm
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Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.
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Theorem: When |G| = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Gne| = 1.
Remark: The graph built is optimal (wrt |V| since V = H)
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Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class = greedy algorithm eating the leaves.

® O ® ()
® O)

(B)
’ OGG@G

Theorem: When |G| = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Gne| = 1.
Remark: The graph built is optimal (wrt |V| since V = H)

Theorem: When no interferences in /, clique of C; is valid solution
Remark: It is also optimal
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Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;

<
cut the cycle in between; ’ “
iterate previous algorithm;
b

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})
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Reconstructing algorithm: Extension for cycles

cut the cycle in between; ’

iterate previous algorithm;

Find a and b close to each other on a cycle; @ ‘
‘ &

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)}
h={ueCi:ag(b—u)andbe(a—u)} a
h={ueC:ag(b—u)andbg(a— u)} /4={a:b}°r<§§'u
Ih={ueC:ae(b—u)andbe(a—u)}
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Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;

)
\) S
cut the cycle in between;
&

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)} Via_ o B b

h={ueCi:ag(b—u)andbe(a—u)} al 1|1}
h={ueCi:ag(b—u)andbd(a—u)} 0O\ 1]}*%
Ih={ueC:ae(b—u)andbe(a—u)} B() 0[1]}5
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Reconstructing algorithm: Extension for cycles

cut the cycle in between; ’

iterate previous algorithm;

Find a and b close to each other on a cycle; @ ‘
‘ &

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u,v : au X bv})

h={ueC:ac(b—u)andbd(a—u)} Via_ o B b

h={ueCi:ag(b—u)andbe(a—u)} al 1|1}
h={ueCi:ag(b—u)andbd(a—u)} 0O\ 1]}*%
Ih={ueC:ae(b—u)andbe(a—u)} B() 0[1]}5

b
Topological sort on the graph associated to the matrix slice gives 1, b, |5
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reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward
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Reconstructing algorithm: Extension for cycles

Find a and b close to each other on a cycle;
cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

Finding out how to cut

How to connect parts afterward

First step on /1 — Finds 2 classes /1, and h; a € h,.
First step on 3 — Finds 2 classes /;, and llﬁ; bel,.

Reconnect /1, and /i, ; Reconnect /i, and Ilﬁ.

No demonstration of this...
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Example of reconstruction
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Example of reconstruction
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Example of reconstruction
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Example of reconstruction
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Example of reconstruction
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Example of reconstruction

o .
® < N
\ 5
®
o P
'S
AN
@ e (]  ®
@
®
(]
Y, ®
®

-y \.
ol o

o

@
e_|

\ s
L]
e
o 9 @

o g ®




Mathematical tools, algorithms
°
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Example of reconstruction
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Example of reconstruction
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Data collection

Intuitive algorithm

© Measure the bandwidth on (ab) ;
@ Measure the bandwidth on (ab) when the link (cd) is saturated ;
© Compute the ratio.

N4, 30s. per step = 50 days for 20 hosts.

Speeding things up

| \

Using traceroute or other tomography
e Independent tests in parallel

e Validation of information sets

Refinement of existing graph?

.
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Conclusion

Contributions
@ Retrieve the interference-based topology from direct measurements
@ Strong mathemathical basements (optimal for cliques of trees)
@ More generic than ENV (partial cycle handling)
°

Based on GRAS (development of distributed applications on simulator)

@ NP-hardness

Experimentation on real platform (measurements optimization)

lterative algorithm (modification detection)
Couple measurement and reconstruction phases

Integration within the NWS (auto-configuration; provide information)
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