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Introduction (1/2)

Motivation

Modern platforms (Grid, P2P systems) heterogeneous and dynamic.

Distributed applications have to be reactive and network-aware.

Quantitative information (bandwidth) well studied [NWS, RPS, ganglia].

Qualitative information (topology) seldom known, but needed for:

Host siting and automatic configuration
Group communication

Definitions of topology

Almost as many as layers in the OSI model.

Physical interconnexion map (wires in the walls)

Routing infrastructure (path of network packets, from router to switch)

Application level (focus on effects – bandwidth, latency – not causes)



Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Introduction (2/2)

Our context is at application level

Grid or P2P systems = multi-organization platforms.
System heterogeneity ⇒ cannot rely on specific system feature

Trust issue ⇒ no privileges for grid administrators (“root” or other)

Our Goal is...

Discover What Applications can Expect from the Platform
Given 4 hosts (a, b, c , d), determine whether a → b impact c → d (perfs).
Intuition: if they share a link, they share the bandwidth.

Our goal is not...

Discover network bottleneck and configuration issues

Discover packet paths
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Topology discovery methodologies

State of the art

Method Restriction Focus Routers Notes

SNMP authorized path all passive, LAN

traceroute ICMP path all level 3 of OSI
pathchar root path all link bandwidth, slow
Other no path din 6= dout tree

tomography bipartite [Rabbat03]

ENV no interference some tree only
ALNeM no interference ? complete graph
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Model used

Definition: routed graph G = (V ,E , r)

Non-oriented graph with routing function (r : V × V → V ).(
u −→

G
v

)
is the path (set of vertices encountered in the graph G ).

Definition: (ab) interfere with (cd) in G

(ab) ��G (cd) ⇐⇒
(

a −→
G

b

)
∩

(
c −→

G
d

)
6= ∅

Symmetric relation: (ab) ��G (cd) ⇔ (cd) ��G (ab)
Routing not symmetric: (ab) ��G (cd) 6⇔ (ab) ��G (dc)

Definition: (ab) does not interfere with (cd) in G

(ab) �G (cd) ⇐⇒ ¬
(
(ab) ��G (cd)

)
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Measurement methodology

Notation

bw(ab): bandwidth on a → b.
bw�cd(ab): bandwidth on a → b when c → d is saturated.

Definition of the measured interference

(ab) ��mes (cd) ⇐⇒ bw�cd (ab)

bw(ab) < 0.7 ; (ab) �mes (cd) if ratio > 0.9

Not symmetric: 10 Mo/s 100 Mo/s 100 Mo/s
a c b d (ab) ��mes (cd) and (cd) �mes (ab).

Definition of the “real” interference (to reintroduce symmetry)

(ab) ��rl (cd) ⇐⇒

{
(ab) ��mes (cd)

(cd) ��mes (ab)
(or) ⇐⇒ ¬(ab) �rl (cd)
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Problem statement

Notations

H : set of nodes
Interference matrix I (H,��rl):

I (H,��rl)(a,b,c,d) =

{
1 if (ab) ��rl (cd)

0 else

Definition

InterferenceGraph: Given H and I (H,��eG), find a routed graph
G = (V ,E , r) such that:

H ⊂ V ;

I (H,��eG) = I (H,��G) ;

|V | is minimal.
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Mathematical tools: Total interference and separators

Definition of the total interference

a ⊥ b ⇐⇒ ∀(u, v) ∈ H, (au) ��rl (bv)

Lemma (Separation)

a ⊥ b ⇐⇒ ∃ρ ∈ Ṽ
/
∀z ∈ H : ρ ∈ (a −→ z) ∩ (b −→ z) .

Such a ρ is said to be a separator of a and b.

Theorem: ⊥ is an equivalence relation (under some assumptions)

Moreover, ∀ equivalence class, ∃ common separator for all pair of elements.

Theorem (Representativity)

Let C be an equivalence class for ⊥ and ρ a separator of its elements.
∀a ∈ C, ∀b, u, v ∈ H, (a, u) ��rl (b, v) ⇔ (ρ, u) ��rl (b, v)
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Reconstructing algorithm

Handling trees and cliques of trees

Equivalence class ⇒ greedy algorithm eating the leaves.

A

C

D

E

F
G H

I

B

A B C D E F G H I

Theorem: When |Cinf | = 1, the graph built is a solution.
Theorem: If a tree being a solution exists, |Cinf | = 1.
Remark: The graph built is optimal (wrt |V | since V = H)

Theorem: When no interferences in I , clique of Ci is valid solution
Remark: It is also optimal
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Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

Finding out how to cut

a, b: nodes with the most interferences (i.e., maximizing {u, v : au �� bv})

8>>><>>>:
I1 =

˘
u ∈ Ci : a ∈ (b −→ u) and b 6∈ (a −→ u)

¯
I2 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b ∈ (a −→ u)

¯
I3 =

˘
u ∈ Ci : a 6∈ (b −→ u) and b 6∈ (a −→ u)

¯
I4 =

˘
u ∈ Ci : a ∈ (b −→ u) and b ∈ (a −→ u)

¯
Topological sort on the graph associated to the matrix slice gives I1, I2, I3
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v
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b
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a
1 1
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}
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u
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0
0

1
1

0

v

0\1 I2

I3

I1
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Reconstructing algorithm: Extension for cycles

Idea

Find a and b close to each other on a cycle;

cut the cycle in between;

iterate previous algorithm;

reintroduce the cycle: reconnect (a, b).

a

b

I1

I2 I3

Finding out how to cut
. . .

How to connect parts afterward

First step on I1 → Finds 2 classes I1a and I1α ; a ∈ I1a .
First step on I3 → Finds 2 classes I1b

and I1β
; b ∈ I1b

.

Reconnect I1a and I1b
; Reconnect I1α and I1β

.

No demonstration of this...
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Example of reconstruction
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Example of reconstruction
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Data collection

Intuitive algorithm

1 Measure the bandwidth on (ab) ;

2 Measure the bandwidth on (ab) when the link (cd) is saturated ;

3 Compute the ratio.

N4, 30s. per step ⇒ 50 days for 20 hosts.

Speeding things up

Using traceroute or other tomography

• Independent tests in parallel

• Validation of information sets

Refinement of existing graph?



Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Outline

Introduction
Context
Motivation and goals
State of the art

ALNeM
Model used
Measurement methodology
Problem statement

Mathematical tools, algorithms
Total interference and separators
Reconstruction trees and cliques of trees
Extension for cycles

Implementation
Data collection

Conclusion
Contributions and future work



Introduction ALNeM Mathematical tools, algorithms Implementation Conclusion

Conclusion

Contributions

Retrieve the interference-based topology from direct measurements

Strong mathemathical basements (optimal for cliques of trees)

More generic than ENV (partial cycle handling)

Based on GRAS (development of distributed applications on simulator)

Future work

NP-hardness

Experimentation on real platform (measurements optimization)

Iterative algorithm (modification detection)

Couple measurement and reconstruction phases

Integration within the NWS (auto-configuration; provide information)
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