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Abstract: Software model checking is a formal method to verify the correctness of programs. In
the recent years, it has been used to verify asynchronous distributed systems. However, dealing
with the state space explosion is still a challenge. To do so, different approaches have been
proposed. Among them, reduction techniques aim at narrowing the size of the exploration while
staying sound. In an orthogonal manner, guiding techniques orient the search in hopes of finding
a bug and end the exploration early. In this work, we present a novel approach that combines
both reduction and guiding techniques. We also introduce new guiding strategies specifically
designed for asynchronous distributed software. To demonstrate the effectiveness of our approach,
we implemented the new algorithms in McSimGrid and evaluate their performances using
Message Passing Interface (MPI) codes.
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1 Introduction

Distributed computation is now widely used. Sometimes because the data one has to treat are
by nature distributed among many nodes. Cloud infrastructures, for example, are shared among
different nodes and partially replicated. In such cases, it is crucial to avoid centralizing all the data
on a single node due to considerations of time and resource efficiency. Other times it is the opposite:
the data is originally centralized, but can be split temporarily and synchronized later. This is done
to facilitate computationally intensive tasks that require lengthy calculations on each element of a
matrix, such as solving differential equations in physical simulations. The common point in both
situation is that the global algorithm run is distributed. Distributing the algorithm comes with an
increased complexity of the global system. Locally everything is simpler: the data are smaller, the
control flow only depends on a few variables; globally, not only do one have to ensure every local
node is doing fine, one also have to assure everyone is doing it at the right time, communicating
correctly with its neighbors and waiting if required. Synchronizing the processes is crucial, and it
can be achieved in different ways. In our research, we will focus on verifying distributed programs,
and more specifically, those using the Message Passing Interface (MPI) [1] library.

To do so, different techniques have been developed. Model checking is one of them [2]. It allows
to formally verify whether a given property holds on a system, represented by a model. Software
model checking is the extension of this technique to verify software programs. The soundness of
the method helps to discover bugs in cases where even intensive testing fails. With software model
checking, one constructs a direct model by considering all the possible configurations and builds
the transitions corresponding to the semantics of their program. Doing so already leads us to a
state space explosion: A ten-line program can result in a model with thousands of states. Moreover
in distributed computing, there are multiple nodes, running different lines of code with complex
communication patterns. Hence an other factor of state space explosion.

To mitigate the challenges posed by state space explosion, the literature offers various types of
solutions. One commonly employed approach in software model checking is the use of partial order-
based reduction techniques. These techniques leverage the independence between specific actions
to significantly reduce the size of the state space, while ensuring the soundness of the approach.
Another orthogonal approach is guided model checking. Instead of reducing the state space, this
technique focuses the search towards specific paths that appear more promising. If the model is
free of flaws, the exploration process may not be faster. However, if there are issues in the program,
the search can be greatly accelerated by directing it towards potential problematic behaviors.

In this work, we consider an approach not fully explored yet that consists in combining both
reduction and guiding techniques. While there have been some examples of this approach in
the context of static verification, its application to dynamic reduction techniques and guiding
strategies specific to asynchronous distributed algorithms remains unexplored. This association
presents several challenges. Firstly, ensuring the correctness of the reduction procedure while
enforcing specific choices is a significant challenge. Additionally, obtaining sufficient information
from abstract states to make relevant choices poses another difficulty.

This internship report provides an overview of the current state of the art in reduction and
guiding techniques for model checking, along with a concise description of the underlying model.
Then, it presents the new ideas we have explored to combine these methods effectively with a
discussion of our preliminary results. Finally, we conclude by examining potential leads for further
research and the continuation of our work.
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2 Context and state of the art

This section introduces the concept of labelled transition systems and software model checking.
With that, we will be able to present state-of-the-art dynamic algorithms doing partial order
reductions of the state space. Lastly, we will introduce guiding techniques used to speed up the
exploration.

2.1 Transition system and model checking

We want to model the behaviour of our programs as graphs, or more precisely with a struc-
ture close to an automaton which are Labeled Transition Systems (LTS) [2]. An LTS M =
(S,Act, S0, T , AP,L) is defined by a set of states S, a sub-set S0 ⊆ S the set of initial states,
Act the set of possible actions in the model, a transition relation T ⊆ S ×Act× S, a set of atomic
propositions AP that will help to identify desired behaviours, and a labelling function L : S → 2AP

that will give a value to each atomic proposition in each state. When working with distributed
programs, different process are running at the same time. To encode that into the LTS, we will
use the action in Act. Any action a ∈ Act will contain the information about the process executing
it. We only allow one process to execute at each step (each action only refers to a single process).
For a ∈ Act (resp. t ∈ T ), we will note proc(a) (resp. proc(t)) the process associated to the action
(resp. the transition). Moreover, we suppose that our processes are deterministic meaning that
from a given state s ∈ S, there is, at most, one action a per process. This supposition makes sens
with MPI programs we are studying but it not always true with other models. Finally, a program
always starting with the same memory layout, we will consider that S0 is a singleton {s0}.

For sake of generality, we should now speak about how we want to represent the property to
verify. One way to do that is to encode the property in Linear Temporal Logic (LTL), a logic based
on propositional formulas, enriched with operators describing temporal behaviors. From such a
formula, we derive an automaton accepting infinite sequences satisfying the given property. Such
automaton is known as a Büchi automaton and is expressed as a regular finite automaton, the main
difference being that to be accepted, an execution has to pass by a final state an infinite number
of times. When using LTL, one actually constructs the automaton corresponding to the negation
of the desired property, so that when taking the synchronous product with the LTS, the model
checking algorithm only have to check whether the language of the obtained automaton is empty.
If not, it means there exists an execution of the model that violates the desired property.

In the end, there are two types of properties one may want to verify: safety or liveness. The first
one can be seen as: “we never want this to happen”. This kind of property is both very common
(think about deadlocks, out-of-bound access, use before declaration, etc.) and easy to check.
Indeed, it is a simple check of reachability within the state space of the program possible behaviors.
If one expresses B the set of states having the undesired behavior, usually called Bad States, we
can use the general Model Checking algorithm expressed in Algorithm 1 to verify a safety property.
In our definition, this simply consists in having AP = {b} such that: ∀s ∈ S,L(s) = b ⇐⇒ s ∈ B.
It proceeds by maintaining a set of opened states that have been reached. When taking a state
from Open, we first verify it does not violate our property (it is not in B), then we add its successor
not yet reached to Open. Finally, we close the state just explored.

Liveness is a bit trickier to express, and to check. Liveness properties speak about things that
have to be done repeatedly e.g., every time the elevator button is pressed, it will come to the
corresponding floor at one point. If we want to verify this, we will have first to reach the condition,
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and then, decide if it is possible to fulfill a property from this condition. As stated before, we will
focus on safety properties and will not come back to the LTL formulation of the problem.

Algorithm 1: General Model Checking algorithm for safety properties

Data: LTSM = (S,Act, S0, T , AP,L), set of bad states B
Result: true if property is satisfied, a counterexample if not

1 Closed ← ∅;Open ← S0;
2 while Open ̸= ∅ do
3 S ← Select(Open);
4 Closed ← Closed ∪ S;Open ← Open \ S;
5 if S ∩ B ̸= ∅ then
6 return GeneratePath(S ∩ B)
7 end
8 Succ ← {s′ | s ∈ S, s→ s′};
9 Succ ← Succ \ Closed ;Open ← Open

⋃
Succ;

10 end
11 return true

2.1.1 Traces and action independence

To express how the different reduction algorithms work, we need to specify some notations and def-
initions. For this section, we consider a LTSM = (S,Act, S0, T , AP,L). A transition sequence
E ∈ T ∗ is a finite sequence of transitions t0t2 . . . tn−1 = (s0, a0, s1) . . . (sn−1, an−1, sn) such that

s0
a0−→ s1 . . .

an−1−−−→ sn and s0 ∈ S0. Intuitively, E is a possible execution of our model from the
beginning. Given E a transition sequence, we will denote by:

• Ei := ti, the ith transition,

• E.t := t0 . . . tn−1t, the concatenation of E with transition t = (sn, an, sn+1),

• dom(E) := {0, . . . , n− 1}, the range of possible transitions in E,

• For i ∈ dom(E), sub(E, ti) := t0 . . . ti−1, the prefix of E, up to ti, not included,

• For i ∈ dom(E), pre(E, ti) := si, the state reached after executing sub(E, ti),

• last(E) := sn, the last state of the sequence.

In our model, processes are deterministic. At a given state s ∈ S, there is at most one transition
per process. For this reason, we will sometimes use the process to speak about the corresponding
transition in a given state. Two transitions t1, t2 ofM are said to be independent if they verify
the following properties:

• if t1 is enabled in s and s
t1−→ s′, then t2 is enabled in s iff t2 is enabled in s′,

• if t1 and t2 are enabled in s, then there exists two intermediate states v, w and a unique state

s′ such that s
t1−→ v

t2−→ s′ and s
t2−→ w

t1−→ s′.
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If not, t1 and t2 are said to be dependent, noted D(t1, t2). From the notion of dependence,
we need to introduce the concept of happens-before which is a bit stronger. →E is a relation
between transitions of a transition sequence that forms a partial order over them. Formally, given
an execution sequence E, →E is the smallest relation over {t1, . . . , tn} such that:

• if i ≤ j and D(ti, tj) then ti →E tj ,

• →E is transitively closed.

Two transition sequences describing the same happens-before relation are equivalent regarding the
properties we want to verify, and we say they have the same Mazurkiewicz trace: Mazurkiewicz
traces form equivalent classes for the relation happens-before. All equivalent sequences can be
obtained by swapping adjacent independent transition from a given trace; if E,E′ are two such
sequences, we note E ≃ E′ the fact that they are equivalent.

2.1.2 Principle of reduction

As we saw before, the size of the state space obtained from a given parallel program can be too
large to explore. To tackle this issue, we are going to introduce reductions. Intuitively, reductions
are ways to define transitions that can be forgotten without loss of generality in the behaviors of
the program. Mathematically speaking [3], if M = (S,Act, S0, T , AP,L) is an LTS, we say that
an action a ∈ Act is enabled in s ∈ S if there exists s′ ∈ S such that (s, a, s′) ∈ T , and we
call reduction a function r : S → 2Act, that-is-to-say, a function mapping every state of M to
a sub-set of enabled actions. With such a function r, one can naturally define a reduced model
Mr = (Sr, Act, S0, Tr, AP,L). It is a model verifying: Sr ⊆ S and (s, a, s′) ∈ Tr ⇐⇒ (s, a, s′) ∈
T ∧ a ∈ r(s). That second condition means we are restricting the possible transitions to the one
given in our reduction function r. Finally, we want the reduction to preserve the property we are
checking, more precisely, if we have a property ϕ, we want that M ⊨ ϕ ⇐⇒ Mr ⊨ ϕ. While
constructing the function r, or the modelMr directly, all techniques are permitted. Partial order
reduction [2] is one of those techniques. It leverages the fact that in real life systems, most actions
are independent to one another. The reduction algorithms aim at keeping the fewest execution
sequences possible while assuring to visit at least one per Mazurkiewicz trace.

2.2 How to build the reduction dynamically

Most of the time when considering a program, we do not want to build the whole model. Therefore,
we do not have access to the whole state space for the reduction computation. To solve that, we
will instead start the exploration, and decide, when considering possible transitions, whether we
can cut and not explore it. Furthermore, since we are here working with programs and not simpler
models, whether two given state are the same is not trivial. In practice, we will assume every
encountered state is a new one and not try to record anything about it. This principle is called
stateless model checking. This can be an issue when considering cyclic programs since those
could be blocked in a livelock. We will for now assume that we work only with acyclic state spaces.

In this section, we present different methods to construct reductions dynamically.
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2.2.1 Dynamic Partial Order Reduction

The aim of the dynamic partial order reduction (DPOR) Algorithm [4] is to construct for each
explored node a persistent set of enabled transitions, and explore it. We say that a set P ⊆ Act
of enabled transitions in a state s is persistent in s iff for all nonempty sequences t0 . . . tn−1 starting
in s such that t0, . . . , tn−1 /∈ P , tn−1 is independent with all transitions in P . The interesting
property is that exploring a persistent set of every reached state during the exploration is sufficient
to explore every Mazurkiewicz trace of the system. To understand this, we need to have a look
at the actions that are not part of a persistent set. Let us take s a reached state, and P (s) the
persistent set we explored. First, note that P (s) = enabled(s) is a possibility; but the persistent
set can be smaller. In that case, if there exists such t enabled but not in the persistent, then by
definition of the persistence, in particular, t is independent with every transition tp ∈ P (s). That
gives us the existence of the transition sequence tpt from s (by definition of independence). And
more generally, for any sequence E not directly reachable with P (s), the persistent definition gives
us the reachability of any tpE sequence.

As stated, persistent sets are sufficient to explore the model, but it can still be way larger than
what is necessary. Another dynamic reduction idea developed in [4] is the notion of sleep set. The
idea behind sleep sets is not to avoid taking independent paths from a given node, but to remember
for the future of the exploration that we already swap those two actions. A sleep set is a set of
processes from which we do not have currently (during the exploration) to pick an action because
we already covered the resulting sequence previously. Initially, the sleep set is empty. Then we
perform a recursive search, just like in Algorithm 1. We go down a first branch, and when getting
back to the origin, before testing another branch, we add the transition t of the first branch we just
covered to our sleep set. As long as the exploration takes independent transitions with the one in
the sleep set, it remains in it. Since they are independent, executing t now leads to a sequence that
is equivalent to one explored in the previous subtree. If the transition is dependent, there might
exist a race condition in the execution, and we absolutely want to test the sequence in which the
two actions are reversed. Sleep sets, just like persistent sets, are proven to be sufficient to explore
the whole set of Mazurkiewicz traces, but still not necessary. In fact, one can combine the two
approaches in the same algorithm so that at a given state, they only explore transitions not in the
sleep set that form a persistent set.

Algorithm 2 gives a general outline of dynamic partial order reduction algorithms. The algo-
rithm is a recursive procedure Explore(E, parameters) where E is the current transition sequence
from which we want to explore successors, and parameters is a way to encode how different al-
gorithms will treat the transition to explore (as a function here). The first call to this would be
for instance Explore(∅, DPOR). The general idea is to have a structure that will retain for each
sequence which transition we decide to explore on the state reached after this sequence. Initially it
is empty for every sequence. When reaching a sequence for the first time, we choose some arbitrary
transition and add it to the exploration. While exploring the children of the transition, we might
add some other transition that we will need to explore to search for the entire state space. Last
thing to notice in the procedure is the way we decide to add some transition to the structure. This
procedure is highly dependent on the reduction algorithm and the construction used. For instance
in [4], the conditional add is described in a way that when we are done exploring the sequence E
(and so with any of its sub-sequence), to visit(E) is forming a persistent set of enabled(last(E)).
The authors do it in two steps:
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Algorithm 2: General DPOR procedure: Explore(E, parameters)

Data: E the current transition sequence, parameters a function encoding informations
relatives to the reduction algorithm, global data structure to visit over sequences

Result: Exploration of every Mazurkiewicz trace of transition sequence from E

1 if to visit(E) = ∅ then
2 choose some t ∈ enabled(last(E)) and add it to to visit(E);
3 end
4 done = ∅;
5 while ∃t ∈ parameters(to visit(E)) \ done do
6 if t is dependent with some transition t′ in E and a sequence with t.t′ has not been

considered then
7 add a transition to to visit(sub(E, t′)) to explore a sequence starting with transition

t;

8 end
9 Explore(E.t, parameters′);

10 add t to done;

11 end

• They look for the closest ancestor t′ in E verifying D(t′, t), and t is not on the same process
as t′ or another transition dependent with t′ (t′ ↛E proc(t)). Intuitively, this is because we
do not want to try to invert transitions that are anyway forced by the order of execution
inside the same process.

• For every u ∈ enabled(pre(E, t′)), we check if u→E proc(t) i.e., if transition u is required to
execute t, and therefore should be executed to reach an execution with t before t′. If there are
such u, we choose one and add it to to visit(sub(E, t′)). If we could not determine such u, it
means that the dependence might be found later in the execution, but we can not determine
already where. To remain sound, we must take to visit(sub(E, t′)) = enabled(pre(E, t′)).

Figure 1 gives an execution of this algorithm on a small example: DPOR will explore a first
sequence until reaching a terminal state i.e., a state with no transition enabled. When encountering
q2, it detects the dependency with r2 and so adds q1 to the set of transition to be explored at the
state before r2 was taken. The algorithm proceeds to obtain a second execution, detects the same
problem, and add q2 to a set to be explored. When explored, this last addition allows doing the
inversion between q2 and r2. In the end, three executions were explored (r1r2q2q2, r1q1r2q2 and
r1q1q2r2) while only two were necessary (note that the first two executions belong to the same
Mazurkiewicz class).

Finally, sleep sets are added to the algorithm 2 by modifying parameters: when looking for a
t ∈ parameters(to visit(E)), we are setting aside any transition in the current sleep set and when
calling Explore(E.t, parameters′), we update parameters to add and remove transitions from the
sleep set as described before: we add every process of transitions in done to the sleep set and we
remove any u whose transition is dependent with the newly explored t. In the example given in
Figure 1, sleep sets are enough to obtain optimality: in the second step, when exploring r1q1, the
transition r2 will be a member of the sleep set (since we already explored it at this level, and it is
independent with q1). Therefore, DPOR will not try to explore any sequence starting with r1q1r2
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Figure 1: An example of the DPOR algorithm on a small concurrent program with two processes
R and Q. r2 and q2 are the only dependent transitions.

and will directly explore r1q1q2 by picking q2, the only enabled transition at this point, not in a
sleep set.

2.2.2 Optimal Dynamic Partial Order Reduction

As said before, DPOR is sufficient but not necessary. More explicitly, it guarantees to explore at
least one execution per Mazurkiewicz class of equivalence, but it may explore multiples. Refining
how we describe the set of transitions we want to visit at each node is a way to obtain the necessary
part. Exploring fewer transitions without paying too much overhead allows to explore the state
space faster. Source sets [5] are one way to go. Intuitively, if E is a transition sequence andW a set
of sequences starting in last(E), Source(E,W ) ⊆ enabled(last(E)) is intended to contain a starting
happens-before transition of every sequence in W . Formally, we call weak initials of w after E,
the set of transitions verifying: WIE(w) = {t | ∃w′, v : E.w.v ≃ E.t.w′}. Therefore, the authors
define that P ⊆ enabled(last(E)) is a source set for W after E if for each w ∈W,WIE(w)∩P ̸= ∅.
When implementing this, the authors use a stronger condition on initials defined as followed:
IE(w) = {t | ∃w′ : E.w ≃ E.t.w′}. The interest is that this condition is easier to verify. They
implement source-DPOR by modifying Algorithm 2 accordingly to these definitions. Source-DPOR
is using sleep sets as explained in the previous section, and it takes the choice to add transitions
to to visit as follows:

• for each t′ in sequence E dependent with the next chosen transition t, the algorithm extracts
w a sub-sequence of E composed of the transitions in E that are independent with t′.
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• from the obtained sequence, we want to be sure that the search is able to visit one Mazurkiewicz
trace, therefore we check if IE(w.t) ∩ to visit(sub(E, t′)) ̸= ∅. If that is not the case, we add
some arbitrary element in IE(w.t) to to visit(sub(E, t′)).

Source-DPOR is proven to be both sufficient and necessary in the sense that it fully explores
exactly one execution per Mazurkiewicz trace of the model. Though it suffers from the sleep set
blocking problem: there are some execution sequences that are equivalent to one already explored,
and for which we will stop the exploration thanks to sleep sets. But this stop can happen after some
transitions are taken while we could have already decided, thanks to other sequences explored, that
we will be blocked by sleep set very soon. To deal with that, the authors propose to combine source
sets with a tree structure called wakeup tree. Wakeup trees are trees labelled with sequences of
processes. The root is always the empty sequence ⟨⟩, and a node w can only have as children a node
of the form w.p, with p a process. Finally, we also need an order < over processes, that we then
extend to sequences of processes such that if p1 < p2 then for any w, w.p1 < w.p2 < w. Formally,
B is a wakeup tree after a transition sequence E and a set of process P , if it verifies the following:

• for every leaf w of B, WIE(w) ∩ P = ∅.

• if u.p and u.w are nodes in B with u.p < u.w, u.w being a leaf, then p /∈WIE.u(w) (for simpler
notations, we use p here and later to describe the transition in the given state associated with
process p).

The first condition has to be considered regarding the set P of processes we are choosing. To
prevent the possibility of starting to explore executions that will be blocked by the sleep set P , we
require that every weak initial of a sequence in the wakeup tree is not in the sleep set. The second
condition states that if we want to add a new sequence u.p at node u inside our wakeup tree due
to the sequence we visited with u.w, then p should not be a weak initial of the sequence we just
explored: in other words, we do not want to revisit a sequence that is equivalent to the one we
just visited. To work with this structure, the authors explain how to write a simple primitive that
allows to insert a sequence into an existing wakeup tree and preserve the properties (they use the
fact that with the order <, we now have a canonical representative for each Mazurkiewicz trace).
With this new structure, we can adapt once again the algorithm 2 to obtain Optimal DPOR:

• to explore will now contain a wakeup tree for each transition sequence; initially, it will contain
the empty wakeup tree for each sequence. We also maintain a sleep set as explained before.

• when exploring a new node for the first time, instead of always choosing a random enabled
transition, we first try to use the wakeup tree that would have been constructed previously
during the search. If the tree is still empty, then we pick a transition to add to the tree.

• when finding a race condition, instead of adding a transition from IE(w.t) to to visit(sub(E, t′)),
if it does not conflict with the sleep set (meaning if sleep(sub(E, t′)) ∩WIE(w.t) = ∅) we
insert the whole sequence w.t inside the wakeup tree at pre(E, t′).

If we have a look back at our example in Figure 1, when reaching the sequence r1r2q1q2(= E)
in the first step, we find that q2(= t) is dependent with r2(= t′) previously taken. Therefore, we
eventually need to add something to visit to the wakeup tree after sequence r1. Currently, this
wakeup tree is composed of the root ⟨⟩ and only has one child R that was added by the choice
of an initial transition. Of the sequence r2q1q2 (i.e., the sub-sequence containing both dependent
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Figure 2: Wakeup tree at sequence r1 after the execution.

transitions), we take transitions that are independent with r2 to form the sub-sequence w of our
algorithm: here w = q1. We now add the processes of q1q2(= w.t) to the wakeup tree after r1 (we
can verify that it is allowed: sleep(sub(E, t′)) = sleep(sub(r1r2q1q2, r2)) = sleep(r1) = r2 while
WIE(w.t) = WIr1r2q1q2(q1q2) = q2).

More recent papers on ODPOR propose to go even further on the optimization [6]: if we have
a look at our computational model, there are some Mazurkiewicz classes that are distinct, but
yet yield the same result regarding the properties we want to check. As an example, consider a
C program that does 10 conditional write, and one single read at the end. We could consider
all possibilities of write or not, giving us 210 traces to explore, while the only write that really
matters is the last one happening: it is the only write that will impact the rest of the program. To
solve this issue, the authors introduce what they call observers. Intuitively, observers are specific
transitions inside a sequence that observe the dependency between two other previous transitions in
the sequence. If there are no transitions to observe the dependency, it is as if the transitions would
be independent: if we swap them, it does not impact the correctness of the execution regarding our
property. Observers are defined with the definition of happens-before, and are computed with the
semantics of the operations of our program. The main idea now in the ODPOR algorithm is that
when adding a sequence to a wakeup tree, if it is observed by some transition o, we are adding w.t
with all the transitions dependent with t that are not observed by o (e.g. the read before that does
not change the final value). This way, when exploring the node that received this wakeup tree, we
will be forced to explore only one fixed choice for all those non-observed transitions.

2.2.3 Unfolding Dynamic Partial Order Reduction

The principle of Unfolding dynamic partial order reduction [7] (UDPOR) is quite different from
the other DPOR algorithms: it does not focus on transitions like previous DPOR algorithms but
rather on configurations and events. In this section, we will takeM = (S,Act, S0, T , AP,L) an
LTS, with D ⊆ T × T its dependency relation. A T -labelled event structure (LES) is a tuple
E = (E,<,#, h), where E is a set of events, the causality relation <⊆ E × E is a strict partial
order on E, h : E → T labels events with a corresponding transition, and the conflict relation
# ⊆ E × E is symmetric, irreflexive and transitive. An LES must satisfy these two following
properties: (1) for all e ∈ E, {e′ ∈ E | e′ < e} is finite, and (2) for all e, e′, e′′ ∈ E, if e#e′ and
e′ < e′′ then e#e′′. (1) means that for a given event, there are only a finite number of events
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Figure 3: Unfolding semantic of the Figure 1 with events numbered from 1 to 6. Arrows represent
causality; dotted lines conflict

happening before it (in other words, that the execution has a beginning); (2) states that conflict is
inherited by causality. If e is an event, we call causes of e the set ⌈e⌉ = {e′ ∈ E | e′ < e}, i.e., the
set of events that need to happen before e can happen. Finally, a configuration of E is a finite set
C ⊆ E such that: ∀e, e′ ∈ C, ⌈e⌉ ⊆ C ∧ ¬(e#e′). A configuration is closed by causality, free from
conflict. With these definitions, we want to describe collections of them that intend to represent
possible executions of our system.

Given t ∈ T a transition of our system, we now define the possible histories HE,D,t of t as
a set that contains the configuration H of E such that: t is enabled at the state reached after
transitions in H, and either H = {⊥} or for all <-maximal events e ∈ H, D(h(e), t). ⊥ is
a special event that we add to our LES to be able to encode the start of the execution: it is
unique and each event causally depends on it. This definition of history simply means that we
want H to contain the required happens-before events for e to happen. We can now build the
unfolding UM,D of our model. It is a LES containing inductively defined events with a canonical
name of the form e := (t,H) where t ∈ T and H will be a configuration of UM,D. This is
done inductively by adding events until saturation. We start with the LES ({⊥}, ∅, ∅, h) with
h(⊥) = ε. Then if we have E = (E,<,#, h) an LES such that there exists t ∈ T and HE,D,t, we
create E ′ = (E∪{(t,H)}, <

⋃
e′∈H(e′, e),#

⋃
e′∈KE,D,e

(e, e′), h′) where KE,D,e is the set of conflicting

events with e in E , ∀e′ ∈ E, h′(e′) = h(e′) and h′(e) = t. The idea behind the unfolding is that
exploring it is by construction exploring one sequence per Mazurkiewicz trace.

Due to the structure of the unfolding, the partial order reduction algorithm derived from it
(UDPOR), algorithm 3, is quite different from the previous general algorithm 2. To explain it, let
U = UD,M be the unfolding of M with D. Initially, we call Explore({⊥}, ∅, ∅). Parameter D is
used to store events that have already been explored; it can be seen as the sleep sets we had before.
A is the set of guiding events that will have to be taken first before trying other new branches;
this is a sort of to explore set. When called, the algorithm first computes the extensions of the
configuration C (ex(C)). These are the events not yet in C but whose causes are already there:
ex(C) = {e ∈ E | e /∈ C ∧ ⌈e⌉ ⊆ C}. It forms the candidates from which we will pick the next
transitions. If there are no enabled transition in the configuration that are not disabled by D, then
it means we reached a final branch and we backtrack. Else we pick a new event to be added to the
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Algorithm 3: UDPOR procedure: Explore(C, D, A)

Data: C a configuration, D a set of disabled events, A a set of guiding events and U a
global structure containing currently explored events

Result: Exploration of the unfolding from configuration C, without events in D

1 Compute ex(C) and add all events in it to U ;
2 if enabled(C) ⊆ D then
3 return
4 end
5 if A = ∅ then
6 choose e ∈ enabled(C) \ D;
7 end
8 else
9 choose e ∈ enabled(C) ∩A;

10 end
11 Explore(C ∪ {e},D, A \ {e});
12 if ∃j ∈ Alt(C,D ∪ {e}) then
13 Explore(C,D ∪ {e}, J \ C);
14 end
15 U = U ∩QC,D;

configuration, and if possible, we pick it in A. We recursively explore the configuration with the
new event. Then comes the difficult task: we already explored every configuration containing C and
e, so to explore all configuration containing C, we need to look for those not containing e. These
are called alternatives. An alternative to D′ = D ∪ e after a configuration C in a set of events U
is a sub-set J ⊆ U such that J ∩D′ = ∅, C ∪ J is still a configuration and ∀d ∈ D′, ∃j ∈ J : d#j.
If there exists such alternative, we explore it. Finally, we only keep in U events in C,D and those
conflicting with events in either C or D (represented as QC,D).

The computation of Alt(C,D ∪ {e}) in the general case is NP-complete [8]. Solutions to this
issue have been proposed, such as the k-partial alternatives which computes alternatives where
events of J are only conflicting with k events of D instead of all. This allows for a fine-tuning
between quasi-optimality and efficiency. Furthermore, computing ex(C) is not trivial either: for
instance the problem is also NP-complete when considering Petri nets. The authors of [8] show that
in the case of a specific model of asynchronous distributed systems that can encode MPI programs,
they can build a tuned version of algorithm 3 that works in time O(n2 log(n)) thanks to the fact
that the amount of causal predecessors of a given event is bounded.

2.3 Orienting the search with Directed Model Checking

When using model checking, there are two possible outcomes: we can either prove the given property
holds, or find a counterexample showing why it does not. Since our algorithm stops on the first
bug found (that is what we are here for), we want to visit as few states as possible before reaching
a counter-example. Some programs may have a state space that is too wide to be searched entirely.
But we may have some hint about where to look, and that place might be small enough. And
sometimes, when trying to find the bug faster we end up with a smaller counterexample, which can
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be important for the programmer to understand more easily the reason of the bug and, hopefully,
solve it faster.

Speaking about directing, there are two main things that can be described. First, you may want
to have a global idea of where you are going. These can be complex strategies taking advantage
of the whole exploration knowledge. These are what we will call guiding strategies. Then you
may want to have the opportunity to decide between two given choices, and therefore you will
need to score those choices according only to things from which the choices have been created.
The way you want to evaluate the choices, in our case transitions to explore, are called valuation
functions. This section presents both guiding strategies and valuation functions, as well as some
usual combinations of both.

2.3.1 Guiding Strategies

The idea behind a guiding strategy is to choose which transition should be considered next in
the execution tree being explored. For instance, Depth First Search (DFS) is an example of a
usual guiding strategy: at any point, take the most recent reached state that has not been totally
explored, and pick an arbitrary outgoing transition from it. It has interesting properties, such as
ensuring that all opened states in the search are contained in a single sequence, and it is the natural
design of the reduction algorithm we saw before. But one is not forced at all to preserve a single
sequence of opened states as we will see. The strategies we will look at can be grouped in two
distinct categories depending on whether it requires a valuation function to properly work. Let us
first have a look at some strategies that do not require such function.

A basic and usual strategy after DFS is Random: simply choose the next transition randomly
among all the currently opened ones. Not only among all the deeper state, but among any not
yet visited transition. This has a few good properties. It can simulate real executions better than
a more fixed strategy such as DFS. Furthermore it servers as a good baseline when some other
strategies are failing. There is no free lunch [9] when optimizing. The idea is simple: it is
impossible to find a strategy that would always be better than an other one. We can try to find
something that will be better in some particular cases (and that is what we will in fact try to do),
but there will always be cases where the strategy is worse than others, and maybe way worse. In
cases where no strategy sound interesting and random has a few good results, we can try to learn
from those and understand where the other strategies failed.

Following the idea that we want to reach specific transition sequences, we can refer to the
work of FlyMC [10]. In this paper, the authors present some algorithmic strategies to enhance
the scalability of testing techniques of data-centers and cloud systems. Their idea is that some
interleaving are more promising than others, and should therefore be tested before. This aligns to
our idea of guiding strategy. As well as implementing DPOR to their field, the authors present
two distinct strategies. We will call the first one FlipParrallel. The idea is the following: when
we look at the reduction algorithms, we can see that from a given transition sequence, the next
sequence we are trying is only differing from the previous one by a single flip of event. So to reach
a very different sequence, it may take a lot of flips. To better understand, let us have a look at
Figure 4. We have two kinds of actions: there is no independence relation between them but no bi
can happen before any a1 or a2. So we must consider all permutations of bi and ai between them.
If we only do single flips such as in DFS, we will wait to explore all the 3! = 6 combinations of bi
before exploring any execution sequence starting with actions a2a1. The authors of FlyMC propose
that from a first sequence, the search should continue by exploring a sequence that has as many flips
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Figure 4: Example of a parallel flip: actions ai are independent of bi, so we can achieve a flip of
actions of both type from path 1 to 2.

of difference as possible. On a system composed of N computational nodes, their algorithm will try
to realize N simultaneous flips across all the N nodes. Sequences that differ only by fewer inversions
are kept for latter search. So we end up by trying as a second sequence a2a1b1b3b2 doing two flips
in one shot. This is not always possible: flipping multiple actions from path 2 brings us back to
a single flip of a previous case. In that case, the algorithm simply explores the remaining single
flips. According to the authors, it also captures well the fact that mature distributed programs are
usually robust for common interleaving order, while bugs are found in uncommon execution paths.

In distributed computing, many programs share a same kind of workload among different nodes:
in FlyMC [10] they speak about data nodes, or follower nodes in cloud infrastructures, but we
can think about master-slave patterns in message passing. This leads to different transition se-
quences reaching a similar global state. To avoid this repetition, the author of FlyMC implements
StateSymmetry by recording past transitions with an abstract representation of the states start-
ing the transition. This is possible in their model because they have access to every operation of
the system, and therefore can have significant abstract representations of the program state. In
the world of stateless model checking, this can not be used as a reduction technique because we
miss information to have significant abstract representations. Instead of eliminating equivalent se-
quences based on potential symmetry, we can choose to defer the exploration of transitions leading
to such symmetries until later stages. By adopting this approach, we maintain soundness while
still capitalizing on the knowledge we have gained.

When speaking about guiding strategies that requires a valuation function, the first coming to
mind are the shortest path algorithms. Usually, such algorithms work on directed graphs with a
notion of weight over the edges. Directed model checking uses a more generic version allowing it to
work on any cost algebra [3]. The general theory of cost algebra is wide. We will focus only on a
simple case. Here we take ⟨R+ ∪ {+∞},+,≤,+∞, 0⟩ as our cost algebra. This simply means that:

• our distances will be positive real numbers, eventually +∞,

• we will be adding (resp. comparing) them using the usual + (resp. ≤) operator over reals,

• and the minimum (resp. maximum) possible distance will be 0 (resp. +∞).

Using this cost algebra, if we have an LTS M = (S,Act, S0, T , AP,L), we now decide of a cost
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function over all the transitions, i.e., a function c : T → R+ ∪ {+∞}. And this function can be
anything meaningful in our search. You could e.g., give a higher value to transitions that require
a lot of computation time, so you avoid them, or just give a uniform weight. Once this is done,
the problem of guiding the search is simply a problem of shortest path distance from the initial
state s0 to any bad state s ∈ B. The issue with that is the same we tried to face in the reduction
section: we can not compute the whole state space, and therefore, if we use a simple algorithm
such as Dijkstra’s algorithm, we may never finish in a reasonable time (unreasonable times can
range from days, to years or even centuries). To try to solve this (huge) issue, we will rely not
only on the cost function we decided to use but also on a second valuation function we will call an
heuristic. An heuristic is an approximation of the real distance induced by the cost function. If
for s ∈ S, we note δ(s0, s) = min{Σn

i=1c(Ei) | E is a transition sequence from s0 to s} the distance
from s0 to s induced by the cost function, then we say that an heuristic h : S → R+ ∪ {+∞} is
admissible when ∀s ∈ S, h(s) ≤ δ(s0, s), that is to say, when it always under-approximates the
real distance. Interesting property about heuristic is that it can be deduced from something else
than the complete exploration graph (which we can not compute). We will have a deeper look at
some heuristics in the valuation section. A* is a search algorithm initially used to compute the
distance problem in graphs thanks to a heuristic. It is even proven to be optimal as long as the
used heuristic is admissible. Optimality means that the distance found from our starting state
s0 to a point of interest is minimal, and therefore, the path found is also a shortest one. In our
context, it works by modifying how we pick a state in the set Open in algorithm 1. We now store a
map d associating to each encountered state the smallest distance with which we reached it yet and
instead of being arbitrary, we fix Select(Open) = min(s,d)∈Open d+ h(s). In practice, it is not clear
how to combine both reduction and A* search: the first ones are written directly with a forcing
order of DFS while the second one needs to pick the smallest state among multiple branches.

The last guiding strategy we will talk about is Monte Carlo Tree Search (MCTS) [11].
MCTS is a method used to cover a state space that incrementally optimizes its choices based on
knowledge it acquired by sampling random explorations. It aims at finding a better option among
multiple ones and has had a deep impact on fields like two player-games AI such as chess or Go.
The algorithm is a global loop that will construct the exploration tree node by node. Adding a
node to the tree involves four steps, as illustrated in Figure 5:

• Selection selects the most promizing node with at least one unexpanded child currently ex-
isting in the tree. This is done by applying a Tree Policy selecting children recursively from
the root node;

• Expansion adds an unexplored child of the selected node to the tree;

• Simulation performs a simulated execution from the new node using a default policy, until a
terminal state or bound is reached;

• Backpropagation evaluates the result of the previous execution and propagates that informa-
tion along the path from the root to the newly added node.

To use MCTS, three components must be defined: a tree policy, a default policy and a valuation
function for the states reached during simulation. Potential valuation functions will be discussed
in the next subsection, but in typical scenarios, valuations may represent outcomes such as player
A winning or player B being beaten by a hundred points. So defining a valuation for MCTS in the

14



Tree
Policy

Default
Policy

Selection Expansion Simulation Backpropagation

Figure 5: One iteration of the general MCTS approach [11].

perspective of bug hunting is unclear: you can not only state bug versus no-bug as when the bug is
reached, the exploration is completed. The default policy can be anything from pure randomness
to tweaked one, as long as it does not require computational intensive algorithm: this policy might
be called a thousand times during a single simulation! Tree policy is a bit harder, and literature has
shown many ways of providing with statistical policies. The basic idea is to mix the choice between
apparently the best solution and some others that are a bit worse. This is mandatory because the
knowledge gained from the simulation is very sparse: it only concerns a single execution while there
could be millions.

2.3.2 Valuations

As demonstrated by A* search and MCTS, some guiding strategies require the aid of a valuation
of states or transitions based on information specific to those states and rather than the entire
exploration process. Furthermore, one can also use valuation to do strategic choices when asked for
arbitrary ones in the different algorithms. To refine the classification of these evaluations, we can
consider the type of information they use for computation. The first type only uses information
about exactly known things, often included in the execution sequence or the state itself. On the
other hand, the second can have access to some abstract hints about what might occur in the
future.

The first valuation we will discuss is called ActorSwitch. Its purpose is to consider the number
of times the active actor has changed throughout the execution. Both maximizing or minimizing
this value offer distinct benefits. Maximizing it corresponds to a form of fairness between actors
and tries to mimic real executions with interleaving of actors, such as in round-robin scheduling.
On the opposite, minimizing it aims at exploring corner case executions that might be missed
by programmers and therefore be more error-prone. Both choices can be achieved by storing
information about the actor who took part in the execution sequence leading to the state and then
giving a value to enabled transition based on their process.

The second valuation is based on objects shared between processes and the semantic associated
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in the model. For instance, if one has a waiting queue for accessing specific resources, one can
over-value states that help the queue growing. This way one can do a sort of stress test of some
condition. This idea of stress-testing can be applied to many objects including mutexes, mailboxes,
queues, simple shared variables, etc. In all these cases, the associated valuation should be guided
by the model and the semantics of the cases one wishes to focus on.

As stated before, while searching for bugs using the MCTS approach, one of the difficulties
is to find a good valuation function. In the work of [12], the authors are tackling video game
testing problems with the MCTS algorithm. The goal of the test is not only finishing the game
but trying the possibilities offered in the game-play. To achieve this, they introduce the concept
of features which are elements they want the exploration to encounter. For each feature, they
define a criterion, represented by positive rational numbers, indicating the desired frequency of
encountering the feature. This way, the execution is rewarded for every featured seen, but to a
lesser degree when the criterion is already fulfilled. Moreover, multiple goals, consisting of different
sets of features and criteria, can be combined and prioritized. Goals have been created from data
collected from human testers, but also from specific behaviors based on the semantics of the game
actions. This approach proves valuable in situations where the final result of the execution lacks
substantial meaning.

Let us now have a look at valuation functions that can take advantage of knowledge from a
potential future of the execution. One such source of information is the control flow graph
(CFG) of the process. A CFG is an oriented graph in which a node represents an operation and a
vertex between n1 and n2 means that after n1, the process can do n2. CFG can be extracted from
the source code of programs with static analysis. Using those graphs, one can determine precisely
which operations can be executed in the future by the process. Therefore, it is possible to derive
heuristics on the number of steps remaining to reaching a specific function or execution point for
each process. In [13], the authors identify assertions as potential sources of problems in the code.
An assertion is a function taking as input a boolean formula that the programmer expects to be
true when the assertion is encountered at runtime. To guide the search towards those assertions,
they specify a valuation function that corresponds to A* heuristics to any assertion in the code.
In order to be a little more precise, they also keep a context during the execution representing
knowledge on the current execution branch. For instance, when entering an if branch, the boolean
condition value is known. So it is possible to add it to the knowledge while in that branch. With
the knowledge, one can refine and prune some paths leading to assert that will be necessarily true,
hence not corresponding to a bug.

When dealing with more complex properties allowed by LTL, the structure of the property
itself can serve as a guiding advantage. This has been accomplished, for instance, in the context
of Petri nets [14]. To do so, the authors keep the automaton describing the property while model-
checking the whole LTS. When taking steps in the LTS, they also take corresponding ones in the
automaton. And on this automaton, they define a notion of distance to an accepting state. This is
done recursively on the structure of the property by giving values corresponding to the difference
between the current marking of the Petri net and the desired one, and computing nodes distance
accordingly. Thanks to that notion of valuation, the authors obtain significant results, and even
proved to be able to combine their results with reduction techniques, such as partial order reduction.
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Figure 6: An example of an independence theorem given in [16].

2.4 Context

As outlined in the introduction, the focus of our work is on ensuring the correctness of programs
written with the widely used MPI library [1]. MPI is a C library commonly employed in high-
performance computing, enabling the development of distributed code executed across multiple
nodes. It provides a set of primitives, such as Send, Recv, Broadcast, Reduce, and others, for
internode communication. Based on the principle of single instruction multiple data (SIMD) paral-
lelism, multiple processes are created with the same source code, differing only in a specific variable
known as the rank. Rewriting an entire MPI analyzer would be a daunting task. Instead, we lever-
age SimGrid [15], a framework designed to run simulation of distributed applications on distributed
platforms. SimGrid includes McSimGrid, an integrated model checker that already implements a
few techniques such as DPOR. By incorporating our findings into McSimGrid, we not only have
the opportunity to compare different results but also extend these ideas to other distributed fields
covered by SimGrid, such as pthread-based codes using mutexes and locks as synchronization tools.

In practical terms, MPI primitives are encoded using an abstract model of distributed ap-
plications, consisting of only five distinct operations [16]. Communication between processes is
supported by the use of mailboxes, which serve as rendezvous points for sends and receives. When
a send or receive operation is issued on a mailbox that already contains a complementary receive
or send, they are paired together, forming a communication that is stored in a set of matched com-
munications. The first two operations in the model are AsyncSend(m, data) and AsyncRecv(m,
d), representing asynchronous send and receive operations, respectively. To provide information
about these communications, the model introduces two additional operations. TestAny(Com) is a
non-blocking operation that returns true if any communication in the set Com is already paired,
and false otherwise. On the other hand, WaitAny(Com) is a blocking operation that only returns
when at least one communication in Com is already paired. Additionally, processes may need to
perform local computations that do not involve network communication. These computations are
captured by the LocalComp() operation. In [16], the author formalize those operations, as well as
synchronization ones, before proving the independence theorems (such as the one in Figure 6) that
are, for instance, required to use reduction algorithms. Since we do not want to look at the state
representation in memory, we will ignore the operations of type LocalComp() and consider only
resulting states after any other one. Formally, in our LTS, an action a ∈ Act will be a combination
of a process ID and an operation among {AsyncSend ,AsyncRecv ,TestAny ,WaitAny}.

3 Contributions

In this section, we present our findings about the combination of reduction techniques and guiding
strategies. To be able to combine both of these orthogonal approaches, we must first explain the
modifications we made to the usual reduction algorithm. In a second time, we will have a look at
the different new guiding strategies and valuations we propose, that are taking advantage of some
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MPI specific knowledge.

3.1 Multi-head dynamic partial order reduction

As discussed, a different version of traditional reduction algorithms must be proposed to take full
advantage of guiding strategies. In fact, in both DPOR and SDPOR algorithms, we identify, at
first, three steps that are asking for a choice. First when first encountering a node (line 2), then
when backtracking to an already visited node (line 5) and finally when a reversible race has been
found (line 7) (lines are given in algorithm 2, page 6). The second option assumes that multiple
transitions have been added to the to visit set at that node in the meantime. Those three specific
moments can already take advantage of guiding strategies, but as suggested by the A* algorithms, it
could be interesting to also have the opportunity to pick the next state we want to consider among
opened transitions and not only perform a depth first search. To do so, we present algorithm 4:
Multi-head DPOR. It is here implemented using persistent sets as described in [4] but works
identically with source sets of [5].

Algorithm 4: Multi-head DPOR(s0)

Data: s0 an initial state, data structures to visit and done mapping sequences to sets of
transitions, a set of sequences exploration heads initially empty.

Result: Exploration of every Mazurkiewicz trace from s0

1 choose some t ∈ enabled(s0) and add it to to visit(⟨⟩);
2 add ⟨⟩ to exploration heads;
3 while exploration heads ̸= ∅ do
4 choose some E from exploration heads;
5 if ∃t ∈ to visit(E) \ done(E) then
6 if ∃i = max{i ∈ dom(E) | D(Ei, t) ∧ (Ei) ↛ proc(t)} then
7 if {t′ ∈ enabled(pre(E,Ei)) | proc(t′) = proc(t) ∨ t′ → proc(t)} ≠ ∅ then
8 add some t′ to to visit(sub(E,Ei));
9 end

10 else
11 to visit(sub(E,Ei))← enabled(pre(E,Ei));
12 end
13 add sub(E,Ei) to exploration heads;

14 end
15 choose some t′ ∈ enabled(last(E.t)) and add it to to visit(E.t);
16 add E.t to exploration heads;
17 add t to done(E);

18 end
19 else
20 exploration heads.remove(E)
21 end

22 end

The main difference with classical reduction algorithms lies in the set exploration heads. At
any point of the algorithm, it contains the executions that could still be augmented by taking a
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Figure 7: Example of the exploration of a state space by DPOR.

transition that has been enabled by the reduction. In the beginning, the reduction enables some
initial transition, and therefore we put the empty sequence ⟨⟩ in exploration heads. Then, as long
as there is a sequence in exploration heads we pick one, and from that sequence, we try to take a
transition. If one has been enabled by the reduction but has not yet been taken, we pick it. On
that transition, we perform the regular DPOR operations, and if any persistent set was augmented,
i.e., if we found a reversible race, we add the corresponding transition sequence to the opened
exploration heads. This way, this newly enabled transition could already be chosen at the next
iteration. Finally, we explore the chosen transition by creating a new node, passing the transition
to done and adding the extended sequence to the one yet to be explored.

Figure 7 and Figure 8 illustrate the difference between DPOR and Multi-Head DPOR. In
Figure 7, we can see how the depth first search specificity of the algorithm forces the order in
which we visit the tree of possibilities. Even if the algorithm knows for a while that there exists
another branch at the root, it can not explore it before fully exploring the currently selected child.
Furthermore, it can not either explore a partial transition sequence. DPOR must keep exploring a
sequence until reaching a terminal node with no transition enabled. On the other hand, in Figure 8,
we see that Multi-Head DPOR can try to explore the other choice at the root before completing the
exploration of the left subtree. To achieve this, some nodes are saved in the set exploration heads.
Multi-head DPOR can also stop the exploration of a transition sequence at any point. Again, it
takes advantage of exploration heads to do so.

Intuitively, we simply moved the timing at which we populate the sets. Since two children in
the exploration tree do not impact each other, it does not matter if we explore pieces of both at the
same time. On the other hand, it is mandatory for A* to maintain optimality to be able to choose
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Figure 8: Example of a possible exploration of the same state space as Figure 7 by Multi-Head
DPOR

at every new step. With that new algorithm, we now have three clear arbitrary decisions: the new
one being made when picking an open exploration head. To prove the correctness of our algorithm,
we will prove that DPOR and Multi-Head DPOR explore the same executions, and therefore, the
correctness of Algorithm 4 is implied by the correctness of DPOR. To do so, we need to introduce
the notion of explored sequences. We will say that a sequence E is being reached by DPOR when
a call Explore(E, DPOR) is made, and it is reached by Multi-Head DPOR when it is added to
exploration heads. We will note RDPOR and RMH the sets of sequences reached by DPOR and
Multi-Head DPOR. In all the following proofs, we will suppose that the arbitrary choices made
while running Multi-Head aligns with those made in DPOR: that is to say, choices on lines 2 (first
encounter), 5 (backtrack) and 7 (reversible race) in DPOR will be respected if possible at lines
15 (first encounter), 5 (backtrack) and 8 (reversible race) in Multi-Head. We first show why it
is sufficient to consider the sets R. Then we establish the link between R and the sets of our
algorithm. Finally, we prove the theorem.

Theorem 3.1. Multi-Head DPOR explores at least one execution per Mazurkiewicz class.

To prove the theorem, we will rely on the correction of DPOR. DPOR is proven to explore at
least one execution per Mazurkiewicz class [4]. If we can show that the two algorithms reach the
same set of sequences (i.e., show that RDPOR = RMH), then we have proved our theorem.

This little lemma will be useful to prove RDPOR = RMH since it connects the sets of reached
sequences and the actual set used in the algorithm. Intuitively, it states that to visit sets describe
exactly the children of any sequence in RMH .

Lemma 3.2. ∀t ∈ T , ∀E ∈ T ∗, (E ∈ RMH ∧ t ∈ to visitMH(E)) ⇐⇒ E.t ∈ RMH .

Proof. Let t ∈ T , let E ∈ T ∗,
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RDPOR RMH

E

{E.w} ∊ RDPOR  

E

{E.w} ∊ RMH  

Figure 9: Simple representation of Lemma 3.3 statement. The reached set, represented as a tree,
for DPOR is in green, in orange for Multi-Head DPOR; a shared execution sequence E is in red and
the matching continuations of that sequence are in blue. The lemma states that the blue subtree
are equal.

• =⇒
Since E ∈ RMH , by definition it means that E was in exploration heads at some point.
Furthermore, anytime a transition is added to a set of to visit(E′) (either at line 15 or lines
8/11), E′ is added to exploration heads. Therefore, E was in exploration heads after t was
added to to visit(E). From that time, E will only be removed from exploration heads when
to visit(E) \ done(E) = ∅. If t is chosen in to visit(E) \ done(E) then the proof is over.
So let us suppose that we reached a point where to visit(E) \ done(E) = ∅ and t was never
chosen. Since t ∈ to visitMH(E), it means that t ∈ done(E). But the only way to add t
to the set done(E) is to reach line 17. Hence, t was chosen at some point at line 5. So line
16 was reached, and therefore E.t was added to exploration heads which is the definition of
E.t ∈ RMH .

• ⇐=
If E.t ∈ RMH , let us consider the first time it was added to exploration heads. That
necessarily happened at line 16 since line 13 only adds prefix of the current sequence (i.e.,
sequences that have already been reached). But when reaching line 16, E was picked from
exploration heads (i.e., E ∈ RMH) and t was picked from to visit(E)\done(E) (in particular
t ∈ to visit(E)).

□

We will suppose that the same lemma is true for DPOR since it is used to prove the correction
of the algorithm in [4]. We will now prove a lemma intuitively stating that if a sequence is reached
by both algorithms, then the sequences reached from this initial sequence are the same in both
algorithms. The idea of the lemma is represented by Figure 9. In other words, if there is a sequence
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E reached by both algorithms (in red), then the subtree explored by both algorithms (in blue) is
the same. Using that lemma on sequence ⟨⟩ that is reached by both algorithms proves the first
lemma, and therefore the theorem.

Lemma 3.3. Let E ∈ T ∗, if E ∈ RDPOR∩RMH , then ∀E′ ∈ {E.w | w ∈ T +}, E′ ∈ RDPOR ⇐⇒
E′ ∈ RMH .

Proof. We will note N = max{|E| | E ∈ RDPOR ∩RMH}, the size of the longest sequence reached
by both algorithms, and H(n) the property: “ ∀E ∈ RDPOR ∩ RMH s.t. N − |E| ≤ n, ∀E′ ∈
{E.w | w ∈ T +}, E′ ∈ RDPOR ⇐⇒ E′ ∈ RMH”. With E ∈ RDPOR ∩RMH , let us prove Hn by
induction on n.

• Base case: n = 0.
By definition of N , if N ≤ |E|, then N = |E|. In particular, {E.w | w ∈ T +} ∩ RDPOR = ∅.
Therefore, enabled(last(E)) = ∅. So {E.w | w ∈ T +} ∩ RMH = ∅. Hence, H0 is true.

• Induction step: suppose there exists n such that Hn is true. Let us show Hn+1.
Let us take E ∈ RDPOR ∩RMH such that N − |E| ≤ n+ 1 and show that ∀E′ ∈ {E.w | w ∈
T +}, E′ ∈ RDPOR ⇐⇒ E′ ∈ RMH .
If there is no continuation of the sequence E reached by DPOR, then it means that enabled(
last(E)) = ∅ and the proof is the same as the base case. Without loss of generality, let us
then suppose that {t | t ∈ T ∧ E.t ∈ RDPOR} = {t1, . . . , tn} with transitions numbered in
the order they are added to to visitDPOR(E) (the sets are the same according to Lemma 3.2
for DPOR). We will now show that to visitDPOR(E) = to visitMH(E). Let us first prove
that to visitDPOR(E) ⊆ to visitMH(E). We note H′

k the property: “The k first transitions
of to visitDPOR(E) are in to visitMH(E)”. Let us prove H′

k by induction on k.

– Base case: k = 1.
The first transition added to to visitDPOR(E) was an arbitrary choice among enabled(
last(E)). Since we suppose that both algorithms made the same arbitrary choice when
possible, and Multi-Head DPOR also selects the first transition among enabled(last(E)),
then t1 ∈ to visitMH(E).

– Induction step: suppose there exists k such that Hk is true. Let us show Hk+1.
If tk+1 was added to to visitDPOR(E), there exist 1 ≤ i ≤ k, 1 ≤ j ≤ k s.t. i ̸= j,
t′ ∈ T and w ∈ T ∗ such that ti and t′ are in reversible race and E.tj .w.t

′ ∈ RDPOR.
That is to say, tk+1 was added due to the fact that we found a race between an already
explored transition in to visitDPOR(E) and a transition found in a sequence starting in
E. Since we supposedH′

k, we have that ti, tj ∈ to visitMH(E), so E.ti, E.tj ∈ RMH with
Lemma 3.2. Moreover, N − |E.tj | = N − |E| − 1 ≤ N by hypothesis on E. Therefore,
we can apply Hn to the sequence E.tj . This gives us in particular that E.tj .w.t

′ is also
in RMH . Hence, the same reversible race will also be spotted by Multi-Head DPOR
before adding E.tj .w.t

′ to exploration heads, and tk+1 will be chosen to be added to
open statesMH(E).

The proof for to visitMH(E) ⊆ to visitDPOR(E) is similar. Now that we have to visitDPOR(
E) = to visitMH(E), let us prove that ∀E′ ∈ {E.w | w ∈ T +}, E′ ∈ RDPOR ⇐⇒ E′ ∈
RMH .
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Let E′ be a sequence in {E.w | w ∈ T +}. We will note E′ = E.t.w′ with t a transition, and
w′ a sequence (potentially empty).

– If t /∈ to visit(E): then E.t /∈ RDPOR which means that E′ /∈ RDPOR, and E.t /∈ RMH

which means that E′ /∈ RMH (those implications are easily verified inductively with
Lemma 3.2).

– If t ∈ to visit(E): then t ∈ RDPOR and t ∈ RMH . So E.t ∈ RDPOR ∩RMH . If w′ = ⟨⟩
then the proof is done. Else, since N − |E.t| ≤ n, we obtain by applying Hn to E.t that
E′ ∈ RDPOR ⇐⇒ E′ ∈ RMH .

□

Intuitively, the proof is working thanks to the fact that DPOR does not allow different children
to interact with each other’s data. A node will only populate persistent and source sets among his
parents, and once something is added to that parent, it will never be removed. For this reason, we
remain doubtful on the possibility of adapting this idea to ODPOR. Indeed, the problem is that a
child can add a whole sequence to a wakeup tree of one of his parents. This roughly corresponds
to adding a sub-sequence to a data in another children node. The problem is also open when
considering UDPOR. The computation of Alt(C,D∪{e}) requires using a set of events U that will
precisely be known only when the left subtree is fully explored. Therefore, trying to compute the
right subtree (i.e., computing the alternative) early does not sound possible.

If we now take a step back to look at the choices we have, there are two types of choices:

• we will call inserting choice a choice of a transition to be added to to visit, either when the
state is first encountered, or when a reversible race is detected.

• we will call picking choice a choice of transition to consider among multiple ones already
inserted. This is the case when we backtrack to a node with multiple possibilities, but now,
it is also the case when picking the node we want to backtrack to in exploration heads.

With those particular choices, we can now explain how the new guiding strategies work.

3.2 New guiding strategies

In this subsection, we explain the two new guiding strategies we have designed.
The first guiding strategy is SimilarityAvoidance. It comes from the idea that in stateless

model-checking, we have to rely on our knowledge of the dependence relation to decide how we
build our reduction. Despite all the effort we put in understanding the semantics, we may have
to over-approximate it sometimes. That is the example of multiple write on the same variable
with a single read in the end. Statically, we will state that two write on the same variable are
dependent. But in that execution sequence, only the two write happening before the read really
are. Furthermore, in our model, we are only observing communications between processes. Hence,
there are a lot of things internal to each process that we do not know about. We may miss some
important things. To sum up, we may consider a lot of states as different when in fact they are
identical.

SimilarityAvoidance aims at mitigating this phenomenon. We can not take as granted that
two different states are equal and stop the exploration because it could ruin the soundness of the
approach. But what we can do is delay the exploration of states that seem similar to ones already
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explored. The idea to do so is to consider the local history of processes and consider that states
reached with the same local history may be identical. When finding a similar state, we delay the
exploration of its children until only similar states are explored. If we reach this point, it means
that maybe those similar states are really different. If they are identical, the transition chosen to
be explored from them does not matter: the reduction will do the same exploration whatever. But
if they end up being different, by choosing the least visited transition among similar states, we
implement the FlipParrallel of FlyMC at the same time.

More precisely, for each reached node, we associate a corresponding abstract state consisting of
only the number of transitions taken by each process. For each abstract state, we save the number
of times the different processes have been chosen. When doing an inserting choice, we choose the
transition associated to the process that has been the least taken in the corresponding abstract
state. When doing a picking choice, we choose the transition for which the number of time it was
explored in the abstract state is the lowest.

The second guiding strategy is quite similar to SimilarityAvoidance, but also tries to tackle
a specific pattern of programming used in distributed systems. ActorSymmetry utilizes the
concept of abstract state and avoids doing the same choices for identical abstract states just like
SimilarityAvoidance. The difference comes from the way they build the abstract state. With
ActorSymmetry we want to deal with applications programmed by a master/slave pattern. In
those applications, one process is distinguished from the other as the master. The master usually
deals with organization tasks, gatherings, or sharing of data. The slaves are asked to do tasks and
are used as work force by the application, regardless of their specific identity. In other words, the
slave processes are identical. A good example is a matrix computation. The master is given two
whole grids. Different slaves are given sub-matrices, and computing the same thing, regardless of
what the master has attributed.

When model checking those specific cases, the idea is that interleaving one slave with the master
is the same as interleaving another slave with the master. There are processes that are symmetric
in their communications, tasks, computations. . . They are symmetric in their role. Therefore, the
algorithm will try not to visit an interleaving already explored with another symmetrical process.
The problem is that SimGrid does not have access to the computations that are being done inside
the application. In order to detect potential symmetry without an important overhead, we then
just look for processes that have executed the same number of transitions. For instance, if there are
three processes P, Q, R and if we write (p, q, r) the number of transitions taken by each of them,
we will consider equivalent abstract states (1, 4, 3) and (1, 3, 4) because processes Q and R may be
symmetric in their execution, and therefore the corresponding real state may have already been
explored.

We have to keep in mind that those guiding strategies are simple in the way they make choices,
and a lot of time will not be the best, but they are efficient in terms of computation required to
decide. Moreover, those strategies do not aim at being effective all the time: we even saw that
in the general case it is impossible. Sometimes ActorSymmetry will identify two processes as
symmetric when they are not, and could be then worse than any other strategy, but this is not a
problem as long as there are cases in which detecting the symmetry is critical for the exploration.

3.3 New valuations

In addition to those two new guiding strategies, we introduce two new valuations. These valuations
take advantage of some usual MPI patterns that either lead to more errors, or inefficient exploration.
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While(True){

c = MPI_ISend(PreviousResult );

While(not MPI_Test(c)){

DoNextComputation ()

}

}

Figure 10: MPI Test example.

The two valuations we present here are punitive in the sense that they discourage the exploration
to consider some patterns. Those two valuations are only based on exact information from the past
and the present of the execution.

The first valuation is a way for the exploration to dodge infinite loops. The one we want to
avoid is presented in Figure 10. It can be found for instance in any producer/consumer pattern.
A process has a computation to do and must share the result. But to gain time, it will compute
while waiting for the previous transmission to complete. Hence, the testing on the result of the
communication. If we use a depth first search approach to explore the possibilities here, we will
fire the transition corresponding to the test on the communication. And we will do this forever,
since it is always enabled, and the result will not change until a corresponding recv is executed by
another process. One classical solution to this kind of problem is to use bounded model-checking.
This relies on setting a threshold for the exploration depth, i.e., a number of steps to be explored
before considering the current transition sequence is a dead-end. In some cases it is reasonable to
do so, but most of the time, one also loose potential behaviors by doing so. Instead of doing that,
we use valuation to dodge those pitfalls. If we detect that a test transition has been executed and
is still enabled, we penalize the corresponding transition in order to force the exploration of the
rest of the state space.

A second valuation is used to tackle a possibility offered by the MPI library that is error-prone.
Looking back at Figure 10, we need to write the master part that will receive all those data. For
that, MPI provides with receive primitives that will receive messages from a given process. The first
option is to write a recv for each slave process. This is tedious in terms of cases to handle, having
to consider every case of matching communication. Furthermore, this solution is not scalable,
requiring to modify a huge amount of code any time the number of process is modified. Second and
chosen option is to use a MPI ANY SRC tag. It simply means that this receive will match a send from
any process to this one. It has interesting and necessary usage but can also lead to hard-to-detect
problems due to unplanned interleaving. A simple example of this is illustrated in Figure 11. In
this example, there is a race condition between the two send(P0) operations of process P1 and P2.
If P1 send(P0) is matched with P0 first recv(any), then P0 will execute the send(1) that will also
be matched since P1 can execute recv(P0) and life goes on. On the other hand, if P2 send(P0) is
matched with the recv(any), then P1 will be blocked, waiting for its own send(P0) to be matched,
while P0 will wait for a send(P1) to be matched. Here we have a potential deadlock. This example
is quite simple, but in practice, there are harder communication patterns that can still lead to a
problem.

To help capturing those situations, we propose the DelayAny valuation. The idea is simple,
we will undervalue transitions that correspond to a recv action using an any tag. This way, we
maximize the number of potential matching communications that may have been missed by the
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P0 P1 P2

recv(any) send(P0) send(P0)

send(P1) recv(P0)

recv(any)

Figure 11: MPI any source tag example.

P0 P1 P2

g = recv(any) send("1", P0) send("0", P0)

g = recv(any)

assert(g!=1)

Figure 12: A small MPI example with an assertion.

programmer. Those matching communications can be the source of potential bugs.

4 Implementation

In this section we discuss the implementation we performed of the different novelty we explained
earlier as well as classical solutions presented in the state-of-the-art section, adapted to our model.

As stated before, we use McSimGrid as the baseline for our model checking algorithm. Sim-
Grid [15] works by simulating MPI processes as different threads. As in an operating system,
processes can run and execute user code as they want, but when they need to run MPI primitives,
they need to switch in kernel mode by calling the maestro (a Simgrid specific thread). Maestro is in
charge, just like a real operating systems handling system calls, to orchestrate the demands to the
MPI library. This is especially useful when model checking. McSimGrid puts another layer on top
of this. A checker is in charge to discuss with the maestro and will tell which MPI call should be
until terminating or reaching another call. This dynamic allows us to visit an execution sequence
at our will. Better than that, McSimGrid also offers the opportunity to restart the application,
and execute some sub-sequences of transitions again, therefore creating the possibility to backtrack
in the exploration. With these basic explanations about our tool, we can now explain how we
implemented our ideas.

We implemented the CFG distance solution using application source code. For that, our tool
takes as input the LLVM intermediate representations (LLVM ir), which is a specific representation
used inside LLVM. LLVM [17] is a framework used to provide compilation analysis and optimiza-
tions. It is capable to work on many languages and is a powerful tool when doing static analysis.
In Figure 12, we have an example of a small MPI program with an assertion. When looking at it in
LLVM ir, we obtain blocks, which are composed of multiple simple execution statements. Figure 13
shows the CFG obtained with the LLVM ir. It has multiple defaults for the usage we want. The
biggest issue is linked to the fact that we are only observing the MPI communication. There is a
lot of information in this graph we will not be able to use at runtime because we will not know it.
For instance, from the checker, we can not determine at runtime if a process in block labelled %26
is going to exit with a true or a false conditional jump. We do not have access to that. Neither
maestro (in SimGrid) nor the checker discussing with maestro know about the internal state of
the MPI process. That is not a problem for our other algorithms, we are doing stateless model
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%2:
 %3 = alloca i32, align 4
 %4 = alloca i32, align 4
 %5 = alloca ptr, align 8
 %6 = alloca i32, align 4
 %7 = alloca i32, align 4
 %8 = alloca i32, align 4
 %9 = alloca i32, align 4
 %10 = alloca %struct.MPI_Status, align 4
 store i32 0, ptr %3, align 4
 store i32 %0, ptr %4, align 4
 store ptr %1, ptr %5, align 8
 store i32 -1, ptr %6, align 4
 store i32 -1, ptr %7, align 4
 store i32 0, ptr %8, align 4
 store i32 1, ptr %9, align 4
 %11 = call i32 @MPI_Init(ptr noundef %4, ptr noundef %5)
 %12 = load ptr, ptr @MPI_COMM_WORLD, align 8
 %13 = call i32 @MPI_Comm_rank(ptr noundef %12, ptr noundef %7)
 %14 = load i32, ptr %7, align 4
 %15 = icmp eq i32 %14, 0
 br i1 %15, label %16, label %26

T F

%16:
16: 
 %17 = load ptr, ptr @MPI_COMM_WORLD, align 8
 %18 = call i32 @MPI_Recv(ptr noundef %6, i32 noundef 1, ptr noundef
... @smpi_MPI_INT, i32 noundef -555, i32 noundef 0, ptr noundef %17, ptr noundef
... %10)
 %19 = load ptr, ptr @MPI_COMM_WORLD, align 8
 %20 = call i32 @MPI_Recv(ptr noundef %6, i32 noundef 1, ptr noundef
... @smpi_MPI_INT, i32 noundef -555, i32 noundef 0, ptr noundef %19, ptr noundef
... %10)
 %21 = load i32, ptr %6, align 4
 %22 = icmp ne i32 %21, 1
 br i1 %22, label %23, label %24

T F

%26:
26: 
 %27 = load i32, ptr %7, align 4
 %28 = icmp eq i32 %27, 1
 br i1 %28, label %29, label %32

T F

%23:
23: 
 br label %25

%24:
24: 
 call void @__assert_fail(ptr noundef @.str, ptr noundef @.str.1, i32 noundef
... 23, ptr noundef @__PRETTY_FUNCTION__.main) #3
 unreachable

%29:
29: 
 %30 = load ptr, ptr @MPI_COMM_WORLD, align 8
 %31 = call i32 @MPI_Send(ptr noundef %9, i32 noundef 1, ptr noundef
... @smpi_MPI_INT, i32 noundef 0, i32 noundef 0, ptr noundef %30)
 br label %32

%32:
32: 
 %33 = load i32, ptr %7, align 4
 %34 = icmp eq i32 %33, 2
 br i1 %34, label %35, label %38

T F

%25:
25: 
 br label %26

%35:
35: 
 %36 = load ptr, ptr @MPI_COMM_WORLD, align 8
 %37 = call i32 @MPI_Send(ptr noundef %8, i32 noundef 1, ptr noundef
... @smpi_MPI_INT, i32 noundef 0, i32 noundef 0, ptr noundef %36)
 br label %38

%38:
38: 
 %39 = call i32 @MPI_Finalize()
 ret i32 0

Figure 13: The CFG of Figure 12 in LLVM intermediate representation.
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MPI_Comm_rank line:16
****Distances****
 MPI_Comm_rank --> 0
 MPI_Finalize --> 1
 MPI_Init --> ∞
 MPI_Recv --> 1
 MPI_Send --> 1
 __assert_fail --> 3
****************

MPI_Recv line:20
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> 2
 MPI_Init --> ∞
 MPI_Recv --> 0
 MPI_Send --> 2
 __assert_fail --> 2
****************

MPI_Send line:29
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> 1
 MPI_Init --> ∞
 MPI_Recv --> ∞
 MPI_Send --> 0
 __assert_fail --> ∞
****************

MPI_Send line:35
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> 1
 MPI_Init --> ∞
 MPI_Recv --> ∞
 MPI_Send --> 0
 __assert_fail --> ∞
****************

MPI_Finalize line:39
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> 0
 MPI_Init --> ∞
 MPI_Recv --> ∞
 MPI_Send --> ∞
 __assert_fail --> ∞
****************

MPI_Recv line:21
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> 1
 MPI_Init --> ∞
 MPI_Recv --> 0
 MPI_Send --> 1
 __assert_fail --> 1
****************

__assert_fail line:23
****Distances****
 MPI_Comm_rank --> ∞
 MPI_Finalize --> ∞
 MPI_Init --> ∞
 MPI_Recv --> ∞
 MPI_Send --> ∞
 __assert_fail --> 0
****************

MPI_Init line:15
****Distances****
 MPI_Comm_rank --> 1
 MPI_Finalize --> 2
 MPI_Init --> 0
 MPI_Recv --> 2
 MPI_Send --> 2
 __assert_fail --> 4
****************

Figure 14: The extracted CFG from Figure 13 with computed distances.
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checking. But here, it simply means we need to cut off all this information that will pollute the
computation of our distance.

Instead of using the CFG from the intermediate representation, we instead read for the LLVM
ir of the code and extract what we can see in Figure 13. Compared to the previous representation,
some blocks have been split, others simply disappeared (as seen with the color pattern). This is
because we simply kept the MPI calls, the things that are observed by McSimGrid, as well as
our target, the assertion. The links between the node of the new CFG still respect the flow of
the program: for each MPI call, the outgoing vertices represent the possible calls the process can
execute just after. It is also enriched with the information required to localize precisely the calls
inside the code. For instance, there are two MPI Recv in the code: one at line 20 and one at line 21.
With that information, when receiving a MPI Recv in the checker, we can identify precisely where
in the code, i.e., in the graph, we are. Computing the distances is now easier: to have an admissible
heuristic, we make optimistic choices and take the smallest distances when branches exist. This
method gives a heuristic for each process in terms of smallest number of MPI operations to execute
before reaching an assertion. To compute the final value for the state, we simply sum the value for
each process. This gives us an optimistic approximation on the number of MPI calls to be executed
from that state before reaching an assertion.

In addition to the A* algorithm, we also implement:

• the SimilarityAvoidance strategy discussed earlier.

• a uniform random strategy, now possible thanks to the Multi-Head version of DPOR.

• a MinMatch/MaxMatch that aims at saturating the usage of mailboxes that are shared
between processes. MinMatch tries to avoid matches communications in order to maximize
the possibility of finding potential deadlocks. On the opposite, MaxMatch tries to match the
communications as soon as possible. This way we can hope to keep counter-examples simple
to read for the user, and therefore efficient to correct the bug found.

Figure 15 gives a quick summary of the different combinations of strategies and valuations we
implemented.

5 Experimental Evaluation

In this section, we present some preliminary results we obtained with our few examples. From
those results, we start the discussion about the interest of the different strategies and valuations
introduced.

5.1 Test cases

To evaluate our propositions, we would need an important number of erroneous codes that are
already a bit huge in terms of either number of MPI operations or number of involved processes.
Literature proposes different benchmarks of MPI erroneous applications. In [18], the authors are
providing with a classification of MPI possible bugs as well as an important number of erroneous
codes and expected behavior to be found by a verification tool. But all these codes are quite small,
and some of them are even deterministic in the sense that they have a single possible execution
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Strategy Valuation Inserting Choice Picking Choice

DFS Depth Maximum depth Order of process rank

DFS MaxMatch Minimum number of Transition matching a communication >
Non-paired communication non-communication transition >

Transition creating an unmatched communication;
ties ordered by process rank

DFS MinMatch Maximum number of Transition matching a communication <
Non-paired communication non-communication transition <

Transition creating an unmatched communication;
ties ordered by process rank

DFS SimilarityAvoidance Least seen abstract state; Least taken transition in equivalent abstract state;
ties ordered by depth ties ordered by process rank

Random Uniform Random uniform choice Random uniform choice

A* CFG Smallest distance from origin Smallest CFG heuristic valuation
+ CFG heuristic valuation

Figure 15: Summary of implemented strategies with valuations and how they handle the different
choices.

sequence. In [19], the authors provide fewer codes, but they also created variants of existing mini-
apps that are bugged. The bugs are introduced by modification of code they give. This time,
the considered applications are of a reasonable size. The problem comes from the deterministic
property of the considered bugs. They always appear regardless of the explored transition sequence.
Therefore, we can not use any of these approach to compare our strategies and valuations.

Instead, for now, we propose to test our findings on some small examples we designed and
heat, a test taken from another tool benchmark [20] that aims at computing the result of the
heat propagation equation on a small grid. All those tests lead to a problem, either in the form
of a violated assertion (in our codes) or of a deadlock (for heat). Our examples are variations
of the same pattern. Those variations are obtained by changing the order of MPI process, the
type of communications, and/or augmenting the complexity by adding synchronizing operations.
The pattern has been chosen because it was used to highlight an initially existing bug in the
implementation of the DPOR algorithm in McSimGrid. It is described in Figure 16 and roughly
corresponds to a read/write race. The interesting part is that it is easy to detect the race between
the two send of P1 and P2, but it is not as easy to understand that to reverse the race, one
must execute process P3 or P4. When adding synchronization around the pattern, it is easy to
make the number of possibilities explode, partially because the translation of simple collective
communications may take multiple send/recv executions in terms of mailboxes.

We tested all the combinations of Figure 15 on each pattern except for A* with the control flow
graph valuation that for which heat is not relevant. Heat leads to a deadlock (i.e., an inter-blocking
situation) between processes. It contains no meaningful assertion. Therefore, the strategy consisting
in guiding towards assertion makes no sense in this case. Finally, most of the experimentation are
run with the specificity that backtracks are only permitted when reaching a terminal node. In other
words, when exploring a sequence E, the search will continue choosing the extended sequence E.t
in exploration heads until enabled(last(E)) =. At that point, the choice for the next sequence is
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P0 P1 P2 P3 P4

g = recv(any) send(P3) send(P4) recv(P1)

recv(P2)

g = recv(any) send("1", P0) send("0", P0)

assert(g!=1)

Figure 16: A pattern of non-trivial reversible race.

free. This is done in order to mitigate the overhead of re-executing transitions, which is required
by McSimGrid when backtracking.

Our results are presented in Figure 5.2. The values are given both in terms of visited states and
executed transitions. Visited states are the number of states reached in the corresponding LTS.
Executed transitions is a specificity of McSimGrid functioning. To backtrack, we need to reload
a specific state and execute a prefix of the transition sequence. Executed transition is the total
number of transitions the simulated program ran. The values with a “greater than” indication
means that we stopped the execution before the bug was found. The Figures given are those at the
time the execution was stopped. Threshold difference between Heat and synchronization is due to
the overhead of computation in Heat. Some of the transitions do real calculus while our pattern
is only a communication outline. The Figures for the strategy involving randomness are given as
mean(±standard deviation) over 100 executions with different random seeds.

There is almost always something better than a depth first search. As we could expect, choices
based on the order of processes are highly impacted by the reordering. This is seen for DFS+Depth,
but also for every other combination that resolves ties using the process ordering. This impact can
have important consequences on the performance (SimilarityAvoidance on the pattern + synchro-
nization is one example). On the opposite, Random+Uniform is much less impacted by a simple
reordering. These results guide us toward the use of randomness to revolve ties for future testings.

The synchronization impact on results is important. As indicated in the table, even if it consists
in only a few more MPI calls (two barrier synchronizations and one communicator split), it adds
more than 50 transitions to the system. In order to emulate a single rendezvous between 5 processes
with only sends and receives on a mailbox is costly. Since all those send and receive are using
the same resources, there is a lot of dependency between actions. Hence, the search can try
multiple interleavings for a same single collective communication. This is the reason why both A*
and MinMatch are much worse with synchronization. DFS+Depth explores deeper interleaving
first. Therefore, it is not impacted by the earlier synchronizations and is able to find the bug.
MaxMatch matches communications as soon as possible and backtracks to state with the most
matched communications, which serves as a sort of Depth choice here. SimilarityAvoidance is made
to detect the equivalence between states reached after different interleavings of synchronization.
Finally, when exploring a new sequence, Uniform does not necessarily try the same ordering as
before. Every DFS-based strategy will do the same initial choices after executing the synchronizing
transitions in a different order. Therefore, if it did not find the bug the first time, it will not
either the second time. Uniform dodges that issue. After trying a first sequence, even if it chooses
to interleave a synchronizing transitions, it will eventually make new choices for the end of the
execution. Hence, at every try it has a chance to find the bug. This is a second motivation for
using Random-based strategy over DFS-based ones.

31



5.2 Discussion

Code Description Strategy Valuation Visited States Executed Transitions
pattern DFS Depth 83 224

DFS MaxMatch 42 114
12 transitions DFS MinMatch 20 23

DFS SimilarityAvoidance 19 22
Random Uniform 23(±15) 37(±39)

A* CFG 19 24
pattern DFS Depth 115 290
+ reordering DFS MaxMatch 19 25

DFS MinMatch 44 93
12 transitions DFS SimilarityAvoidance 39 69

Random Uniform 23(±17) 38(±46)
A* CFG 20 25

pattern DFS Depth 1246 12416
+ synchronization DFS MaxMatch 3613 23677

DFS MinMatch 147611 713273
66 transitions DFS SimilarityAvoidance 211 400

Random Uniform 175(±106) 439(±399)
A* CFG >200K >500K

pattern DFS Depth 1447 16881
+ synchronization DFS MaxMatch 2726 16876
+ reordering DFS MinMatch 160748 817156

DFS SimilarityAvoidance 2466 6262
66 transitions Random Uniform 197(±122) 527(±473)

A* CFG >200K >500K
Heat DFS Depth >100K >1.1M

DFS MaxMatch >100K >860K
93 transitions DFS MinMatch 320 475

DFS SimilarityAvoidance 583 629
Random Uniform 559(±1529) 2166(±9173)

A* CFG X X

Figure 17: Number of explored states visited before finding the bug using Multi-Head DPOR with
sleep sets. The pattern uses 5 processes, Heat uses 4.
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Figure 18: Evolution of the number of visited states over different thresholds for the pattern file
with A*+CFG strategy.

The challenge proposed by Heat in terms both of number of interleaving and computation
overhead due to computation mimics a small real application. It appears that classical DPOR
using sleep set is not efficient enough to find the bug in a reasonable number of steps. To appear,
the bug requires that a send is delayed for multiple transitions in order for the corresponding recv

to match the wrong send. When this communication pairing happens, it can lead to a deadlock
a few transitions later. DPOR has too many things to interchange before reaching this situation.
That is the same for MaxMatch that will not consider such execution that does not match a
communication right away before a long time. On the other hand, MinMatch delays such matching
as much as possible. In that way, the wrong send can be matched more easily with the recv.
SimilarityAvoidance achieves the task thanks to the fact that many patterns in the communication
are identical. Hence, it describes a more realistic dependency relation. Finally, in average, random
is still quite efficient on the matter. Again, the fact it does not force the order of execution from one
sequence to another helps a lot. However, the standard deviation is much bigger. This is because
some specific executions are especially worse than the average (worst case being 14672 visited states
for 89616 executed transitions).

As stated before, results in 5.2 are those obtained with the original McSimGrid backtrack-
ing policy (i.e., backtracking is only done when reaching a terminal node). In theory, that does
not interact well with A* algorithm. A* requires taking the best option available at every step,
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not only the final ones. To take that into account, we implemented a threshold mechanism. If
set, the threshold modifies the McSimGrid policy by allowing to backtrack to the best choice in
exploration heads if the ratio between the current choice valuation and the best one is above the
chosen threshold. For instance, with a 50% threshold and a current best choice of 6, we will back-
track as soon as the current sequence gets a valuation above 9. A threshold of 0% corresponds to
always pick the best option among exploration heads. This is what is done in the standard A*
algorithm.

Figure 18 shows the behavior of the A* algorithm used in McSimGrid with different thresholds.
The evolution is made by levels. This is normal because we are dealing with integer values and
discrete thresholds. When the threshold becomes large enough, the number of visited states turns
back to the value without using threshold. Furthermore, values obtained for smaller thresholds are
quite chaotic and seems to be way worse. This tends to show that using a threshold is not efficient
with current implementation of backtrack in McSimGrid.

Not following strict threshold in A* algorithm means that we do not have the correctness of the
algorithm anymore. The exploration is still sound, but the counter-example found (i.e., the path
in the path-finding associated problem) is not guaranteed to be optimal anymore. In fact, in the
pattern example, the counter-example returned by A*+CFG without threshold is of length 11 while
the smallest one is of size 8. A more surprising result at first is that A*+CFG and a threshold of
0% (i.e., always taking the optimal, hence implementing a true A* algorithm) does not return an 8
long answer. This is due to the reduction. A* will only return the optimal on the graph it is allowed
to explore. With the reduction, we only guarantee that a path equivalent to the counter-example
is allowed. We have no guarantee regarding the size of that equivalent path available. Without
Persistent sets reduction, the algorithm returns the optimal for counter-example for the program.
This experimentation enlightens the following phenomenon: keeping the optimality component of
A* while doing reduction is costly while sometimes being worthless. Finally, even if the algorithm
without Persistent sets reduction returns the optimal answer, the cost of not using the reduction
is too important (231 visited states and 1277 executed transitions, against the 19/24 Figure 5.2
results).

One issue we are having with the A* algorithm is the choice of heuristic. The current CFG
heuristic has not been impressive in terms of result. This can be explained partially because of the
graph we are considering. A MPI program is written as a single code, multiple data parallelism.
Therefore, all the processes have the same static control flow graph, but may end up having very
different execution flows. A refinement of the CFG could be done in order to improve the obtained
heuristic. With a worse heuristic, the issue is that the algorithm tends to turn into a Breadth
First Search (BFS) that is not a good option for the exploration of an exponentially growing tree.
Furthermore, a BFS has an important impact in terms of memory. DFS had the advantage to only
keep in memory states that are part of the current explored sequence. In BFS, the algorithm can,
in the worst cases, keep the whole tree.

6 Future Work

As explained in the result discussion, the CFG analysis we currently perform is very light compared
to our needs. Different avenues exist to improve it. One is a refinement based on the rank of each
process. This can help to obtain a more precise CFG for a given process. A second idea is to
perform a flow analysis on the variable at stakes in the assertion. In fact, we currently ignore the
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content of the assertion. However, we could find the transitions that really have an impact on the
assertion variables (i.e., that are part of the assertion formula) and focus on interleaving those.
Another possible thing would be to transform the MPI CFG to a lower mailbox operation level.
Since McSimGrid is executing this lower lever, it helps the precision of the analysis.

There exists a difference between the MPI protocol used by the application and the actual lower
level implementation that is verified by McSimGrid. Those differences sometimes lead us to explore
interleaving that would make no sense in the world of MPI calls. For instance, if an application calls
a MPI Barrier with all its processes, we will try to interleave any calls generated by the barrier.
However, we could consider all the obtained low level transitions as single atomic blocks. This way,
we would tend to consider interleaving that correspond to the MPI operations. This would require
us to prove beforehand the correctness of the implementation of the MPI calls in terms of mailbox
operations. But we will do this once, and then be able to gain a lot of exploration time. Practically,
we could ensure that when a transition is taken, we execute as much transition corresponding to
the same original MPI call as possible.

Finally, one unexplored idea is to inject dependencies between actors one after another. It
appears that a vast majority of distributed bugs only concern two or three actors. If it is so,
there is no need to interleave all processes every single time. To mitigate this phenomenon, we can
leverage our guiding strategies to orient the search along paths interverting only specific processes.
Such a guiding strategy is not easy to compose. On the other hand, we could try to adapt the
DPOR algorithm, so that the dependency used to determine the happens-before relation is dynamic.
During the exploration, we slowly add dependencies between processes so that more and more
interleavings are explored until reaching soundness.

7 Conclusion

We have introduced Multi-Head DPOR, a new variation the classical dynamic partial order reduc-
tion algorithm for software model checking. This new algorithm aims at augmenting the freedom
of the order of the search. Thanks to such freedom, guiding techniques can be applied at a deeper
level than before. Techniques such as A* algorithm that could not be implemented before due to
the depth first search characteristic of DPOR are now possible.

In addition to this new algorithm, we propose a few more guiding strategies and valuations.
These leverage specific pattern of distributed application to fasten the search. We successfully
implemented those new strategies as well as classical ones, but adapted to the known specificities
of MPI programs.

Introduced strategies combined with Multi-Head DPOR show promising results compared to
classical reduction without guided model checking. Different strategies show different results de-
pending on the problem searched and the structure of the program. Those analyses leave for
potential new valuations and adaptability of the existing ones for other models such as memory
synchronization.
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