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Abstract: Increasingly difficult and heavy computational tasks are now frequently handled using
message passing applications. However, distributed programming and more generally, dealing
with concurrency is quite a challenge. It follows an increasing demand for efficient tools to ensure
correctness of such applications. Model checking is one of these tools. Its goal is to perform an
exhaustive exploration of every paths in the program to search for bugs. This method suffers from
the state space explosion problem: the size of the whole system makes it impractical to verify.
Several methods exist to alleviate this problem, some are suitable for distributed systems. In this
document, we present a state of the art on such a method (Dynamic Partial Order Reduction)
and its possible crossover with bounded search, a method (based on numerical bounds) to drive
the verification towards particular executions and prune the others. In particular, we focus on the
adaptation of a work by Coons et al. [3] on a bounded extension of DPOR to its state-of-the-art
version called Unfolding-based DPOR (UDPOR) [13].
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Introduction

Message passing applications become increasingly important in the scientific and IT landscapes
as they allow to use of more complex architectures, pulling higher performances from these than
a single computer can achieve. Modern high-performance computing applications (e.g. physics
simulation, logical solvers) rely on the exploitation of the computational power of these architectures
to handle the increasingly heavy computational tasks. However, the design of such applications is
difficult and concurrency itself gives rise to a lot of correctness challenges. In particular, exhaustive
bug testing on all execution paths is practically infeasible for these applications and many bugs
are not visible during a simple code review. Formal techniques are thus mandatory to ensure
correctness.

Formal methods are mathematically rigorous techniques for modeling and analyzing computer
hardware and software. These methods, ranging from abstract interpretation to automated theorem
proving through model checking, are more and more used to detect bugs in hardware and software
systems as early as possible. Among these methods, one is of particular interest: model checking.
It consists in the systematic verification of a specification (a well chosen logical formula) on a model
of the program (in general, modelled as a transition system). Model checking has been introduced
by Clarke and Emerson in [2] and Queille and Sifakis in [12]. Model checking can be decomposed
in three steps, each of which with its inherant difficulties.

Modeling is the technique through which a software system (in this case, only software) is pre-
cisely and compactly described. Typically, a high-level and abstract modeling language is employed
(for example, Promela, SysML, or TLA). The output of this process is a model of the software sys-
tem that the target model checker can understand (i.e., the model checker that will be used to
check the model). The model can be created manually or automatically from the source code of the
software. Model compactness is a desirable feature. Additionally, it is necessary to preserve critical
qualities that are relevant to the verification process. For instance, if one wishes to test deadlocks in
the system, deadlocks must be kept in the model. Modeling a huge, complicated system is difficult,
requiring experience and a thorough grasp of the system. As a result, users of model checking face
a challenge in ensuring that the model appropriately represents the actions of the system. There
are only a few efficient formal methods (abstractions-refinement like the B Method) for determining
whether a model accurately represents the behavior of the system.

The property specification step requires languages that are understandable by the model checker
to specify the properties. In general, a property is a requirement specified in the system’s specifi-
cation. Temporal logics (such as Linear Temporal Logic, Computation Tree Logic) are frequently
used to define properties. The specification of the attributes should be sound, which means that it
should precisely explain the properties that are to be verified.

Finally, the verification begins. The model checker determines whether or not the provided
property is satisfied. Essentially, three outcomes are possible:

� The property is satisfied by the model,
� The property is unsatisfied, and the model checker produces a counterexample in the form of
a (partial) execution trace violating the property,

� The verification stage failed (e.g., it runs out of time or memory) because the number of
states is too large to investigate or keep in computer memory. The model could be reduced
in some way in this scenario.

It is worth noting that, if the property is violated, this does not necessarily indicate that the system
contains a corresponding mistake. The verification stage may be restarted with an enhanced (more
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accurate and / or compact) model and an exact specification property.
The whole process described above suffers from a phenomenon called ”state-space explosion”.

The number of states in the model becomes quickly unmanageable, even for small and simple
systems, especially for distributed systems. This phenomenon comes from the fact that the number
of states grows exponentially in the number of processes. In order to handle larger and more
realistic systems without verification failure (i.e., without timeout nor out-of-memory problems),
several methods to alleviate the state-space explosion have been developed:

� Abstraction: simplifying the model to keep as few features as possible, ideally only the critical
ones. The risk here is to oversimplify the model, to the point where the feature of interest
are not captured.

� Symbolic model checking: this method relies on memory-efficient structures like Binary Deci-
sion Diagrams, representing Boolean formulas (or functions), to encode states and transitions.

� Partial Order Reduction (POR): based on the observation that some (independent) transitions
can be taken in different orders while still leading to equivalent states. We say that these
transitions commute. This technique aims at reducing the state space by exploring only one
such order of the transitions. POR is considered one of the most efficient techniques to handle
verification on concurrent and distributed programs.

� Bounded Model Checking: a bounded model checker only tests whether or not a particu-
lar property is satisfied within that number of steps. Essentially, instead of an exhaustive
verification of all execution paths, a bounded model checker provides a guarantee on partial
executions.

In this work, we are interested in Partial Order Reduction and more specifically, Dynamic POR,
its stateless version as well as its interactions with bounded search, a state-space pruning method.
We discuss the adaptation of a bounded extension of DPOR (Coons et al. [3]) to a state-of-the-
art DPOR algorithm, based on a concurrency specific semantics of programs called Prime Event
Structure (PES). This algorithm, namely Unfolding-based DPOR, introduced by Rodriguez et al.
in [13] uses a labelled PES to dynamically explore the reduced state-space and thus, avoid multiple
exploration of equivalent executions.

We begin, in Section 1, by a description of the representations (semantics) of programs employed
by the different methods. In Section 2, we present the chosen methods: an introduction to POR
techniques, a focus on UDPOR algorithm and a concise presentation of bounded search approaches.
Section 3 serves as a discussion on the interactions between these methods, by presenting a first
approach to merge the two. Finally, we conclude and present possible extensions to the current
work.

1 Formal methods for message passing applications

In a distributed asynchronous system (collection of computers hosting parts of a global computa-
tional task), agents (computers) are autonomous: there is no shared memory and no common clock
to synchronize them. Hence, each agent in the system acts independently from the others. How-
ever, the realisation of a global task requires communication between agents, either to share data
or to synchronize actions. Thus, the whole system should be treated as a single component. We
now present several semantics of distributed programs, i.e., formal ways to represent the behavior
of such programs that are suitable to work on.
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1.1 Interleaving semantics of distributed programs

As applications are composed of several processes that perform local actions and communicate
through messages (asynchronously) to share data and ensure synchronisation, one can begin by
modelling a single agent by a labelled transition system.

Definition 1.1.1 - Labelled Transition System. A labelled transition system (LTS) is a tuple
T := (S, I,Σ,→) where S is the set of states, I ⊆ S the set of initial states, Σ the set of actions
and →⊆ S × Σ× S is the transition relation.
We usually write s

a→ s′ instead of (s, a, s′) ∈→. States are labelled by atomic propositions through
the labelling function L.

We, usually, consider that actions are deterministic, i.e., when an action a is performed in a
state s, the resulting state s′ is unique (if it exists). Transition systems for which this property
holds in all states and for any action are qualified as action-deterministic.

Definition 1.1.2 - Action-deterministic Transition System. A system T = (S, sI ,Σ,→) is said
action-deterministic iff for any s ∈ S, a ∈ Σ, there is at most one state s′ such that s

a→ s′.
Equivalently, an action a can be seen as a function a : S → S such that a(s) = s′ iff

(s, a, s′) ∈→. We denote a(s) the state reached by a from s when it exists (what we often suppose).

A transition a is enabled at a state s if there exists a state s′ such that s
a→ s′. We denote

enabled(s) the set of transitions enabled at a state s. Given two states s, s′ ∈ S and a sequence
w = t1...tn ∈ Σ∗, we say that w reaches s′ from s (denoted s

w⇒ s′) if there exist states s =

s0, s1, ..., sn = s′ ∈ S such that for all i ∈ J 1, n K, si−1
ti→ si. We denote state(w) the state s

reached by w from the initial state sI . When the transition system is action-deterministic, this
state is uniquely determined by the sequence w.

A state s in T is reachable if s = state(w) for some sequence w = t1...tn ∈ Σ∗. We denote
Reach(T ) the reachable part of the transition system. A run (or execution, interleaving) of T is
any sequence w such that sI

w⇒ s for some s ∈ S. We denote runs(T ) the interleaving space of
system T .

Now, the parallel nature of these applications requires a suitable modelling scheme to represent
agent interactions. Usually, the whole system is built from the agents by considering every possible
series of actions (of all agents). Such a sequence of actions is called an interleaving.

Definition 1.1.3 - Interleaving of Transition Systems. Let Ti = (Si, Ii,Σi,→i) for i = 1, 2, be two
transitions systems. The transition system T1 9 T2 is defined by:

T1 9 T2 = (S1 × S2, I1 × I2,Σ1 ∪ Σ2,→)

The transition relation is defined by the rules:

s1
α→1 s′1

⟨s1, s2⟩
α→ ⟨s′1, s2⟩

and
s2

α→2 s′2

⟨s1, s2⟩
α→ ⟨s1, s′2⟩

The labelling function L is defined by: L(⟨s1, s2⟩) = L(s1) ∪ L(s2).
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Process P1 Process P2 Process P3

w : Write(x) r1 : Read(x) r2 : Read(x)

(a) Program P: r1 and r2 are independent but both
dependent with w.

w
r1

r2

r1 r2

r2 r1

w r2

r2

wr1

r1w

(b) Full state-space: all interleavings of P1, P2, P3.
Independent transitions are pictured in gray.

Figure 1: Interleaving semantics of a simple program P composed of three processes with a single
instruction each.

Example 1.1.1 - Interleaving semantics. Figure 1 shows a program P (Fig 1a) and its interleaving
semantics (Fig 1b). As each process (P1, P2, P3) can execute its first (and only) instruction, thus, a
transition for each instruction leaves the initial state. The instruction w : Write(x) of process P1

changes the value of x. Hence, performing the Read(x) instructions r1, r2 of processes P2 and P3

before or after action w do not produce the same result. For this reason, the sequences r1w and
wr1 do not lead to the same state. On the contrary, before (or after) executing w, both actions
r1, r2 read the same value of x and the sequences r1r2 and r2r1 lead to the same state, producing
the diamond shapes in the LTS (transitions in gray on Fig 1b).

In the remaining part of the document, we will use T to designate an arbitrary action-deterministic
transition system.

The transition systems are widely use but they are not the most suitable way to handle con-
currency. The object of the next section is an alternative semantics for concurrency, the event
structures.

1.2 Event structures: a semantics for concurrency

To capture the concurrency of a program, one can rely on event structures, another mathematical
concept used to model computer programs. Such a structure consists in a set of events E labelled by
actions (or instructions of the original program) equiped with two relations: causality (also called
”happens-before”) and conflict. Usually, the causality relation captures dependencies between
instructions: read-after-write, write-after-write but also simply the order of instructions of a single
thread.

Definition 1.2.1 - Prime Event Structures. A prime event structure (PES in short) on a set of
labels Σ is a tuple E := (E,<,#, h) where E is a set of events, <⊆ E×E is a strict partial order on
E, called causality relation, h : E → Σ is the labelling function, and # ⊆ E×E is the symmetric,
irreflexive conflict relation, compatible with the causality relation, i.e., conflicts are inherited: for
all e, e′, e′′ ∈ E, if e# e′ and e′ < e′′, then e# e′′.
An event e has only finitely many causes: ⌈e⌉ := {e′ ∈ E | e′ < e}.

Definition 1.2.2 - Configuration (of a PES). A configuration C of a prime event structure E :=
(E,<,#, h) is any causally closed and conflict free set of events, i.e., C ⊆ E and:
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� Causally closed: if e ∈ C, then ⌈e⌉ ⊆ C;
� Conflict Free: if e, e′ ∈ C, then ¬(e#e′).

Instead of keeping a collection of equivalent totally-ordered executions, a PES allows us to keep
partially-ordered executions, represented by configurations. In particular, the local configuration
[e] of an event e is the ⊆-minimal configuration that contains e and its causes, i.e., [e] := ⌈e⌉ ∪ e.
The set of configurations of a PES E is denoted conf(E). Two events are in immediate conflict
(denoted e#ie′) if their respective histories are compatible: if and only if e#e′ and both ⌈e⌉ ∪ [e′]
and [e] ∪ ⌈e′⌉ are configurations. Given a configuration C, we denote ex(C) the set of extensions
of C, i.e., ex(C) := {e ∈ E \ C | ⌈e⌉ ⊆ C}. One can order event structures through the ”prefix”
relation. A PES E := (E,<,#, h) is a prefix of E ′ := (E′, <′,#′, h′), denoted E ⊴ E ′ if and only if
E ⊆ E′, h, < and # are the projections of <′ and #′ to E and {e′ ∈ E′ | e′ < e, e ∈ E} ⊆ E.

This concurrency semantics will serve as a guide for the exploration of the state-space of a
program. Thus, we consider an incremental method to build a PES from a transition system.
Such a structure is called an unfolding of the system and its construction based on an independence
relation approximating the fact that two actions commute (unformally: describe a diamond-like
shape 1.1.1 and Fig 1).

Definition 1.2.3 - Commutation, Independence of actions. Two actions a1, a2 ∈ Σ of a transition
system T S commute in a state s if (1) executing one does not enable nor disable the other and
(2) if the state reached after executing both actions is the same no matter the execution order.
Formally:

1. (a1 ∈ enabled(s) ∧ s
a1→ s′) =⇒ (a2 ∈ enabled(s) ⇐⇒ a2 ∈ enabled(s′)), and similarly for

a2

2. (a1, a2 ∈ enabled(s) =⇒ ((s
a1·a2→ s1,2 ∧ s

a2·a1→ s2,1) =⇒ s1,2 = s2,1))

An independence relation I ⊆ Σ × Σ is an under-approximation of the commutation relation,
i.e., if two actions are independent ∀a1, a2, (a1, a2) ∈ I (also written I(a1, a2)), then they commute
in all states. Conversely a1, a2 are dependent and we note D(a1, a2) when ¬(I(a1, a2))

Using this independence relation, one can unfold the LTS of a program into a prime event
structure (Definition 1.2.4). In an unfolding, events are pairs e := ⟨a,C⟩ ∈ Σ× conf(E) allowing to
distinguish different occurences of the same action a via the (partially-ordered) history C preceding
this action. Such a structure allows us to represent concurrency in a program in an exponentially
more compact manner than using interleaving semantics.

Definition 1.2.4 - Unfolding. The unfolding of a transition system T under an independence
relation I is the Σ-PES E = (E,<,#, λ) built incrementally by the following rules until saturation
(no new event is added):

0. Start from the initial Σ-PES: E := (∅, ∅, ∅, ∅)

1. For any configuration C of E , any action a ∈ enabled(state(C)), add a new event e := ⟨a,C⟩
if for each <-maximal event e′ of C, ¬I(a, λ(e′)).

2. For any such new event e = ⟨a,C⟩, set λ(e) := a and for every event e′ ∈ E \ {e}, update
<, # as follows:
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(a) if e′ ∈ C, then e′ < e,

(b) if e′ /∈ C and ¬I(a, λ(e′)), then e′#e,

(c) if e′ /∈ C and I(a, λ(e′)), then e′ and e are concurrent.

Example 1.2.1 - Concurrency Semantics (Unfolding). Figure 2 depicts the unfolding (Fig 2a) and
its maximal configurations (Fig 2b). An event ⊥ is inserted as a root of the unfolding and all other
events depend causally of it. The events e1, e4 and e7 are labelled w, r1 and r2, respectively. The
conflicts reflect the dependences of the underlying actions: e4, e7 are concurrent (r1, r2 : Read(x)
actions are independent) whereas they are in conflict with e1 (both actions are dependent with
w : Write(x)). These conflicts turn the PES into a tree-like structure of partial orders.

One can identify four maximal configurations in this unfolding (Fig 2b). These configurations
are partial orders of events. Replacing events by their labels (corresponding actions), these config-
urations represent partially-ordered executions. We give the associated totally ordered executions
(considering configurations from left to right): {wr1r2, wr2r1}, {r1wr2}, {r1r2w, r2r1w}, {r2wr1}.

⊥

e1 e4 e7

e2 e3 e5

e6

e9

e10

e8

(a) Unfolding of program P. Solid lines express
causality and dotted lines are immediate conflicts.

e1 e4 e4 e7 e7

e2 e3 e5

e6

e9

e10

e8

(b) Maximal configurations of the unfolding. Events
are occurences of actions and each configuration rep-
resents partially ordered executions.

Figure 2: Concurrency semantics (unfolding) of program P and its maximal configurations (repre-
senting partially ordered executions).

We now have two semantics at our disposal: interleaving and concurrency semantics. These are
models on which verification is performed by a model checker. However, exploration methods of
the interleaving semantics face several difficulties. In the next section, we present these difficulties
and introduce the adopted solutions.

1.3 Stateful and stateless model checking

As presented, model checking is a rather clear procedure. It performs an exhaustive search, travers-
ing all states of the model that are reachable from the initial state. A näıve approach consists in
using a depth-first search approach to recursively follow each transition from each state. To avoid
repetitive exploration of the same state, one can store each visited state. Such an approach is
called stateful model checking. However, such a method faces two non-trivial problems: the need
in memory and the capacity to check whether two states of the program are equal.

Comparing two states is a difficult task, since a state relates to the values of variables, program
counters, and many other factors. In distributed programs, the difficulty is even higher since such a
program is composed of many processes and communication channels. Solutions have been imagined
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to associate a unique identifier to a state. However, P. Godefroid proved in [5] that computing such
an identifier is hard.

These challenges have lead some researchers to develop a new approach: stateless model check-
ing. In stateless model checking, the checker only stores the states of the currently explored path.
It drastically reduces the memory usage but also introduces the inability to check whether or not
a given state has been previously discovered. This inability leads to redundant explorations of the
same state. Partial Order Reduction (POR) techniques which are presented and discussed in the
next part (Section 2) are precisely meant to mitigate such redundancy. If the state space does
not contain cycles, some of these techniques are even optimal, thus exploring as few executions as
possible. In case of a cyclic state space, these techniques rely on state equality checking methods
to prune the execution through specific cut-off methods.

We now present two orthogonal methods to handle the state space explosion problem: POR
techniques and bounded search.

2 Alleviating state space explosion

As presented in previous parts, model checking faces a phenomenon: the state space explosion
problem. The number of states of a model increases exponentially in various components such as
the number of variables and, for distributed programs, the number of processes. Several methods
are considered to (partially) alleviate this phenomenon. In this section, we focus on partial order
reduction techniques and bounded model checking.

2.1 Partial order reduction techniques

In the context of concurrent (and distributed) applications, partial order reduction (POR) is often
considered to be among the most efficient approaches for alleviating the state space explosion.
These techniques are widely used to detect deadlocks. If a deadlock exists, a Mazurkiewicz trace
(Definition 2.1.1) leads to it and will be discovered. More generally, safety-property violations in
any acyclic state space can be detected by POR algorithms. These methods attempt to minimize
the size of the explored part of a system’s state space by taking advantage of the commutativity of
independent activities. It is possible that the outcome of concurrent actions is not dependent on
the sequence in which they are performed. As a result, identifying only one arbitrary order, rather
than investigating all possible orders, may be a viable strategy for verifying safety properties. POR
takes advantage of this insight by choosing at each visited state, a subset of the enabled actions to
either visit or avoid, based on independence of actions.

Example 2.1.1 - Partial Order Reduction. On Figure 3, we present the full state-space of program
P (Fig 3a) and a state-space resulting from a search exploiting POR techniques (Fig 3b). Given an
independence relation (Definition 1.2.3) such that I(r1, r2), a search with partial order reduction
will explore a single interleaving of r1 and r2 (e.g. r1r2). This choice leads to the reduced state-space
of Fig 3b, where half the diamond-shape transitions patterns (in gray on the figure) are pruned.
This way, the search avoids revisiting states.

As mentioned, POR relies on the exploration of executions that can be grouped in equivalence
classes built on top of independence relations. Given an independence relation (either determined by
static analysis, or dynamically during verification) as defined in Definition 1.2.3, one can define an
equivalence relation of complete executions and the associated classes called Mazurkievicz traces [8].
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w
r1

r2

r1 r2

r2 r1

w r2

r2

wr1

r1w

(a) Full state-space: all interleavings of P1, P2, P3.

w
r1

r2

r1

r2

w r2

r2

w

r1w

(b) Reduced state space: a single interleaving of r1
and r2 is explored.

Figure 3: Partial Order Reduction applied to program P

Definition 2.1.1 - Trace equivalence, Mazurkievicz trace. Given a set of actions Σ and an inde-
pendence relation I ∈ Σ × Σ, the trace equivalence ≡I is defined as the least congruence in the
monoid (Σ∗, ·, ϵ) such that:

(a1, a2) ∈ I =⇒ a1a2 ≡I a2a1.

Equivalently, w,w′ ∈ Σ∗ are equivalent w ≡I w′ if and only if there exists a finite sequence
w = w0, w1, ..., wn = w′ (n ≥ 0) such that for each i ∈ J 1, n K, one can find two strings ui, vi ∈ Σ∗

and decompose wi−1 and wi as follow:

wi−1 = uia1a2vi and wi = uia2a1vi

Equivalence classes of ≡I are called Mazurkiewicz traces. A trace contains equivalent complete
executions (or interleavings) of an LTS T . All these interleavings reach a unique state.

From now on, a POR algorithm is qualified as optimal if it explores one and only one execution
per Mazurkievicz trace while still exploring each Mazurkievicz trace. It provides a full coverage
without redundant explorations.

There are a variety of approaches for computing subsets of actions to visit. Valmari developed
stubborn sets [14], while Peled produced ample sets [11]. The final method, persistent sets, was
developed by Godefroid [6], and it is the one that has received the most attention in the literature.

A persistent set is a provably-sufficient subset of the set of enabled transitions such that un-
selected transitions are guaranteed not to interfere with the execution of those being selected.
Intuitively, a subset P of the set of transitions enabled in a state s is called persistent in s if
whatever one does from s, while remaining outside of P , does not interact with P .

Definition 2.1.2 - Persistent set (at a state s). A set P of transitions is persistent in s if and only

if, for all nonempty sequences α = a0a1...an such that s = s0
a0→ s1

a1→ s1...
an→ sn+1 from s, such

that ai /∈ P (0 ≤ i ≤ n) then, an is independent in sn with all transitions in P .

Example 2.1.2 - Persistent set. Figure 4a shows how a persistent set allows to reduce the state-
space. At state s, a persistent set P is computed, containing transitions t1 and t2. As P is persistent
in s, t1 and t2 do not interfere with other transitions outside of P (they are independent of any
other action). More formally, if a state is reachable from s, it is also reachable by a sequence
starting by an action of P . It is thus sufficient to explore transitions of P and, consequently, prune
the remaining part of the state-space (in gray on Figure 4a).

8



s
t1

α

t2

α α
t1 t2

(a) Persistent set at state s: t1, t2 ∈ P , α = a0a1...an
is a sequence of unselected actions, i.e., for 0 ≤ i ≤
n, ai /∈ P

s1

s2

s3

t1 t2

t1 t3

t1

(b) Sleep set: I(t1, t2) but ¬I(t1, t3), thus t1 is in
the sleep set at s2 but not at s3.

Figure 4: Persistent set and Sleep set : parts in gray may be pruned during the selective search.

A näıve method to compute a persistent set consists in accumulating all dependent transitions
in the persistent set until saturation. It ensures that any action outside the persistent set is inde-
pendent of all actions of the persistent set. The persistent-set technique alone can still lead to the
exploration of multiple interleavings of independent transitions. When the algorithm cannot avoid
the selection of such independent transitions, the sleep-set technique is a complementary method
to circumvent the wasteful exploration of the interleavings of these transitions. This technique
exploits information about the past of the search to block the future exploration of transitions.

Example 2.1.3 - Sleep set. Figure 4b depicts a sleep-set pruned transition. Transitions t1 and
t2 are independent and it is not necessary to explore t1 after t2 (at state s2) as the part of the
state-space reachable through t1 has been explored at state s1. Thus, after exploring t1 at state s1,
t1 is added to the sleep set of s2 and all transitions dependent with t1 are discarded from the sleep
set of s2. At state s2, t1 is pruned (”sleeping” transitions are not explored). However, t1 and t3
are dependent and new states are reachable after executing t3 and t1. Therefore, t1 is not passed
in the sleep-set at state s3 and the exploration continues.

A selective search algorithm, using persistent-set and sleep-set techniques in conjunction, is
presented on Figure 5. The properties of this selective search are studied by Godefroid [4].

This algorithm performs a depth-first traversal of the system by computing, at each visited
state, a persistent set of actions to explore and by propagating the information through sleep sets.
Once a transition t1 has been explored from a state s (reaching state s1), transitions independent
with t1 are passed to the sleep set at s1. Once another transition t2 has been explored (reaching
s2), the sleep set at s2 is the sleep set at s with a few modifications: t1 is added to it and every
transition dependent with t2 are removed from it. The algorithm continues the exploration, thus
building the sleep set at a state s′ reached from s through an action a by enriching the sleep set
with all actions already executed from s and purging all actions dependent with a in s.

The principle of all POR approaches is precisely to reduce the state space exploration while
covering at least one execution per Mazurkiewicz trace. If a deadlock exists, a Mazurkiewicz trace
leads to it and will be discovered. More generally, safety-property violations in any acyclic state
space can be detected by POR algorithms.
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Data: Stack := {s0}, Hash := ∅, s0.Sleep := ∅
1 while Stack ̸= ∅ do
2 Pop s from Stack
3 if s /∈ Hash then
4 Add s to Hash
5 T = PersisentSet(s) \ s.Sleep
6 else
7 T = {a ∈ Σ | a ∈ Hash(s).Sleep ∧ a /∈ s.Sleep}
8 s.Sleep = s.Sleep ∩Hash(s).Sleep.
9 Hash(s).Sleep = s.Sleep

10 end
11 forall a ∈ T do
12 s′ = a(s) // action a is executed

13 s′.Sleep = {b ∈ s.Sleep | (a, b) are independent in s}
14 Push s′ onto Stack
15 s.Sleep = s.Sleep ∪ {a}
16 end

17 end

Figure 5: Selective search using persistent sets and sleep sets

A recent upgrade in POR methods, UDPOR, uses an unfolding of the program into a prime
event structure to guide the state space exploration and make the reduction implicit. We will now
explain its behavior.

2.2 Unfolding-based Dynamic Partial Order Reduction (UDPOR)

In this section, we present a state-of-the-art POR method. This method (UDPOR) exploits an
alternative semantics for concurrency (defined in Section 1.2) and achieves optimality by exploring
a single execution by Mazurkievicz traces.

The key concepts behind UDPOR are the notions of partial orders and the structure in which
they are agglomerated: an unfolding. In their article, Rodriguez et al. [13], use the fact that one
can associate a partial order to each Mazurkievicz trace. This partial order of action occurences
(events) is treated as a part of a richer structure: a prime event structure (Definition 1.2.1).

Figure 6 presents the UDPOR exploration algorithm (Rodriguez et al. [13]). Here, Mazurkievicz
traces are explicitly represented by configurations and UDPOR explores a single linearization of
each configuration.

The algorithm starts with an initially empty set U . All events encountered during the explo-
ration will be appended to it. Then the procedure Explore is called with empty sets as parameters:
C, the first parameter is a configuration encoding the currently explored execution, D for disabled,
the second parameter, is a set of events to avoid (acting as a sleep set) and A, the last one, con-
tains events conflicting with D and is used as a guide to find alternative executions. The procedure
begins by computing all extensions of the configuration C and appending them to U (line 4). The
algorithm backtracks (at line 6) if, either each enabled action should be avoided (en(C) ⊆ D) or
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1 Set U := ∅
2 Call Explore(∅, ∅, ∅)
3 Procedure Explore(C,D,A)
4 Compute ex(C), and add all events in ex(C) to U
5 if en(C) ⊆ D then
6 Return // Backtrack: sleep-set blocked or deadlocking execution

7 end
8 if (A = ∅) then
9 chose e from en(C) \D

10 else
11 choose e from A ∩ en(C)
12 end
13 Explore(C ∪ e,D,A \ e) // Left Call: Explore an extension of configuration

14 if ∃J ∈ Alt(C,D ∪ e) then
15 Explore(C,D ∪ e, J \ C) // Right Call: Explore an alternative configuration

16 end
17 U := U ∩QC,D

Figure 6: Unfolding-based POR exploration

there are no such action (en(C) = ∅). The former case corresponds to a redundant call and thus,
to a sleep-set blocked execution while the latter case corresponds to a deadlock or the end of the
program. If UDPOR continues (does not backtrack), an enabled event e is chosen (line 8-12),
in guiding set A if possible (A ̸= ∅) and a recursive exploration Explore(C ∪ {e}, D,A \ {e}) of
the extended configuration C ∪ {e} is called (the ”left” call, line 13). It continues avoiding the
events in D, following the guide A from which e is removed. Once the ”left” call completed, all
configurations containing C ∪ {e} have been explored. Thus, the algorithm checks if there exists a
configuration containing C but not e by computing alternatives Alt(C,D ∪ {e}) (line 14). If such
a configuration exists, a recursive call is performed (the ”right” call, line 15), this time e is added
to D (the search avoids e) and the alternative J \ C is used as a guide. The alternatives are the
UDPOR counterparts to the backtracking sets of the original DPOR.

Formally, an alternative to D′ = D ∪ {e} after C in U is a set of events J ⊆ U that does not
contain events in D′ (J ∩D′ = ∅), constitutes a configuration C∪J after C and such that any event
in D′ conflicts with some event in J . The computation of alternatives is a costly operation: in order
to avoid redundant explorations and thus, sleep-set blocked executions, function Alt(C,D ∪ {e})
has to solve an NP-complete problem [3]. As shown by Coti et al. in [10], Optimal DPOR [1] faces
the same problem. In [10], the authors present another approach called k-partial alternatives in
which the Alt function computes sets of events J conflicting with only k events in D instead of
all of them. It allows to tune between an optimal and a quasi-optimal search that might be more
efficient. It is important to note that, experiments [1] show promising results: even for small values
of k, optimality is achieved.

These POR techniques provide a full coverage of the transition system to verify safety properties.
However, complex systems are still hard to handle through these methods. In the next section,
we introduce an orthogonal technique that allows the verification of a selected part of the system:
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bounded search.

2.3 Bounded search

Despite their efficiency, POR techniques still struggle with large complex systems: it can still
be necessary to reduce the number of executions to take into account and thus, the number of
visited states. An interesting way to filter out several executions is to use bounds to push the
search towards executions of particular interest and discard the undesired ones. The intuition
behind bounded search is that, when searching for concurrency bugs or safety issues, only a few
interactions (the nature of these interactions may vary) between the processes are necessary to
cause these issues. This intuition relies on the observation (and supposition) that a bug requiring
less actions to set up is more likely to happen, and conversely. Bounded search does not visit all
relevant reachable states but only those that are reachable within the bound, thus pruning the
state-space. A search provides the bounded coverage if it explores all relevant states reachable
within the bound.

For a bounded search, the bound may be any property of an execution. One can, for example,
choose to monitor the occupation of the processor by each process (by counting the difference of
processor release / yield operations). This way, one can block processes monopolizing the processor
for too long in order to force processes to take turns. This example is called a fair bounded search:
it drives the verification towards (more typical) executions in which processes share the resources.
Fair stateless model checking can thus be seen as bounded search. Previous works also include
bounded search using the depth, the number of context switches [9], the number of preemptive
context switches [9] (preemption bounding).

The bounds are formally defined in [3] as a pair (Bv, c) where Bv : Σ∗ → N is a bound
evaluation function and c ∈ N is the threshold (the bound itself). These data are inputs to the
bounded search algorithm. In particular, two bound evaluation functions are presented in [3]:
preemption bound and fair bound.

In [3], Coons et al. present BPOR, an algorithm that takes advantage of POR in preemption-
bounded and fair-bounded search while maintaining the bounded coverage.

3 Interaction between DPOR and Bounds

In this section, we present the approach of Coons et al. [3] to merge DPOR exploration with
a bounded search. In particular, the team points out that a näıve combination of DPOR and
bounded search exposes the difficulties of combining the two methods: bounds create dependences.

3.1 Artificial Dependences

POR techniques are sensible to the independence relation used to approximate commutation of
transitions (see Definition 1.2.3): a finer relation (closer to commutation relation, with more inde-
pendences) entails a more efficient reduction. The introduction of bounds can disturb partial-order
reduction: take a bound (Bv, c) and two independent transitions t1, t2 such that Bv(t1t2) < c
but c ≤ Bv(t2t1). Then, despite I(t1, t2), the order of execution matters. In particular, if DPOR
explores t2 first, it will not be able to explore t1, thus leaving states unvisited while reachable
within the bound. The bound creates an artificial dependency between t1 and t2. Because it leaves
reachable states unvisited, this artificial dependence leads to unsoundness of the search.
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Process P1 Process P2

w : Write(y) r1 : Read(x)
r2 : Read(y)

(a) Program Pr: w and r1 are independent (opera-
tions on different variables), w and r2 are dependent
(same variable involved).

s0

s2

s3

s′ s

w r1

w
r1

r2

r2

w

Preemptive transitions DPOR pruned transitions

(b) State-space of the program Pr illustrating a
preemption-bounded search with DPOR. The tran-
sition pruned by the bounded search appears in gray.

Figure 7: Bounded search with DPOR. The preemption bound makes w and r1 dependent, thus
leaving s′ unvisited whereas it is reachable within the bound.

Example 3.1.1 - Artificial Dependence. Figure 7 shows how näıve preemption-bounded search
with POR leads to unvisited state s′ and thus, unsoundness of the search. The program Pr
(Fig 7a) is a simple two processes (or threads) program, executed on the same computing unit and
thus sharing resources. Process P1 changes the value of shared variable y (action w : Write(y))
while process P2 reads the variables x and y (actions r1 and r2). Involving different variables, the
instructions w (of P1) and r1 (of P2) are independent but w and r2 are dependent. Figure 7b
shows the result of a näıve preemption-bounded search with POR by restricting the number of
preemptions to 0. At state s0, DPOR prunes transition w (and the following r1) and chooses to
explore r1, i.e., among the two possible interleavings of independent transitions w, r1, it will explore
r1w. However, at state s2, the transition w is a preemption: it interrupts process P2 during its
execution to execute an instruction of P1. This transition is, thus pruned by the bound and the
exploration continues until it reaches state s. Here, state s′ is never visited (although it is reachable
within the bound) because the artificial dependence between w and r1 is not taken into account.
However, the execution wr1r2 is valid within the bound: after w, P1 ends and r1 is not preemptive.
Hence, if, instead of executing r1 at state s0, DPOR choosed to explore w, state s′ would have been
visited.

This example shows the importance of identifying artificial dependences to maintain both
bounded coverage and POR efficiency. In their article [3], Coons et al. study interesting prop-
erties of the bounds to keep POR efficiency and maintain bounded coverage. These properties are
explained in the next section.

3.2 Properties for compatibility

As shown in previous section, combining bounds and partial order reduction is not trivial: it intro-
duces artificial dependences. In their article [3], Coons et al. identified two properties that should
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be satisfied by the bounds to allow a good interface with POR. In this section, we present these
two properties (stability and extensibility) as well as the bounds (not) satisfying these properties.

The first property is called stability. With stable bounds, two sequences leading to the same
global state have the same bound value (the same cost). Stable bounds are desirable because
independent transitions remain commutative and POR exploits its commutativity to reduce the
state space.

Definition 3.2.1 - Stable Bound Function. A bound function Bv is stable if all executions of a
Mazurkievicz trace have the same cost, i.e., for ω, ω′ ∈ runs(T ),

ω ∈ [ω′] =⇒ Bv(ω) = Bv(ω′)

Any two equivalent sequences (thus leading to the same global state) have the same bound value.

When the bound under consideration is not stable, a part of the state-space may appear un-
reachable within the bound whereas it is reachable. In fact, the first path explored by the search
may not be the cheapest one, thus leading to redundant executions (of the same trace) to ensure
visiting each state reachable within the bound. A selective search will prune the state space most
efficiently if it explores the cheapest sequence of transitions first.

Definition 3.2.2 - Extensible Bound Function. A bound function Bv is extensible if independent
transitions do not affect each other cost, i.e., for any t ∈ Σ, w ∈ Σ∗ and w′ = a0a1...an such that
I(t, ai) for all i ∈ J 0, n K,

Bv(wtw′) = max(Bv(wt), Bv(ww′))

The second property, extensibility, ensures that independent transitions do not affect each other
cost. An extensible bound preserves local state reachability: states that were previously reachable
are still reachable after exploring independent transitions. It is not the case when the bound is
not extensible: independent transitions affect each other cost, thus the order of execution of these
transitions matters. Bounds that are not extensible sacrifice partial-order reduction by forcing the
exploration of independent transitions, leading to many redundant states.

Most of the meaningful bounds are either not stable, not extensible or neither. For example, the
depth of exploration used as a bound is stable but not extensible, preemption bounding is neither
stable nor extensible and the same goes for fair bounding (see Section 3.3). There is at least a
(trivial) stable and extensible bound: the constant bound returning zero. Indeed, this is equivalent
to an unbounded search and allows for full exploitation of partial order reduction. Outside of this
trivial bound, the usual ones impose artificial dependences that must be treated to reduce their
impact on the effiency of partial-order reduction and ensure bounded coverage.

In [3], the authors present a modification of persistent sets to accomodate artificial dependences
from preemption and fair bounding. Their approach is detailed in the next section.

3.3 A first approach: preemption and fair bounding

In order to compensate for artificial dependences for preemption and fair bounding, Coons et al.
produced an adaptation of DPOR to bounded search called BPOR [3]. Informally, BPOR relies on
the computation of suitable sets of transitions to visit at each state, allowing to reduce the visited
state-space while maintaining bounded coverage. The key concept behind BPOR is the concept of
bound sufficient set.
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Definition 3.3.1 - Sufficient Set. A set T ⊆ Σ of actions is sufficient at a state s if and only if
any state s′ reachable from s (i.e., s

w⇒ s′ for some w ∈ Σ∗) is also via at least on action in T : s′ is
reachable by a sequence wT = aw′ with a ∈ T .

The authors then provide algorithm to compute bound sufficient sets for preemption-bounded
and fair-bounded search and prove that these sets are sufficient to explore the bounded state space
soundly. The core idea is to build the sufficient sets as sets of backtracking points. The search inserts
backtracking points conservatively to reverse the order of exploration of dependent transitions. This
method allows to compensate for the artificial dependences imposed by the bounding constraints,
thus providing bounded coverage. However, the conservative aspect of the method (it adds possibly
useless backtracking points) limits partial order reduction.

4 Conclusion

As message passing applications become more and more prominent in the scientific landscape, the
need for guarantees of security become increasingly important. Among available tools to provide
these guarantees, one is particularly suitable for finding bugs: model checking. Indeed, model
checking is a prolific formal method consisting in the systematic verification of a property on a
model of the program. However, this method has a limited range: as soon as systems become
too complex, model checkers are no more able to handle the size of the state space. In order to
mitigate this problem, several solutions, ranging from partial order reduction to bounded search,
have been developed. In this document, we gave a detailed presentation of available partial order
reduction techniques which allow for state-space reduction by exploiting concurrency in programs.
We (briefly) presented bounded search, a method using bounds to drive the exploration to ex-
ecutions susceptible to contain bugs. This technique thus speeds up bug discovery. Lastly, we
presented the difficulties to combine the approaches and the solution adopted by Coons et al. [3]
to accommodate partial order reduction and bounded search. It is known that combining bounded
search and POR techniques is not trivial: artificial dependences may limit POR efficiency and even
lead to unsound exploration. Coons et al. made it for DPOR, producing the BPOR algorithm
but POR techniques have been improved with a state-of-the-art method: UDPOR. It remains, to
our knowledge, to study the same combination of bounded search and UDPOR. Several authors
conjecture (or produce) a possible extension of POR techniques (UDPOR included) to conditional
(or local) independence relation [4, 13, 7]. More specifically, an example of such an independence
relation is presented in [4] in which the author bounds the size of queues during the search. Without
being properly presented as a bounded search, the idea of encoding bounds in the independence
relation looks promising.
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