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I. INTRODUCTION

This dissertation is written in the context of my end-
of-study internship of master in computer science. I
made this formation with the specificity informatique
fondamental, this specificity focuses on fundamental
aspect of computer science, like algorithmic, abstract
modeling and automatic verification of complex sys-
tems. In this formation I studied some theory aspect,
like we study state-of-arts verification methods. In ad-
dition, during my first year of master, I followed an op-
tional course on parallel programming (Programmation
des Architecture Parallèle). In this course, I studied
technology of parallel and distributed programming:
pthread, OpenMP and MPI.

My internship take place at Inria in laboratory of
Bordeaux. Inria is a French public laboratory for com-
puter science research. During the internship, I inte-
grated the STORM team, a research team specialized
on high performance computing (HPC) problematic.
HPC programming cause some specific problem, par-
ticularly in software verification. In the variety of the
team research work, some works are oriented on soft-
ware verification for HPC. This is not the first time
I integrated the STORM team. My internship dur-
ing my second year of computer science license was
with Samuel THIBAULT on analysis and simulation of
memory usage on hierarchical compressed matrix on
a StarPU 1 application. The second one was during
my first year of master informatique fondamental with
Emmanuelle SAILLARD on the protage of Parcoach
[8] on LLVM 12, a bug finding tool which uses static
sources codes analysis.

The goal of my internship is to extend the MPI
BUGS INITIATIVE (MBI) with hazard errors. The MBI
is a framework for MPI verification tools comparison.
This comparison mainly target HPC developers who
need to found bugs in MPI codes to help them choose
the best tool for their needs. Emmanuelle SAILLARD
and Martin QUINSON have supervised my internship.
These are two of the authors of the first paper of MBI
[3] and still work on the project. Emmanuelle SAIL-
LARD works at Inria Bordeaux and Martin QUINSON

1https://team.inria.fr/storm/software/
starpu/

works at the University of Rennes. We meet once a
week. These meeting were the occasion to keep update
on my internship advancement and define what to do
next. In addition, we have a Discord channel to discuss
technical problems or others questions on a daily.

In this document I propose an extension of MBI for
MPI hazards errors. The contributions are:

1. An extended error classification of MPI errors
with hazards errors.

2. New correct and uncorrect code covering the new
category of errors.

3. A new metric and visualization to compare tools
outputs.

4. We use our methodology and metrics to compare
10 state-of-the-art bug findings tools.

The rest of the document is organized as follows:
Section II gives background of the work with defini-
tions of important notions. Section III, decribes my
contribution. Section IV, presents the results analysis
and the MBI tools comparison. Section V summarizes
my end-of-study internship.

II. BACKGROUND

This section gives an introduction of MPI standard, fol-
lowed by a presentation of the MBI framework. Re-
lated works and a description of hazard errors.

A. Message Passing Interface

Message Passing Interface [7] (MPI) is a message-
passing library interface specification. It is the most
used standard for message passing application develop-
ment. There exists different implementations of MPI,
well-known are OpenMPI and MPICH. MPI defines
operations expressed as functions, subroutines or meth-
ods to target C or FORTRAN programming language.
In this document we will stay mainly focus on C API.

In message passing application the idea is to execute
the same program on different computers (or nodes) by
processes. During execution, processes can exchange
data through communication and are identified with an
ID called rank. Listing 1 shows an example with two
processes P0 and P1, with respectively rank 0 and 1. In
this example P0 calls function A and P1 calls function
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B. To make examples more readable we use in this doc-
ument, except specific exception, the equivalent syntax
in listing 2. In this document we use simplified MPI
API syntax with exclusively relevant information for
example we can omit functions arguments if they are
not relevant.

1 P0: P1:
2 if (rank = 0) if (rank = 0)
3 A() A()
4 else else
5 B() B()

Listing 1: MPI code where processes call different
functions depending on their ID.

1 P0: P1:
2 A() B()

Listing 2: MPI code with simplified syntax where pro-
cesses call different functions depending on their ID.

There are 3 types of communications in MPI: Point-
to-point, Collective and RMA.

Point-to-point (P2P) communication is minimal
message passing paradigm communication pattern.
This is the send-receive pattern, which allows two pro-
cesses to communicate. In MPI, the send and receive
functions are called MPI_Send and MPI_Recv. An
example is showed in Listing 3. The two functions pro-
totype are close, but take different parameter like send-
ing buffer (resp. receiving buffer) or destination pro-
cess of message (resp. source process of message).

1 P0: P1:
2 MPI_Send(1) MPI_Recv(0)

Listing 3: Example of Point-to-point communication:
P0 sends a message to P1.

Collective communications must be called by all pro-
cesses in a communicator. The barrier MPI_Barrier
blocks processes untill all of them call the function.
There exists other collective; all to one (gather), one
to all (bcast), all to all (alltoall).

1 MPI_ISend(buf, 1, &req)
2 ...
3 MPI_Wait(&req)

Listing 4: Example of non-blocking send function.

1 MPI_Send_init(&req)
2 ...
3 MPI_Start(buf, 1, &req)
4 ...
5 MPI_Wait(&req)
6 ...
7 MPI_Request_free(&req)

Listing 5: Example of persistent send function.

Point-to-point and collective communication can be
either Blocking (presented below), Non-blocking (let
see example Listing 4) or persistent (let see example
Listing 5). A Non-blocking communication is split in
two functions. An initialization and a completion func-
tion. The communication can be performed during the
two functions but with no warranty of when. Persistent
communication is split in four functions: initialization,
start, wait and free. The operation can be performed
between start and wait. This type of communication
is used to increase performance of program with the
possibility of doing other computation during the com-
munication.

RMA (Remote Memory Access) or One-Sided Com-
munications is shared memory communication. In
MPI-RMA, all processes expose a part of their mem-
ory to other processes. We call this part a win-
dow. Processes can thus directly read and write in
other processes memory. The two main operations are
MPI_Put (Figure 1) and MPI_Get (Figure 2), that
respectively write and read memory. These operations
are asynchronous and synchronizations are needed to
keep coherence in memory. There exists different syn-
chronization methods: active synchronization and pas-
sive synchronization. We call code section between two
synchronizations an epoch. In active target synchro-
nization, only participants of the communication must
participate in the synchronization. In passive target
synchronization, all processes must participate in the
synchronization. For example, the more simple syn-
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Figure 1: Example of a Put operation with 2 processes.

Figure 2: Example of a Get operation with 2 processes.

chronization function is MPI_Win_fence, is a pas-
sive target synchronization, so is a collective all pro-
cesses must call it.

1 ...
2 MPI_Win_Fence(win); // new epoch
3 // Some RMA operations ...
4 MPI_Win_Fence(win); // new epoch
5 ...

Listing 6: Example of fence epoch.

MPI API is very complex and large, and because the
nature of distributed paradigms there is a lot of ways
to create bugs in programs. As results, detect bugs and
what caused them is challenging. There exists a lot of
tools to find bugs in MPI code. However, all tools are
not equivalent, potentially not target the same subset of
problems and don’t use the same method to find bugs.
It is then very difficult for an MPI application developer
to choose the correct tool to use.

B. The MPI BUGS INITIATIVE and related work

The MPI BUGS INITIATIVE [3] proposes a classifica-
tion of MPI errors, an associate benchmark suite and an
automated method to compare verification tools. The
MBI main goal is to measure the qualitative and quanti-
tative performance of MPI verification tools in a repro-
ducibility and automatic way. MBI defines 7 feature la-
bels corresponding to the way MPI processes exchange
message. The labels are given in Table 1. The first
feature label is point-to-point, and is split in 3 labels:
base calls, non-blocking and persistent respectively for
blocking, non-blocking and persistent operations. The
second features, collective, also split in 3 labels, base
calls, non-blocking and finally tools for communicator
and group management operations. The last feature is
RMA, for Remote Memory Access operation.

The error classification, presented in [3], contains 8
types of errors based on their root cause: Invalid pa-
rameter, Resource Leak, Request lifecycle, Local con-
currency, Parameter matching, Message Race, Call or-
dering, Global concurrency.

1. Errors in single call: erros in the scope of a MPI
function
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Single call Invalid Parameter 59 46 46 33 33 73 33 194

Single process
Resource Leak 0 1 2 0 0 12 0 14
Request lifecycle 0 4 5 0 12 0 0 18
Epoch lifecycle 0 0 0 0 0 0 30 30
Local concurrency 8 9 3 0 11 0 26 45

Multi-processes

Parameter matching 27 19 19 29 29 33 0 97
Message Race 20 30 0 24 0 0 0 34
Call ordering 55 51 0 480 444 0 0 652
Global concurrency 6 6 0 0 0 0 32 32

System Buffering Hazard 9 9 0 0 0 0 0 12
Data Input Hazard 3 3 0 12 0 0 0 16

Correct codes 39 46 10 504 480 31 31 761
Total 226 224 85 1082 1009 149 152 1905

Table 1: Errors classification. Numbers indicate the number of codes with the feature and the error. The last row
shows the number of correct codes with each feature (a code can have multiple features).

1 int root = -1;
2 MPI_Reduce(&rank, &sum, root, com)

Listing 7: Example of a invalid root (Invalid Parame-
ter)

1 MPI_Comm com[size];
2 MPI_Comm_dup(MPI_COMM_WORLD, &com[j]);
3 ...
4 // Missing MPI_Comm_free

Listing 8: Example of a Resource Leak

1 MPI_IRecv(&req)
2 ... // Missing wait
3 MPI_Request_free(&req)

Listing 9: Example of a missing wait (Request Lifecy-
cle)

1 P0: P1:
2 int root = rank int root = rank
3 Reduce(root) Reduce(root)

Listing 10: Example of a Reduce function with un-
matched root parameter (Parameter Marching)

1 P0: P1:
2 Barrier() Reduce()
3 Reduce() Barrier()

Listing 11: Example of a Call Ordering

8



• Invalid parameter: is a bad parameter in
a MPI function call. I can be an invalid
root, communicator, operator, datatype, tag
or buffer length. An example Listing of an
invalid root is presented in 7.

2. Errors local to a process: Incoherence between lo-
cal MPI context and MPI function calls

• Resource Leak: MPI resource which is not
correctly freed. An example is presented in
Listing 8 with a missing MPI_Comm_free
call.

• Request Lifecycle: missing function on MPI
request sequence. In Listing 9, the comple-
tion is missing.

• Local concurrency: concurrent memory ac-
cesses in a process. This can append with
non-blocking operations. Is presented in
Listing 12, the buffer is written before the
completion is called.

3. Multi-processes errors: Errors involving multi
processes

• Message Race: multiple message with no
warranty of arrival order. In Listing 14, a
deadlock can happen depending on which
send matches the receive on any source in
P0.

• Parameter Matching: wrong parameter
matching in MPI function calls. In Listing
10, the root ID for collective operation is not
the same between different processes.

• Call Ordering: different call order between
processes, this can cause a deadlock. Listing
11 present two processes with two collective
operations with different order.

• Global Concurrency: occurs when two or
more processes make concurrent accesses on
same memory region. These errors can ap-
pend with RMA operation. In Listing 13 we
present a data race with two write operation
on same memory region.

The features labels and errors classification propose
a formal description to define benchmark. In MBI, all
codes are generated with a python script to ensure a
good coverage of MPI. All codes contain at most one

error and some codes are correct. The number of codes
are given un Table 1.

MBI proposes a comparison of 8 tools: Aislinn,
CIVL, ISP, ITAC, Mc SimGrid, MPI-SV, MUST and
PARCOACH. For each test, the tool outputs are ana-
lyzed with specific keywords research and results are
set as True Positive (TP), False Negative (FN), False
Positive (FP) or True Negative (TN) depending of test
expected results. In case of errors, the number of in
Compilation Error (CE), Timeout (TO) or Runtime Er-
ror (RE) is reported. The running time limit for each
test is 5 minutes (300 second). After this time the test
is noted as Timeout. This is a reasonable time for our
short benchmark codes.

The MBI project is not the first one to propose a
benchmark suite for MPI applications, MPI-Corrbench
[4] proposes a benchmark suite to evaluate the capac-
ity of MPI verification tools to detect errors. This
project evaluate 4 tools: MUST, ITAC, Parcoach, MPI-
Checker. For error classification, MPI-Corrbench, uses
a different classification than MBI: Erroneous Argu-
ments, Mismatching Arguments and Erroneous Pro-
gram Flow. MPI-Corrbench proposes 4 levels of
benchmark: level 0 is a code in a single file, level 1
is a code with multiple files, level 2 is a mini applica-
tion and level 3 is for applications. In addition, MPI-
Corrbench uses another way to classify tools results.
Authors make a difference between errors and warn-
ings and propose two different metrics W+ and W−

for warnings if we considered as errors or ignored.
Another project, more dated, is RTED [6]. The error

classification of RTED is composed of 10 different cat-
egories: buffer out of bounds, buffer overlap, data type
errors, rank errors, other argument errors, wrong or-
der of MPI calls, negative message length, deadlocks,
race conditions and implementation dependent errors.
This classification include some hazard errors and some
MBI codes are inspired by RTED codes. In addition,
RTED evaluted tools feedblack by giving them a score.
This score is between 0 and 5 and take into account if
tools give the type of error, the line number, filename
and some other information. RTED proposes code in
different language: C, C++ and Fortrant. In addition,
RTED not only includes MPI errors, but also classic
serial errors, OpenMP errors and UPC errors.

DataRaceBench [5] (DRB) is an OpenMP bench-
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mark suite focused on data races, with 4 OpenMP bug
finding tools are evaluated with it. As data races in
MPI, in OpenMP a data race is hazard error and does
not appear at each execution. To force a data race dur-
ring execution, DataRaceBench launches code with dif-
ferent parameters, number of threads and table size. In
addition, each benchmark is executed 5 times. Unlike
MBI, RTED and DRB include codes written in C, C++
and FORTRANT.

III. CONTRIBUTION

Hazard errors are more challenging to find for bug
finding tools. This type of error is nondeterministic
and thus difficult to reproduce. Hazard errors include
error dependent to processes scheduling, network la-
tency, software environment or software data. They can
cause a deadlock in a program, a crash or a silence error
which gives false results without any sign.

A. Hazard errors classification

The MBI project defines 8 types of errors in MPI ap-
plications. Three of them are already hazard errors:
Local Concurrency, Global Concurrency and Message
Race. Initially, the codes corresponding to these three
errors were deterministic (the errors happend in all ex-
ecution). In fact, we can define at least 4 types of haz-
ard errors: data race (Local Concurrency and Global
Concurrency), Message Race, Buffer Hazard and Input
Hazard.

1 P0:
2 MPI_ISend(buf)
3 buf[0] += 1
4 MPI_Wait()

Listing 12: Example of a Local concurrency

1 P0: P1: P2:
2 Win_fence() Win_fence() Win_fence()
3 Put(0) Put(0)
4 Win_fence() Win_fence() Win_fence()

Listing 13: Example of a Global Concurrency

1 P0: P1: P2:
2 Recv(ANY_SRC) Send(0)
3 Recv(1) Send(0)

Listing 14: Example of a Message race

1 P0: P1:
2 MPI_Send(1) MPI_Send(0)
3 MPI_Recv(1) MPI_Recv(0)

Listing 15: Example of a Buffer hazard

a. Data Race

DataRaceBench [5] defines a Data Race with these
words:

A data race can occur when two concurrent
threads access a shared variable and when at
least one access is a write operation, and the
threads use no explicit mechanism to prevent
the accesses from being simultaneous.

In the message passing paradigm and MPI context,
the problem is quite different. We can separate the
problem into two different categories: Local Concur-
rency and Global Concurrency. The first category is a
data race on a unique process. The second one is a data
race caused by two (or more) processes. With RMA
feature by example. The solution to prevent this type
of error is synchronization, like MPI_Wait for /point-
to-point/ operations or epoch for RMA operations.

• Local concurrency: A process accesses a mem-
ory region that is being read or write. This type
of error can be produce with non-blocking and
one-side communication. We can see an exam-
ple in Listing 12. In this example, the buffer used

1 P0(x):
2 MPI_ISend(buf)
3 if (x < 0)
4 buf[0] += 1
5 MPI_Wait()

Listing 16: Example of a Input hazard
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in Isend is modified before the completion, so we
don’t know which value is sent.

• Global concurrency: Two or more processes ac-
cess the same memory region and at least one ac-
cess is a write operation. This type of error can be
produce with RMA communication on the same
epoch. In the example Listing 13, there are two
processes (P1 and P2) doing a put on the same
memory location in P0.

b. Message race

A message race occur when two message (or more) are
sent and there is a receive on ANY_SRC, the order of
send arrivals is not guarented. Listing 14 presents a
message race. If message of P1 matches with the first
receive in P0, a deadlock occurs. Indeed the message
sent by P2 does not match with the second receive call
in P0.

c. Buffer hazard

Buffer hazard is an error that is related to the buffer us-
age of MPI implementations. All MPI blocking com-
munication can use a buffer for performance purpose.
But this can change the program behaviors and produce
non-deterministic executions. The usage of buffering
depends on MPI implementation, system configuration
and system usage at the program execution.

In reel world, system has a limited size of buffer, but
some bug finding tools use only zero-buffer (we con-
sider the implementation have do not use buffer) or
infinit-buffer (we consider the implementation have in-
finit size of buffer). The tool Hermes [2] is the only
one, is able to verify programs with a fixed buffer size
k, a k-buffer parameter.

In Listing 15, with zero-buffer, the program dead-
locks because send functions are blocking. With infinit
buffering, the program works fine. In addition, the size
of messages can produce a deadlock too (if the message
size is greater than the system buffer size).

d. Input hazard

Input hazard is an error that occurs only for a subset of
program input. This error is interesting to study in the

Error category Number of codes Number of tests
Invalid parameter 194 194
Resource leak 14 14
Request lifecycle 18 18
Epoch lifecycle 30 30
Local concurrency 45 225
Parameter matching 97 97
Message race 34 170
Call ordering 652 656
Global concurrency 32 160
Buffering hazard 12 24
Input Hazard 16 32
Correct execution 761 781
Total 1905 2401

Table 2: Number of codes and tests for each error types.
Hazard errors are in bold.

context of MBI, because it needs an additional effort
for debugging with some tools. Dynamic tools rely on
one execution and are input depend. It is not the case
with static analyses and symbolic execution paradigm.
In Listing 16, we assume the variable x is given as an
input, so if x < 0 is true, there is a Local Concurrency
error, otherwise there is no error during the execution.

B. Codes generation

MBI RTED MPI-Corrbench total
1825 16 64 1905

Table 3: Number of codes by origins

Codes are generated by a python script. All codes
are written in C and have a formatted header provid-
ing a textual description of the problem, command line,
expected result and feature used as presented Listing
17. The MBI extension covers the same MPI features
as previously 1. All previous, hazard codes have been
changed (we remove the synchronization) to obtain true
nondeterminism hazard codes. Some new code have
been added with with mixed features mostly with point
to point communication and RMA operations. Some
new codes is inspired by RTED or MPI-Corrbench
codes, Table 3 present the number of code by origin.

The code suite have been extended with new codes,
the large majority have hazard errors (Local Con-
currency, Global Concurrency, Message Race, Buffer
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Hazard and Input Hazard). Table 2 shows the number
of codes and tests for each error. Each hazard code was
tested at least two times, which explains the different
number of codes and tests. Buffering Hazard codes are
tested with two different parameters: Zero Buffer and
Infinite Buffer. Input hazard codes are executed with
input producing an error and not. Local Concurrency,
Global Concurrency and Message Race are executed 5
times to have a good chance to produce the error.

We assume a code contains only one error indepen-
dently of the input parameters, so if an execution do
not cause the error, we assume the error still exists
in the code and a perfect tool must see it. For non-
determinist codes, there is no warranty the error ap-
pend at each execution. Determinist errors are exe-
cuted just one time. For codes with hazard errors, we
have two different strategies: code with Local Concur-
rency, Global Concurrency and Message race are ex-
ecuted five times each. Five is a reasonable number
to have good a chance to produce the error, but not to
mush to increase unreasonably the total execution time
of all codes. It’s also the number of executions used
by DataRaceBench [5] to detect data races in OpenMP
programs. For Buffer Hazard and Input Hazard we
can control error appearance. For Buffer Hazard, some
tools take the buffering mode as argument, so we make
two executions for each code. For Input Hazard, we
use also two tests, one with a parameter which causes
the error and another one with a parameter which does
not cause the error.

C. Tools output evaluation and metrics

The metrics used in MBI were adapted to determinist
codes. This metrics are presented Table 4. With hazard
errors, metrics must be reconsidered. A first solution
is to use 3 metrics: Correct diagnostic, Can be correct
diagnostic and Incorrect diagnostic. But these metrics
are an over approximation for a good analysis of tools
reports.

We then, define new evaluation metrics, with 6 pos-
sible results: Systematic True Negative (STN), Sys-
tematic False Negative (SFN) , Can be False Posi-
tive (CFP), Can be True Positive (CTP), Systematic
False Positive (SFP) and Systematic True Prositive
(STP). Based on these results, 2 metrics are computed:

Accuracy+ (A+) and Accuracy- (A−). The metrics are
presented Table 5.

Systematic results correspond to a tool that returns
always the same results for the same code, Can be
results correspond to a tool returns different results
for a code. This results classification works because
we assume an error in a code is always present,
the expected result for a code is then always the
same. If a code expect an error, tests results must
be exclusively in {TP, FN,CE,RE, TO}, respec-
tively, a code without error must have tests results into
{TN,FP,CE,RE, TO}. The new metrics are used
to compare behaviors of tools for hazard errors.

Accuracy+ and Accuracy- give the proportion of
correct diagnostics over all tests. Accuracy+ repre-
sents incorrect codes that can be dectected as incorrect.
Accuracy- represents incorrect codes that one system-
atically detected as incorrect. The difference between
the two metrics is the part of errors coverage for which
a tool is not able to detect systematically.

IV. USE CASES

We propose a comparison of 10 state-of-the-art ver-
ification tools using MBI: Aislinn (v3.12), CIVL
(v1.21), Hermes [2] (git-3113718), ISP (v0.3.1), ITAC
(v2021.6), Mc Simgrid (git-e32f58bcd8), MPI-SV
(v1), MUST (v1.7.2), MPI-Checker [1] (llvm-11) and
Parcoach (git-485166f). Tools use different verification
methods as presented Table 6. Each method has advan-
tages and disadvantages to detect errors types.

The experiments were done in a Docker image with
Ubuntu 20.04 with all tools and them dependencies.
Except for Aislinn and MPI-SV which use their own
docker image. The docker image uses MPICH im-
plementation in version v3.3.2. We use Ubuntu 18.04
for Aislinn due to dependency issues, and we use the
docker image provided by the authors for MPI-SV. Ex-
periments were conducted on a Grid5000 super com-
puter node and all tests use at most 6 MPI processes.

A. Tools comparison

Tools evaluation and comparison is challenging, be-
cause of the diversity of errors root cause and methods
used by the tools. Table 7 shows the results of all 10
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1 // DO NOT EDIT: this file was generated by InputHazardGenerator.py. DO NOT EDIT.
2 /* ///////////////////////// The MPI Bugs Initiative ////////////////////////
3

4 Origin: MBI
5

6 Description: Missing collective function call.
7 Missing collective function call for a path depending to input, a deadlock is created.
8

9 Version of MPI: Conforms to MPI 1.1, does not require MPI 2 implementation
10

11 BEGIN_MPI_FEATURES
12 P2P!basic: Lacking
13 P2P!non-blocking: Lacking
14 P2P!persistent: Lacking
15 COLL!basic: Yes
16 COLL!non-blocking: Lacking
17 COLL!persistent: Lacking
18 COLL!tools: Lacking
19 RMA: Lacking
20 END_MPI_FEATURES
21

22 BEGIN_MBI_TESTS
23 $ mpirun -np 2 ${EXE} 1
24 | ERROR: IHCallMatching
25 | P2P mistmatch. Missing MPI_Reduce at InputHazardCallOrdering_Reduce_nok.c:73.
26 $ mpirun -np 2 ${EXE} 2
27 | ERROR: IHCallMatching
28 | P2P mistmatch. Missing MPI_Reduce at InputHazardCallOrdering_Reduce_nok.c:73.
29 END_MBI_TESTS
30 ////////////////////// End of MBI headers /////////////////// */
31

32 // Includes ...
33 int main(int argc, char **argv) {
34 // Variables declaration and MPI init ...
35 if (nprocs < 2)
36 printf("MBI ERROR: This test needs at least 2 processes to produce a bug!\n");
37 if (argc < 2)
38 printf("MBI ERROR: This test needs at least 1 argument to produce a bug!\n");
39 // ...
40 int n = atoi(argv[1]);
41 if (rank == 0) {
42 if ((n % 2) == 0) { /* MBIERROR */
43 // Missing collective
44 } else {
45 MPI_Reduce(&val1, &sum1, 1, type, op, root, newcom);
46 }
47 } else {
48 dest=0, src=0;
49 MPI_Reduce(&val2, &sum2, 1, type, op, root, newcom);
50 }
51 // MPI finalize ...
52 return 0;
53 }

Listing 17: Example of InputHazard file (InputHazardCallOrdering_Reduce_nok.c) generated by
InputHazardGenerator.py.
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Result Meaning
Compilation Error (CE) The code uses a feature not supported by the tool.

Timeout (TO) Timeout (limit: 300s).
Runtime Error (RE) Tool failure during the evaluation of this code.
True Positive (TP) Error correctly detected.

False Negative (FN) Error missed.
False Positive (FP) Correct code reported as faulty.
True Negative (TN) Correct code reported as such.

Metric Definition and meaning
Coverage Ability to compile codes. Cov = 1− CE

total

Conclusiveness Ability to draw a diagnostic on codes. Cc = 1− CE+RE+TO
total

Specificity Ability to not find errors in correct codes. S = TN
TN+FP

Recall Ability to find existing errors. R = TP
TP+FN

Precision Potential confidence when a code is reported as correct. P = TP
TP+FP

F1 Score Overall bug-finding quality. F1 = 2×P×R
P+R

Overall accuracy Proportion of correct diagnostics over all tests. A = TP+TN
total

Table 4: Tests output evaluation [3].

Result Meaning
Systematic Error (SE) Include CE, RE, and TO.

Systematic True Positive (STP) Error correctly detected for each exection.
Can be True Positive (CTP) Error correctly detected for some execution.

Systematic False Negative (SFN) Error missed for each exection.
Can be False Positive (CFP) Correct code reported as faulty for some exection.

Systematic False Positive (SFP) Correct code reported as faulty for each exection.
Systematic True Negative (STN) Correct code reported as such for each exection.

Metric Definition and meaning
Overall accuracy+ Proportion of correct diagnostics over all tests. A+ = TP+TN+CTP

total

Overall accuracy- Proportion of correct diagnostics over all tests. A− = TP+TN
total

Table 5: New output evaluation and new metrics for non-deterministic results.
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Static Model Symbolic
Tool analysis checking execution Testing
ITAC X
MUST X
Mc SimGrid X
ISP X
CIVL X X
MPI-SV X X
Aislinn X
PARCOACH X
Hermes X X
MPI-Checker X X

Table 6: Tools description

tools on hazards codes. The last row presents the Ideal
tool results. Best results for each error is in bold.

For Local concurrency, ITAC is the best with an
Accuracy+ of 0.44 and an Accuracy- of 0.38, followed
by ISP with an Accuracy+ and Accuracy- of 0.36.
CIVL, MC Simgrid, Parcoach, MPI-SV and MUST, do
not detect any of Local Concurrency errors we define.

No tool is able to detect Global Concurrency. This
results show a lack of RMA support in tools.

For Message race, ISP has the same results than an
ideal tool with an Accuracy+ and an Accuracy- of 1.
Followed by ITAC, MUST and MC Simgrid. PAR-
COACH has a lot of STP because it does not find an
error in correct codes. ISP detects Message race errors
at each execution, Mc SimGrid, Hermes, Aislinn and
CIVL too, but with a smaller coverage. ITAC, MUST
and MPI-SV do not detect message race at each ex-
ecution. PARCOACH has a lot of STP because it can
find errors in incorrect codes. However, it detects dead-
locks related to collectives instead of detecting the ac-
tual message races. This could be detected with a tools
feedback analysis.

For Buffering hazard, ITAC and MUST have the
same results as an ideal tool. Aislinn, Mc Simgrid and
Hermes have also an Accuracy+ at 1. The difference
with Accuracy+ and Accuracy- depends on usage or not
of the zero-buffer option or not. For MUST, errors are
detected in the majority of cases.

For Input hazard, ISP, ITAC and MC Simgrid have
the same results and detect all errors. However the
Accuracy- is equal to 0, so these tools are dependent
of input data to detect an error. Aislinn, doesn’t detect

all errors, and is also dependent to input data. PAR-
COACH is less accurate tool, but has the same score
for Accuracy+ and Accuracy-, because it doesn’t exe-
cute the programe, so is not dependent to input data.
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Figure 3: Tools output evaluation on hazard errors

Figure 3 present tools output evaluation on hazard er-
rors. This visualization presents the part of errors (SE)
includes CE, RE and TO, incorrect diagnostic (SFN),
can be correct diagnostic (CTP) and correct diagnostic
(STP) for all codes. The tools order is sort by the num-
ber of correct diagnostic and can be correct, form the
left to the right.
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Figure 4: Tools output evaluation on all errors

Table 8 gives tools evaluation results on all codes for
all of errors, with the following metrics: SE, STP, CTP,
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Local Global Message Buffering Input
concurrency concurrency race hazard Hazard
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Aislinn 32 8 0 5 0.18 0.18 32 0 0 0 0 0 6 24 0 4 0.71 0.71 0 0 12 0 1 0 3 0 13 0 0.81 0
CIVL 45 0 0 0 0 0 32 0 0 0 0 0 30 4 0 0 0.12 0.12 9 0 0 3 0 0 6 10 0 0 0.62 0.62
ISP 8 16 0 21 0.36 0.36 8 0 0 24 0 0 0 34 0 0 1 1 12 0 0 0 0 0 0 0 16 0 1 0
ITAC 0 17 3 25 0.44 0.38 0 0 0 32 0 0 0 24 6 4 0.88 0.71 0 12 0 0 1 1 0 0 16 0 1 0
Mc SimGrid 4 0 0 41 0 0 2 0 0 30 0 0 0 28 0 6 0.82 0.82 0 0 12 0 1 0 0 0 16 0 1 0
MPI-SV 45 0 0 0 0 0 32 0 0 0 0 0 18 0 16 0 0.47 0 12 0 0 0 0 0 16 0 0 0 0 0
MUST 0 0 0 45 0 0 0 0 0 32 0 0 0 12 18 4 0.88 0.35 0 12 0 0 1 1 0 0 16 0 1 0
Hermes 31 14 0 0 0.31 0.31 32 0 0 0 0 0 8 26 0 0 0.76 0.76 0 0 12 0 1 0 16 0 0 0 0 0
PARCOACH 0 0 0 45 0 0 0 0 0 32 0 0 0 28 0 6 0.82 0.82 0 0 0 12 0 0 0 12 0 4 0.75 0.75
MPI-Checker 0 9 0 36 0.2 0.2 0 0 0 32 0 0 0 0 0 34 0 0 0 0 0 12 0 0 0 0 0 16 0 0
Ideal tool 0 45 0 0 1 1 0 32 0 0 1 1 0 34 0 0 1 1 0 12 0 0 1 1 0 16 0 0 1 1

Table 7: Results with hazard tool output evaluation

Tool Errors Results Overall
SE STP CTP SFN SFP CFP STN Accuracy+ Accuracy-

Aislinn 1000 495 25 46 0 0 339 0.45 0.44
CIVL 1666 123 0 8 10 0 98 0.12 0.12
ISP 54 971 16 104 479 0 281 0.67 0.66
ITAC 1 1032 25 86 3 0 758 0.95 0.94
Mc SimGrid 6 1002 28 108 4 0 757 0.94 0.92
MPI-SV 405 0 16 810 0 0 674 0.36 0.35
MUST 12 1007 34 91 6 0 755 0.94 0.92
Hermes 447 967 12 0 479 0 0 0.51 0.51
PARCOACH 0 664 0 480 636 0 125 0.41 0.41
MPI-Checker 0 321 0 823 240 0 521 0.44 0.44
Ideal tool 0 1144 0 0 0 0 761 1 1

Table 8: Tools output evaluation on all errors
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SFN, SFP, CFP, STN, Accuracy+ and Accuracy-. The
best results are in bold. Again, the last row gives the
results of an ideal tool. PARCOACH and MPI-Checker
have no errors, followed by ITAC with only one error
and MC SimGrid with 6 errors, MUST has 12 errors,
and ISP has 54 errors. The rest of tools has a number
of errors greater than 400. ITAC can detect most errors.
It found 1032 errors systematically and 25 errors could
be found. It’s also the greater number of Systematic
True Negative. MUST, MC SimGrid, ISP and Hermes
follow with close results. In addition, all tools detects
a nonexistent error systematically, there are no CFP.

With tools feedback analysis we have detected some
false True Positive. In the order of 300 false diagnostics
for MPI-Checker, and in the order of 150 false diagnos-
tics of PARCOACH. The other tools have a lot of less
or no bad diagnostics.

B. The case of MC Simgrid

MBI is not only made to help users choose the right
bug finding tool, but also to help tools developers to
improve their tools. In this section, we compare two
versions of MC Simgrid. To compare the performance
of two tools or two versions of same tools, we propose
a representation on radar plots by errors categories. Er-
rors categories are separated by determinist errors on
left part of the plots and hazard errors at the right. We
present on this visualization 3 metrics: the overall accu-
racy for all metrics, and A+ noted can be detected and
A− noted Always detected for hazard errors. Larger is
the colored zone, the better is errors detections.

We compare MC Simgrid version 3.27, to the actual
git master branch (e32f58bcd8). Results are presented
in Figure 5 and 6. We choose MC Simgrid because we
know the developers use MBI to found and fix bugs in
the tool. For determinist errors we can see a partial de-
tection of Invalid Parameter, Call Ordering and Param-
eter Matching for the version 3.27. Resource Leak, Re-
quest Lifecycle and Epoch Lifecycle are not detected or
have a small accuracy, (less than 0.2). The recent ver-
sion detects a large set of Invalid parameter, Resource
leak, Call ordering, Parameter matching and Request
lifecycle. For Hazard errors, results are close between
the two versions, with a small amelioration for Input
hazard.
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Figure 5: MC Simgrid capacity for each category.

Table 9 presents the MBI metrics for all MC Simgrid
version from v3.27 to the actual version. Since ver-
sion v3.31, the coverage has reduced, and there is an
increase number of errors. The accuracy has increased
from 0.62 in version v3.27 to 0.8 in the last version.

We can see a significant improvement of Simgrid de-
tection capacity. Because of MBI was initially mainly
focused on determinist errors the majority of improve-
ment is visible on these errors. We can expect new im-
provements on nondeterminism errors in the near fu-
ture.

The results of all tools with the radar plots is show
in Figure 7. Table 10 presents results with determinist
metrics for all tools.

V. CONCLUSION

In this document we proposed an extension of MBI for
hazards errors. We proposed an extension of the er-
ror classification with two new classes: Input Hazard
and Buffer Hazard, and a new tool outputs evaluation
to analyse tools behavior on hazard errors. This eval-
uation is able to detect input dependent and execution
dependent tools. In addition, we proposed a tool com-
parison with 2 new state-of-art tools: MPI-Checker and
Hermes. We proposed a comparison of different ver-
sions of MC SimGrid. MC SimGrid developers used
the MBI benchmark suite to detect and fix bugs in the
tool. We have noted significant improvements between
the 2 versions, principally on deterministic errors.
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Tool Errors Results Robustness Usefulness Overall
CE TO RE TP TN FP FN Coverage Conclusiveness Specificity Recall Precision F1 Score accuracy

Mc SimGrid v3.27 0 0 399 744 746 0 512 1 0.8338 1 0.5924 1 0.7447 0.6206
Mc SimGrid v3.28 0 0 378 856 746 0 421 1 0.8426 1 0.6703 1 0.7578 0.6672
Mc SimGrid v3.29 0 0 378 856 746 0 421 1 0.8426 1 0.6703 1 0.7578 0.6672
Mc SimGrid v3.30 0 0 378 856 746 0 421 1 0.8426 1 0.6703 1 0.7578 0.6672
Mc SimGrid v3.31 4 258 0 1143 752 8 236 0.9983 0.8909 0.9895 0.8289 0.993 0.7307 0.7893
Mc SimGrid 4 30 0 1143 772 8 444 0.9983 0.9858 0.9897 0.7202 0.993 0.6946 0.7976
Ideal tool 0 0 0 1620 781 0 0 1 1 1 1 1 1 1

Table 9: Metric for all version of MC Simgrid
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(a) Simgrid version 3.27 capacity for each cat-
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(c) Simgrid version 3.29 capacity for each cat-
egories
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(d) Simgrid version 3.30 capacity for each cat-
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(e) Simgrid version 3.31 capacity for each cat-
egories

Figure 6: Simgrid other version results.

MBI is the only project to propose a large errors clas-
sification based on root cause and specific tools out-
puts evaluation metrics for hazard errors. It’s also the
project with the larger number of bugs finding tools
with 10 state-of-art tools.

DataRaceBench [5] proposes a formal description of
a nice benchmark suite on 7 points: Representative,
Scalable, General, Accessible, Extensible, Easy to use,
Qualitative and Correct. We can compare MBI with
this description:

• Representative: MBI include codes with various

MPI features, and 11 errors classes. MBI does not
cover all the features API but represent for com-
mon MPI errors.

• Scalable: MBI does not test the scalability of tools
and include only micro-benchmark without multi-
ple possible scale execution.

• General: The test suite is designed to be used with
static and dynamic analyses. It compares tools us-
ing there are a large variety of methods and mixed
methods.

• Accessible: MBI is accessible online on a free
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software license 2.
• Extensible: The Benchmark suite can be extended

by adding new code generators. All script are
written in Python with some utility functions al-
ready written.

• Easy to use: All MBI features are centralized in a
unique script which can take different input com-
mands and the execution environment is avail-
able into a Docker image. User can run micro-
benchmarks in the Docker without setting up any
software environment on his computer.

• Qualitative: MBI uses various metrics : Re-
call, Specificity, Precision, Accuracy, F1 Score,
Robustness, API Coverage and Accuracy+ and
Accuracy- for hazard errors.

• Correct: MBI uses hand made verification of tests
correctness (it checks what all tools returned on
the codes are valgrind tool).

This analysis highlights some possible improvement
for MBI. First, MBI does not include notion of scala-
bility. Secondly, MBI ensures the tests correctness with
human verification and an automatic way to ensure this
correctness could be interesting. Indeed, we have de-
tected many false True Positive. An automatic method
can be a future work. This report is accented by our
tools feedback analysis which show a consequent num-
ber of false True Positive.

I already had the occasion to see the research work
environment, but this internship, has been the occasion
for me to discover the work of researchers. In addi-
tion, we are, with Emmanuelle SAILLARD and Martin
QUINSON, writing a paper to submit at the Correct-
ness workshop 2022 3 or at the TACAS (Tools and Al-
gorithms for the Construction and Analysis of Systems)
conference 2022 4.

2https://gitlab.com/MpiBugsInitiative
3https://correctness-workshop.github.io/

2022/
4https://etaps.org/2022/tacas
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(e) MPISV capacity for each categories
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(g) HERMES capacity for each categories

Invalid 
 parameter

Resource 
 leak

Call 
 ordering

Parameter 
 matching

Request 
 lifecycle

Epoch 
 lifecycle

Global 
 concurrency

Local 
 concurrency

Message 
 race

Buffering 
 hazard

Input 
 Hazard

0.2

0.4

0.6

0.8

PARCOACH Accuracy
Can be detected
Always detected

(h) PARCOACH capacity for each categories

Invalid 
 parameter

Resource 
 leak

Call 
 ordering

Parameter 
 matching

Request 
 lifecycle

Epoch 
 lifecycle

Global 
 concurrency

Local 
 concurrency

Message 
 race

Buffering 
 hazard

Input 
 Hazard

0.2

0.4

0.6

0.8

MPI-Checker Accuracy
Can be detected
Always detected

(i) MPI-CHECKER capacity for each cate-
gories

Figure 7: Other tool result.

Tool Errors Results Robustness Usefulness Overall
CE TO RE TP TN FP FN Coverage Conclusiveness Specificity Recall Precision F1 Score accuracy

Aislinn 1275 0 17 649 351 4 105 0.469 0.4619 0.9887 0.8607 0.9939 0.6618 0.4165
CIVL 2127 0 6 144 89 24 11 0.1141 0.1116 0.7876 0.929 0.8571 0.6748 0.097
ISP 0 104 26 1191 301 479 300 1 0.9459 0.3859 0.7988 0.7132 0.2941 0.6214
ITAC 0 1 6 1256 769 11 358 1 0.9971 0.9859 0.7782 0.9913 0.682 0.8434
Mc SimGrid 4 30 0 1143 772 8 444 0.9983 0.9858 0.9897 0.7202 0.993 0.6946 0.7976
MPI-SV 5 0 900 0 673 0 823 0.9979 0.6231 1 0.0 (error) (error) 0.2803
MUST 1 7 6 1129 766 14 478 0.9996 0.9942 0.9821 0.7026 0.9878 0.686 0.7893
Hermes 0 86 689 1143 0 483 0 1 0.6772 0.0 1 0.703 0.0 0.4761
PARCOACH 4 0 0 788 108 672 829 0.9983 0.9983 0.1385 0.4873 0.5397 0.1284 0.3732
MPI-Checker 0 0 0 357 541 240 1263 1 1 0.6927 0.2204 0.598 0.3545 0.374
Ideal tool 0 0 0 1620 781 0 0 1 1 1 1 1 1 1

Table 10: Metric for all tools
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A. REPRODUCTIBILITY

The MPI Bugs Initiative (MBI) is available on Gitlab at
https://gitlab.com/MpiBugsInitiative.
All verification tools are free except for ITAC who
source code are not available, but a binary executable
is freely available. All evaluation script and code
generator source code is available in the repository.

Because of the nature non-determinist of hazard er-
rors, results is not fully reproducible, but the results
must be close for each reproduction.

A. Installation

MBI use a Docker to run script with controlled envi-
ronment and facilitate usage for user. Container us-
age guaranty the user software environment and sys-
tem configuration as no effect on experiments, is eas-
ier to reproduce results, because of user as no need to
set up a specific software environment expect a work-
ing Docker installation on system. In addition, evalua-
tion processes is fully automated and can produce some
plots, latex and HTML files for results visualization.

The MBI experiments are performed in a Docker im-
age derived to Ubuntu version 20.04 with all tools and
dependency, except for Aislinn and MPI-SV who use
their own docker image, Ubuntu 18.04 for Aislinn due
to dependency issues, and we use the Docker image
provided by the authors for MPI-SV.

docker build -f Dockerfile -t mbi:latest .
docker run -it --shm-size=512m mbi bash

In the Docker, the /MBI/MBI.py script provides a
centralized interface for all MBI features: benchmarks
generator, tools execution and data analysis.

B. Data provenance

The source code of all tools are included in the Docker
image, and they are compiled on need. The binaries are
persistent out of the Docker environment, as a cache
mechanism.

The test cases are generated using the following
command:

python3 ./MBI.py -c generate

One can either run the tests for all tools, or chose a
specific tool as follows:

python3 ./MBI.py -c run
python3 ./MBI.py -c run -x <tool>
python3 ./MBI.py -c run -x

<tool1>,<tool2>,...↪→

All logs are produced under /MBI/logs/<tool>, that
is persistent out of the Docker. In each directory, the
following files are produced for the data analysis:

• test_name.txt: that contains the tool output for that
test

• test_name.elapsed: hat gives the wall clock time

In addition, a test_name.md5sum file is used to de-
tect changes in the test codes, and cache the test results
when the code is unmodified.

C. Data analysis

Once all logs are in cache, the LATEXtables included in
this article are regenerated as follows:

python3 ./MBI.py -c latex

This is an error-prone component, and we manually
checked the results on all generated codes, also com-
paring the observed outcomes of all bug-finding tools.

A web dashboard can be generated to explore the
logs in cache as follows.

python3 ./MBI.py -c html

This is useful to debug the tool-specific scripts that
parse the textual output of that tool, i.e. the component
in charge of categorizing a given run as either as ’True
Positive’, ’False Negative’ and so on. This dashboard
provides two views presented in Figure 8. The upper
part gives a quick glance on the categorization of each
tool and test code (using colored icons), while the lower
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Figure 8: Screenshot of the MBI internal dashboard.

part allows to see the detail of all logs. This tool is
only described in this reproducibility section, as it is
meant as an internal tool to ensure the quality of the
tool-specific parsers.

A set of plots can be generated to explore the logs in
cache as follows.

python3 ./MBI.py -c plots

This command generate some bars and radar plots
useful to visualize for tools outputs results summary.
All plots used in this document are generate with this
command.

D. Continuous Integration

We rely on GitLab Continuous Integration fea-
tures to enforce the reproducibility of the pro-
vided tooling. All results can be visualized at
https://mpibugsinitiative.gitlab.io/
MpiBugsInitiative/. MPI-SV and ITAC are
not included in this dashboard, because of a technical
difficulty. They fail with a SIGILL error when exe-
cuted in the docker-in-docker settings that is mandated
gitlab-ci. They must be run manually to produce the
logs.
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