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Distributed programs

@ Distributed applications are widespread in the HPC community,

o MPI libraries (e.g. MPICH) are widely used to develop HPC applications,
@ Distributed applications are hard to design.
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Why is it difficult to design distributed programs

@ Concurrency: many processes running in parallel

e How to split an algorithm into several operations executed concurrently?
e How to synchronize processes effectively?

o Data distribution: data locality

o How to efficiently write and store data?
e How to efficiently process (e.g. communicate, combine, visualize) data?

@ Nondeterminism: many execution scenarios — hard to avoid unwanted
scenarios.
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Classical approach to write distributed programs

Rigid communication patterns
@ Avoid complex synchronization scenarios.

@ Scale poorly — a strong need for dynamic communication patterns.

Rigid communication patterns Dynamic communication patterns
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Testing distributed programs

P1(){ P1 >
Send (1, P3); Send
}
P2 Send >
P2 (){
Send (2, P3); P3 \ RecvAny _Rechnv >
} X<y
P1 >
P3 (){ Send
RecvAny(&x, *);
Send -
RecvAny(&y, *); P2 >
assert(x <vy);
} P3 RecvAny RecvAny >
x>y

@ Testing is incomplete = formal methods can help.
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Model checking

System model Property

exhaustive
search

[Property is satisfied] [ Property is not satisfied ] -Fall (out of time, out of memory.. )I

o Exhaustive exploration of the state space
o Check if the property is true at every state (for safety properties)

@ A counterexample denotes an execution leading to the bug.
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State space explosion because of concurrency

@ Exhaustive search of all possible states = state space explosion.

@ Sources of state space explosion: concurrency, non-determinism, unbounded

data...

@ Number of states can grow exponentially with respect to the number of

processes.
Example:
Worker () {
Master () {
for(i:=1; i<=nbWorker; i++) cl= Irecv(from Master);
ci= Isend(to Worker;); wait(cl);
Computation
for(i:=1; i<=nbWorker; i++) c2= Isend(to Master);
wait(c); wait(c2);
for(i:=1; i<=nbWorker; i++){
c/= Irecv(from Worker;);
wait(c!); }
%bWorker = 5: more than one million of] states.
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Main concern

Can we remain exhaustive (preserve properties) but partially explore the state
space?

o Partial order reduction® (POR) efficiently mitigates the state space
explosion problem.

x =1 y =

@ Most studies of POR focused mostly on shared memory programs.

@ Applying POR to distributed programs remains challenging.

2Patrice Godefroid, Partial-Order Methods for the Verification of Concurrent Systems, 1996
o e B



The main goal of the thesis

Efficiently adapting Unfolding-based Dynamic partial order reduction to verify
MPI programs.

: Full
.- ‘f state space
MPI program Simgrid i
* Observation
Safety properties
Abstract TLA+ specification Unfolding-based Reduced
programing model —>Independence theorems DPOR state space

@ Context

© Partial Order reduction

© Abstract programming model of asynchronous distributed programs
@ Adapting UDPOR

© Evaluation and Conclusion
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Interleaving semantics & POR

Model: Labelled transition system (LTS)
Independence: two actions a and b are independent if they commute:
1. Executing one action does not enable nor disable the other one,

2. Their execution order does not change the overall result.

PO | P1 | P2

w @ write(x) r: read(x)

r: read(x)

—> Independence: I(r, r)

@ Mazurkiewicz trace = an equivalence class of executions.

@ POR explores at least one execution per Mazurkiewicz trace.
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Unfolding semantics?

w | r I r

Independence: I(r, r)

write(x) ‘ read(x) read(x)

Unfolding semantics
(an event structure: causality —
conflict - )

9 César Rodriguez et al.,Unfolding-based Partial Order Reduction, CONCUR 2015
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Dynamic partial order reduction (DPOR)?

L S B

write(x) | read(x) | read(x)

Independence: I(r, r)

o Dynamicity: computing independence at run-time to build backtracking sets
for states.

e Optimal DPOR: exploring only one execution per Mazurkiewicz trace.

?Flanagan and Godefroid, Dynamic partial-order reduction for model checking software, POPL 2005
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Unfolding-based Dynamic partial order reduction (UDPOR)?

Procedure Explore(C, D, A)
| Compute extensions of C (ez(C))|
Add all events in ez(C) to U

if en(C') C D then

| Return

if (A =0)then

| choose ¢ from en(C)\ D
else

| choose e from AN en(C)
10 | Explore(C U{e},D, A\ {e})
11 if 37 € |Alit(C, D U{e})|then
12 | Explore(C,DU{e},J\ C)
13 U:=Un QC,D

© 0O N O g s W N =

o Combining strengths of unfolding semantics and DPOR.
e Visiting every configuration (partially ordered of events)

9 César Rodriguez et al.,Unfolding-based Partial Order Reduction, CONCUR 2015
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Alternatives

1 Procedure Explore(C, D, A)

2 | [ Compute extensions of C (ez(C))|
3 Add all events in ex(C) to U

4 if en(C) C D then

5 | Return
6
7
8
9

if (A=0)then

| choose ¢ from en(C)\ D
else

| choose ¢ from Anen(C)
10 | Explore(C U{e}, D, A\ {e})
11 if 37 €|Alt(C, D U {e})|then
12 | Explore(C,DU{e},J\ C)
13 U=Un QC,D

e Each alternative (roughly) corresponds to a backtracking point.

@ Computing alternatives is an NP-Complete problem in optimal DPORs.

o Quasi-Optimal POR?: tuning between an optimal or a quasi-optimal
algorithm (may be more efficient) by using a constant k (k-partial alternative)

FHuyen T.T Nguyen et al.,Quasi-Optimal Partial Order Reduction, CAV 2018.
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Extensions

1 Procedure Explore(C, D, A)

2 | | Compute extensions of C (ez(C))|
3 Add all events in ez(C) to U

4 if en(C) C D then

5 | Return
6
7
8
9

if (A =0)then

| choose ¢ from en(C)\ D
else

| choose ¢ from Anen(C)
10 | Explore(C U{e},D, A\ {e})
11 if 37 € |Alit(C, D U {e})|then
12 | Explore(C,DU{e},J\ O)
13 U:=UnNCQecp

@ A configuration (partially ordered of events) = an equivalence class of
executions.

o Extensions: direct states reachable from some states of these executions.

e Computing extensions may be costly (e.g. NP-complete for Petri Nets) —
should be computed efficiently.
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Agenda

@ Context
© Partial Order reduction

© Abstract programming model of asynchronous distributed programs

© Adapting UDPOR

© Evaluation and Conclusion

MPI program Simgrid i
* Observation
Safety properties

Abstract TLA+ specification Unfolding-based Reduced
programing model —>Independence theorems DPOR state space
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Abstract programming model

~~.__ Pairg,

- ey
- cop,
L omm

"l commmunications| :

"""—,;(Bd o™

Network
"""""""""" : Subsystem

; Acti :
5 (A con >1J Mutexy | !

i Act :
: @ ction aj Mutex |

femananan Synchronization
Subsystem

Actions
o Communication: AsyncSend, AsyncReceive, TestAny, WaitAny

@ Synchronization: AsyncMutexLock, MutexUnlock, MutexTestAny,
MutexWaitAny
o Local computation: LocalComp
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Communication actions

1 A2

c'= AsyncHeceive(m, d')

mailbox

c= AsyncSend(m, d)

TestAny({c'})

-~

Al A2

c= Asy‘ cSend(m, d)  ¢'= AsyncReceive(m, d')
)

fifo pairing

Waif")’({ ¢}

TestAny({c'})

c= AsypcSend(m, d)

d is copied to d'

WaitAny({ c }) TestAny({ c'})

The Anh Pham

c'= AsyncReceive(m, d')

Communications

PhD defense
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Synchronization actions

Al

r= AsyncMutexLock(mt)

mutex fifo policy

shared
A esource v

r'= AsyncMutexLock(mt)

=

-~

MutexUnlock(r)

2>
(]

MutexWaitAny({r'})

shared
resource

A1 A2
MutexTestAny({ r }) [ ]
MutexWaitAny({r'})
[ ]
A
>
shared
v
Al A2
®
MutexWaitAny({r'})

Shared .?.‘99@5;
resource

PhD defense
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Persistence, a key property for efficient UDPOR

An enabled action is persistent if it cannot be disabled by performing other
actions.

5
. |b

P
C

Lemma: All actions are persistent in our model

o Contrary to usual models of mutex, where locks (= AsyncMutexLock +
MutexWaitAny) are atomic

@ Persistence is essential in the efficiency of UDPOR.

v
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TLA+ specification of the programming model

Model specification (in TLA+)

AsyncReceive(ald, mbId, data_addr, comm addr) ==
ald \in ActorsIds
/\ mbId\in MailboxesIds
/\ data_addr \in Addresses
/\ comm_addr \in Addresses
/\ pclald] \in Receivelns
/\ \/ /\ \/ Len(Mailboxes[mbId]) = ©
\/ /\ Len(Mailboxes[mbId]) > 0
/\ Head(Mailboxes[mbId]).status = "receive"
/\ LET comm ==
[id |-> commId,
status |-> "receive",
src |-> NoActor,
dst |-> ald,
data_src |-> NoAddr,
data_dst |-> data_addr]

~
Z

IN
/\ Mailboxes' = [Mailboxes EXCEPT ![mbId] = Append(Mailboxes[mbId],
comm) ]
/\ Memory' = [Memory EXCEPT ![aId][comm addr] = comm.id]

/\ UNCHANGED <<Communications>>
/\ commId' = commId+1

Independence theorems expressed in TLA+, used in UDPOR

Example : An AsyncSend action and an AsyncReceive action are independent if
they are performed by different actors.

THEOREM \forall al, a2 \in ActorsIds, mbIdl, mbId2 \in MailboxesIds, datal, data2,
comml, comm2 \in Addresses: al /= a2
=> I(AsyncSend(al, mbIdl, datal, comml), AsyncReceive(a2, mbId2, data2, comm2))
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Example of an interesting property: deadlock

Deadlock or deadlock free?
P1 P2
MPI_Send pMPI_Send
MPI_Receive! 'MPI_Receive
Y \4

The Anh Pham PhD defense



Example of an interesting property: deadlock

Deadlock or deadlock free?

P1 P2
MPI_Send pMPI_Send
MPI_Receive! 'MPI_Receive
Y \4

Deadlock depends on zero-buffering or infinite-buffering.

P1 P2 P1 P2

MPI_Send JVIPI_Send MPI_Send IMPI_Send

MPI_Receive,

O IMP1_Receive MPI_Receive, IMP1_Receive
\ y \ y
A cycle dependency -> deadlock Messages are buffered -> deadlock-free
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Encoding MPI programs

Deadlock depends on zero-buffering or infinite-buffering.

P1

MPI_Send

MPI_Receivel &~

\

P2

WMPI_Send

T AMPI_Receive

y

A cycle dependency -> deadlock

Encoding

M
c0=AsyncSend(m2, )

WaitAny({c0})

¢0'=AsyncReceive(mf,_

WaitAny({c0'}
Y

The Anh Pham

A2

c1=AsyncSend(m1,_)
aitAny({c1})

3 c1'=AsyncReceive(m2,_)

WaitAny({c1")

P1

MPI_Send

MPI_Receive

\

At

c0=AsyncSend(m2,_]

c0'=AsyncReceive(m1,_
WaitAny({c0')
Y

PhD defense

Messages are buffered -> deadlock-free

MMPI_Send

IMP1_Receive

y

A2

c1=AsyncSend(m1,_)

c1'=AsyncReceive(m2,_)
WaitAny({c1?)
Y
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Encoding MPI functions

MPI functions Infinite buffering Zero buffering
MPI_Send AsyncSend + WaitAny
MPI_Isend Asyncsend AsyncSend
MPI_Recv AsyncReceive + WaitAny
MPI _Irecv AsyncReceive
MPI_Test
MPI_Testany TestAny
MPI_Wait .

MPI_Waitany WaitAny
MPI_Win_lock AsyncMutexLock + MutexWaitAny
MPI_Win _unlock MutexUnlock

160 MPI functions are simulated by using this model in SimGrid.

The Anh Pham PhD defense 6th December 2019 24 /37



Agenda

© Context
© Partial Order reduction
© Abstract programming model of asynchronous distributed programs

@ Adapting UDPOR
© Evaluation and Conclusion

MPI program Simgrid -
+ Observation
Safety properties

Full
_--" state space ;

Y

Abstract model TLA+ specification Unfolding-based Reduced
—>Independence theorems DPOR state space

How to compute extensions of a configuration efficiently?
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Configuration

o C = set of events, conflict free and causally closed (represents an equivalence
class of executions).

@ C can be identified by its maximal events set:
maximalEvt(C)= { events in C that are not causal predecessors of any other

event in C }.
Example: maximalEvt({eq, €7, es}) = {es}; maximalEvt({ey, ez, €3}) =
{e2’ 63}
o



Extensions

@ ex(C) = { events outside C whose causal predecessors are all in C }.

Example: ex({es, e7}) = {e1, €5, €35, €9}

o C represents an equivalence class of executions
— ex(C) ~ { states that are directly reachable from some states of these

executions }.
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Computing ex(C) (naive

and expensive method)

e =(a, H)€ecex(C) =

H is a configuration, HCC
a is enabled at state(H)

Ve € maximalEvt(H) : D(a, A(¢"))

Combining every subset of C with every action

Example: ex({es, e7}) =

Event set | enabled actions | events

0 W, I, r e, €, €7
{es} w, r es

{er} w, r &

{ea, &7} | w es

= Exponential number of subsets.

4
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Computing extensions: proposed method

e =(a,H) € ex(C) &
H is a configuration, HCC
a is enabled at state(H)

Ve € maximalEvt(H) : D(a, A(¢'))

a depends on the actions of very few and easily identifiable events in C.

= [

[en] <a,H> (€n] <a,H>
Checking all subsets of C Computing all sets K,
= exponential time . IKI <= 3 (thanks to the persistence property)

v
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Possible values of K according to the type of action a

Type of action Description of K

AsyncSend K C { preEvt(a, C), AsyncSend, TestAny }
AsyncReceive K C { preEvt(a, C), AsyncReceive, TestAny }
TestAny

K C { preEvt(a, C), AsyncSend (or AsyncReceive) }
WaitAny

AsyncMutexLock K C { preEvt(a, C), AsyncMutexLock }

MutexUnlock K C { preEvt(a, C), MutexTestAny }

MutexTestAny

K C { preEvt(a, C), MutexUnlock }
MutexWaitAny

LocalComp K C { preEvt(a, C)}
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Computing extensions labelled by an AsyncSend

If ais AsyncSend(m, ) = resources of dependency: pre(a), AsyncSend(m, ),
TestAny | WaitAny .

[léAsyncSend(m,)
AsyncSend(m,_)

v

[JAsyncsend(m,_) | TestA

a = AsyncSend(m,_)

[ pre(a)
(or WaitAny)

pre(a) is unique.

All AsyncSend(m, ) events are causally related.

a depends on only one TestAny in a configuration.

a always happens after WaitAny if they are dependent.

= K C { preEvt(a,C), AsyncSend(m, ), TestAny }
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Computing extensions labelled by an AsyncSend

e =(a,H) € ex(C) &
H is a configuration, HCC
a is enabled at state(H)

Ve € maximalEvt(H) : D(a, A(¢'))

K C { preEvt(a,C), AsyncSend, TestAny }
Example:

Actor0| cO = AsyncReceive(m, _) o
c0' = AsyncReceive(m, _) <0 AsyncReceive
TestAny({ c0'})

Actor1 | c1 = AsyncSend(m, _)

Actor2| localComp
c2 = AsyncSend(m, _)

<2, AsyncSend>

<2, AsyncSend: m

Ki = {e}; Kr = {e&, e3}; K3 = {e, €3, &5}
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Computing extensions incrementally

UDPOR s recursive — Recomputation of many events

1/ Procedure Explore(C, D, A)| Example:
[Compute extensions of C (ez(C))
Add all events in ex(C) to U

if en(C') C D then

| Return

if (A=0)then

| choose ¢ from en(C)\ D
else

| choose e from AN en(C)
|[Explore(C U {e}, D, A\ {e})
if 37 € Alt(C,D U {e}) then

| Explore(C,DU{e},J\ C) ex({ e4}) ={et, €5, e7}
U:=UNQep

© O N OO s WN

-
o

- o -
W N =

ex({e4, e7}) ={e1, €5, €8, e9}

Eliminating redundant computations thanks to the persistence property
if "= CU{e} then ex(C") = (ex(C) UU,cenan(c{< a,H >}) \ {e}

v
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Evaluation

Exhaustive search UDPOR
Benchmarks #P | Deadlock #Traces | Time(s) | #Traces | Time(s)
wait-deadlock 2 yes 2 <0.01 1 <0.01
send-recv-ok 2 no 24 0.03 1 <0.01
sendrecv-deadlock 3 yes 105 0.06 1 0.01
complex-deadlock 3 yes 36 0.03 1 <0.01
waitall-deadlock 3 yes 1458 1.2 1 <0.01
no-error-wait-any-src 3 no 21 0.02 1 0.01
any-src-waitall-deadlock | 3 no 105 0.05 1 0.01
any-src-can-deadlock3 3 yes 999 0.65 2 0.03
DTG 5 yes - TO 2 0.07
- 4 no 20064 8.15 6 0.2
RMQ-receiving 5 0o - T0 54 555
6 no - TO 120 47
3 no 1356444 | > 17 (m) 2 0.2
Master-worker 7 o - 0 6 55
5 no - TO 24 60

TO: timeout after 30 minutes;
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Variations on k (k-partial alternative)

Benchmark k | run time | number of traces

7 2.5 24
RMQ-receiving | 4 2.3 24
#P =5 3 2 25

2 TO > 9000

11 47 120
RMQ-receiving | 5 34 120
#P =6 g 28 121

3 TO > 3000

7 60 24
Master-worker 5 57 24
#P =5 4 51 24

3 TO > 450

TO: time out after 10 minutes

= UDPOR can still be optimal with a low value of k;
or it can have redundant explorations, but the run time decreases.
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Conclusion

Efficient state-space exploration for asynchronous distributed programs

An abstract model of asynchronous distributed programs

Formal specification of the programming model in TLA+

e extraction of the independence relation, used in UDPOR,
o identification of the persistence property.

Computing extensions in polynomial time and incrementally.

The Anh Pham, Thierry Jéron, Martin Quinson, Verifying MPI applications
with SimGridMC, CORRECTNESS@SC 2017.

- The Anh Pham, Thierry Jéron, Martin Quinson, Unfolding-Based Dynamic
Partial Order Reduction of asynchronous distributed programs, FORTE 2019.
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Future work

Integrating UDPOR in the SimGrid simulator

o verifying large and more complicated MPI programs,
o comparing UDPOR with state of the art tools.

Improving the performance of UDPOR

@ Refining the independence relation: the more precise, the less Mazurkiewicz
traces exist,

o Parallelization/distribution of UDPOR.

Checking liveness property
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