
Specifying the Experimental Scenarios for Simulated Cloud
Studies

Simon Bihel

Dept. of Computer Science, ENS Rennes
simon.bihel@ens-rennes.fr

July 15, 2016

Abstract

Cloud computing is a model that makes available infrastructures, platforms and software
with a pay-as-you-go subscription. It aims to reduce the cost with a layer of visualization
that allows virtual resources to be dynamically adjusted and occupied on-demand. The
problem of using the minimal resources for the current demand/usage is still a research
challenge that spans all layers and applications. This dynamic management of clouds is
called cloud elasticity. To evaluate research work done on cloud elasticity simulation can be
used and presents some advantages. While the simulation of cloud structures are already
possible there is a lack of workload generation which is essential to evaluate works supposed
to deal with fluctuating workload. This paper presents a way of describing workloads using
tasks that are repeated over time with parameters that can be modified over time. It also
shows that this proposition fits the needs of past works.

Index terms— Simulation; Workload; Cloud elasticity

1 Introduction

Nowadays clouds are used for a lot of server-based applications. From websites to scientific
computing, it allows apps creators to avoid managing their own servers. Based a well defined
and separated business model the cloud structure is composed of layers where each layer uses
the precedent one and provides a service to the next one. The services provided by a layer is
negotiated (e.g. to determine the pricing) and levels of quality have to be met. Of course the
goal is to meet these levels of quality while minimizing the costs like the usage of the bottom
layer, energy consumption... Research is being done to tackle this problem. The domain we are
particularly interested in is the one that deals with fluctuating usage. In this cases a dynamic
management is required to minimize costs at all time.

As clouds are complex structures these works have to be evaluated. Theory is not enough
as so many problems are NP complete. One way is to use a real cloud and deploy the work that
should be tested, and then generate somewhat artificial workload for the app. Another way of
doing it would be to simulate the cloud and the workload. This kind of evaluation has often

1

mailto:simon.bihel@ens-rennes.fr


Figure 1: Cloud architecture.
http://cloud-simulation-frameworks.wikispaces.asu.edu/

been used for grids, which can be seen as the ancestor of clouds. Among the different advantages
of simulations, simplicity would come up on top.

For now it is possible to simulate clouds infrastructures but tasks are still seen as individual
and independent computing task. For elastic clouds research it is essential to generate authentic
workload and there is currently no way of manipulating naturally workloads for simulations.
During this internship we worked on writing an API for SimGrid and this paper presents the
work done.

In 2 we give a more detailed presentation of clouds and their uses. In 5 we study the work
done on simulation, workload generation and define in more details the needs for a workload
generator based on past work on cloud elasticity. 3 presents the actual contribution and its use.
4 provides an evaluation based on performances and expressiveness to make sure the contribution
fits the needs. 6 concludes on whether this contribution will help future research.

The main contributions of this internship are: (i) a categorization and generalization of
experimental needs for this domain; (ii) an implementation of an API to evaluate this catego-
rization.

2 Background

2.1 Cloud Computing

Figure 1 describes the global architecture of a cloud. It is split in different layers and each layer
has a specific role in the model of clouds. On the lowest part there is the physical resources
(e.g. data centers) with Infrastructure as a Service model (IaaS). The pricing is based of the
resources available. Then comes the layer of virtualization and performances negotiation called
Platform as a Service (PaaS). Dealing with Virtual Machines (VMs also called hosts) allows a
cleaner sharing of resources and makes it easier answering the users’ demands (e.g. deploying
more VMs). The pricing depends of multiple factors, like the Quality of Service (QoS) for the

2

http://cloud-simulation-frameworks.wikispaces.asu.edu/


quality of the network, the Service Level Agreement (SLA) for the faults rate, handling and
responsibilities... On top of that is the layer for users’ cloud tools with Software as a Service
(SaaS). These tools will allow the user that writes cloud applications to manage resources, run
their code... This architecture and organization is a real enhancement as before that users would
have to run their own application stack (e.g. managing servers, databases, etc.). In addition
to that the pay-as-you-go business models makes it even more convenient for the user to react,
increase capacities, try new features, get more control on certain layers (e.g. for optimization
purpose), etc.

Cloud applications will have fluctuating workload over time. For example with a website
server the usage will be bigger during the day or during a short period of time because of a
viral cultural event. Resources should thus be managed dynamically. Also, physical resources
can encounter problems which makes them unavailable. Because of all these constraints the
SLAs and QoS agreements are not satisfied easily and 100% availability is never a thing. On
top of that every actor wants to meet their obligations with a minimal cost. All these questions
of availability and cost are current research problems. In particular we are interested in the
works that tackle problems related to fluctuating and dynamic usage of cloud applications and
resources. The ability for a cloud infrastructure to adapt to a dynamic workload is called cloud
elasticity.

There are some generic elastic actions that are used for common problems. The act of
deploying more VMs (and thus having more resources overall) is called scaling up (and the
convert is scaling down). The act of moving VMs to a different location is called scaling out.
This is used for example when time passes by and users come from different countries/continents.

2.2 Typical Cloud Studies

Examples of research done on cloud elasticity can be a better scheduler algorithm, a caching
system to react more precisely and faster to common workload variations, extracting characteris-
tics of real-world workload to produce synthetic ones for experiments, etc. Practical evaluations
have to be done because theory is not enough to study a cloud system/software as there are too
many NP complete problems. Then there are multiple choice with running the product of the
research work on a real cloud platform, emulating one, or simulating one.

[1] has categorized works on cloud elasticity and allows to see which elements of a cloud
infrastructure (platform or application/software) are impacted. As it is for now most research
works are evaluated on real clouds. It is interesting for a distributed systems simulator to
search what is needed for simulating cloud elasticity. If it is shown that research works on cloud
elasticity can be evaluated on a simulator they would benefit from simple setups, cost reduction,
reproducible experiments, trust in results, etc. These last ones are particularly important when
comparing two algorithms, which is a good part of this domain.

In this survey proposals are categorized as follows. The scope is about what elements of a
cloud the proposals work on. It can be the management of VMs, allocation of resources... Then
there is the purpose of the proposal. Enhancing the performances (to meet the SLA), reducing
the energy consumption footprint, being available when needed and reducing the overall cost.
Another dimension is the decision making. This is what a proposal add to an existing cloud to
reach its goal. In addition to the scope there is the elastic actions performed by the proposals.
As the scope is about what elements of a cloud are concerned, the elastic action is about what
is done to them. Then there is the provider dimension that tells if there is only one provider or

3



multiple ones. At last there is the method used by the proposal to evaluate itself, through real
cloud, simulation or emulation.

The survey gives a good overview on what elements of a cloud are manipulated to achieve
cloud elasticity. At the time of writing no piece of evidence has been found to prove the opposite.

2.3 Typical Experimental Methodologies

Clouds experiments follow traditional experiments steps: what are they evaluating, setup (re-
sources, platform), scenario (what actions are done during the experiment), the results and their
analysis.

About simulators and particularly SimGrid. At first they are discrete event simulators.
They have a queue of events and jump between following events thus not doing anything when
the state of simulation remains constant. For cloud or grid simulator one of these events will
be tasks (AKA jobs, gridlets, cloudlets, etc.) that will require a certain amount of flops (or
another resource unit) to be completed. As they don’t really execute these computing tasks,
the completion of a task will be an event and if there is another task queued up it will start. If
the simulated platform can handle easily the tasks then the simulator will have no problem to
simulate this smooth execution. But if too much tasks are queued up the simulator will use a
lot of memory to keep track of every element’s state.

3 Contribution

As the proposals are on reacting to variating usage, simulators need a way to express this
fluctuating workload. We worked on elastic tasks (ETs) that model tasks that are triggered
regularly and with a usage that fluctuates over time. The work was done on SimGrid [2]. The
code is available here: https://github.com/sbihel/internship_simgrid. It was written as a plug-in
on top of the S4U interface which is intended to be the core API. Elastic tasks are objects and
are the only things the user has to manipulate.

3.1 Scientific Needs

One key notion is that we use a discrete representation of workloads. Even if workloads are
generated by a discrete amount it is easier for cloud elasticity researchers to see the workload as
a continuous function of flops. If we still decided to describe workloads as continuous execution
of tasks (or jobs...) is mainly because everything was already there in SimGrid and simulators
are event-based. Also often times when visualizing the workload along side with the number of
hosts for example, people chose a time interval and print the total number of requests for each
interval. Finally talking about taskrates instead of floprates makes it more generic as there are
more resources than just computing ones. With this representation the various elastic actions
come naturally as we explain in the following paragraphs.

An elastic task can repeat a certain task that we call microtask. The user provides a rate
of triggering per second and the flops required and then over time multiple identical microtasks
will be created and executed. An elastic task can have multiple hosts to split the workload and

4

https://github.com/sbihel/internship_simgrid


there will be a cycling shifting between hosts when creating microtasks, keeping one host for
one microtask.

For horizontal and vertical scalings, they can be performed by modifying the list of hosts of
an ET. To scale up you just have to add hosts and to scale out you have to replace this list with
different hosts. Concerning workflows of tasks you can set the output function with a function
that has access to ETs you want to trigger and just trigger them in the function, with possibly
a multiplicative effect of the workload.

A way of evaluating the usage of hosts is also needed. There are two mechanisms, one which
we will call online and another called offline. The online is a threshold. Detecting over-usage of
an host is done by using the resources requirements of tasks and their completion time required.
When the threshold is crossed a user-provided function is executed (to increase the number of
hosts for example) and the extra queue up tasks can be dealt with. The offline mechanism is
more passive as it is just a feedback to the user of the time that passed before a task has been
executed.

3.2 Technical Needs

An output function can be provided to an elastic task and this function will be executed after
each microtask that has ended. This has multiple usages. It allows the description of workflows
of tasks. As microtasks only generate computing workload, output functions can be used to
have different types of workloads like network usage, disk access (which can be simulated only
by seeing it as a particular computing resource at the moment), and basically anything possible
with SimGrid.

It is also useful to study the behavior of a system dealing with real workload. For that
an elastic task can be given a file of timestamps and it will trigger/generate a microtask for
each time stamp. Another way of simplifying the workload generation for the user is to use a
statistical law. It is also called generating law as found in the network simulator NS-3. The
timespan or delay between two triggers of the ET is determined through a common law as
Poisson or through a user provided one.

For detailed platforms description it is a core feature of SimGrid which allows to have mul-
tiple providers, topologies, hosts (understand VMs here), bandwidths, etc. Platforms are not
specific to clouds and it shows again that as clouds are an extension of grids, our work on cloud
simulations are an extension of grid simulations. In the end as we are working on cloud elasticity
we are only interested in the dynamic part of simulations not the static one.

4 Evaluation

The contribution has been evaluated on the predefined criteria. We first did an experiment for
raw performances. Then we used real traces from WorldCup 98 data access logs [3] which are
often used. After that we evaluated the expressiveness and functionalities. All experiments have
been executed on a MacBook Pro with an Intel Core i5 and 8GB of RAM.

5



(a) Raw performances CPU time. (b) Raw performances Max Memory.

Figure 2: Raw performances.

4.1 Raw performances

We evaluate raw performances to make sure that users can do significant experiments. Basically
we just want to see if the time and memory used grow linearly with the number of micro tasks
so that it can be used on a regular computer and allows multiple quick experiments.

Two different experiments were made. During first one the number of elastic tasks grows
while keeping a ratio of one ET per host and one trigger per second. The sole purpose of this
is to see the performances because a typical cloud app will use about 15 ETs. For the second
experiment it’s the number of triggering per second that grows while keeping only one ET with
200 hosts.

Experiment 1 Figure 2a shows the CPU time (user + system time) while Figure 2b shows
the maximum memory used. To get the x axis with the total number of microtasks you just
have to multiply by 100. The platform was upgraded two times, at 1,600 from 2,000 hosts to
100,000, and then at 100,000 from 100,000 to 200,000. We can see that the deployment of the
platform has nearly no impact on the time but account for about a half of the memory used if
there is as much ETs as hosts. Apart from that, time and memory grows linearly depending of
the ETs amounts and operations done.

Experiment 2 Figure 3a shows the CPU time and Figure 3b shows the maximum memory
used. To get the x axis with the total number of microtasks you just have to multiply by 100.
As we don’t touch the platform or application structure (we just touch its usage) the memory
remains constant. As seen before the time is linear with the number of microtasks and with
about the same growing speed.

What will create workload are the elastic tasks and the two way of increasing the workload
(increasing the number of microtasks) are to add more elastic tasks or increase the ratio of
triggering. For both this cases time is linear on the total number of microtasks and memory

6



(a) Raw performances CPU time. (b) Raw performances Max Memory.

Figure 3: Raw performances.

Trace (# of requests) Time Max Memory
test (1,000) 0.14s 13,484 KB
day 10 (1,522,111) 50.82s 13,876 KB
day 20 (6,326,015) 229.62 14,472 KB

Figure 4: Execution of WorlCup 98 website traces.

will increase depending on the size of the platform and app architecture while always being
moderate for an present-day computer. We did not focused on the amount of flops a microtask
has because in the end the simulator is just doing a subtraction. Though you have to be careful
to always have enough resources because then microtasks are delayed and start to stack up. At
some point the simulator will have a hard and in the end it might crash your computer because
of an excessive usage of memory.

4.2 Real Traces

Evaluating the use of traces feature has two goals. Show that it works and similarly to 4.1 we
want to show that evaluations done in papers are possible in a simulation.

For that we used real traces from WorldCup 98 data access logs [3] with a platform of 2,000
host and enough flops. Figure 4 shows the results of a few executions. Again time and memory
usage are reasonable for days of real time simulated (even though these traces are getting old
and might not be as big as nowadays requests logs). Adding more hosts changed nothing except
for the deployment of the platform as we have seen in 4.1.

7



Implemented [4] [5] [6]
Horizontal scaling YES X X X
Vertical scaling YES X X X
Threshold NO
Usage feedback NO × × ×
Workflow YES X
Traces YES X X X
Constant rates YES
Generating law NO

Figure 5: Functionnal requirements of several scientific studies.

4.3 Functionalities

As we have determined the needs for cloud elasticity works experiments, we have to evaluate
which ones are met. Apart from performances which are addressed in 4.1 and 4.2 there are left
elastic actions, workload generation features and system feedback. For various papers, Figure 5
shows which needs are met and which are not.

5 Related Work

At the moment no simulator article talks about dynamic workload. On the other hand in the
code of DCsim [7] there was an interactive task and in the code of CloudSim [8] there was an
host with dynamic workload. There are some tools to generate artificial workload like [9] and
they generally follow the following steps. They have a thread that acts like clients/users and it
makes request over time and simulate thinking times of the users.

Five papers in the survey used simulations. They used discrete event simulators (home-made
or OMNeT++), used benchmarks like SPECjEnterprise2010 to have close-to-reality hosts, and
run real traces.

6 Conclusion

During this internship we’ve studied which actions were taken by elastic clouds mechanisms.
Then we searched what was done in simulations used for evaluations and other evaluations to
come with a contribution that meets the needs of researchers. To prove that the contribution
was good enough we evaluated it on some criteria.

For future works we would need a callback for the user to set a certain response time (a
threshold) and allow him to react accordingly if this QoS level is not met. For that we would
just need to either set an alarm and turn it off once the workload has been executed and if it
is not then it stops it and execute a user’s function. That would be an online solution and an
offline one would be to just see how much time the workload took to be executed and let the
user react accordingly. Another feature that would be really useful is a generating law. For an
elastic task the date for the next triggering would be based on a statistical function. That would

8



get us even closer to simple and simplistic setup for experiments. Finally, the microtasks we
have used are computing tasks. Users can set the flops amount to 0 and add more specific tasks
in an output function but this is too hack-y. Right now in SimGrid there is only computing and
network tasks and you can also simulate disk usage by seeing it as a computing resource.

On a more personal note, this internship has allowed me to discover what a simulator was,
what a research code looked like along with its development, the life in a research environment,
and many more.

Acknowledgment

Thanks to Martin Quinson and Anne-Cécile Orgerie for guiding and advising me during this
internship. Also many thanks to Inria for hosting me.

References

[1] A. Naskos, A. Gounaris, and S. Sioutas, Cloud Elasticity: A Survey. Cham:
Springer International Publishing, 2016, pp. 151–167. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-319-29919-8_12

[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson, and F. Suter, “Versatile, scalable,
and accurate simulation of distributed applications and platforms,” Journal of Parallel
and Distributed Computing, vol. 74, no. 10, pp. 2899–2917, Jun. 2014. [Online]. Available:
http://hal.inria.fr/hal-01017319

[3] “World cup 98 data access logs,” http://ita.ee.lbl.gov/html/contrib/WorldCup.html, ac-
cessed: 2016-07-13.

[4] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini, “Dejavu: accelerating re-
source allocation in virtualized environments,” in ACM SIGARCH computer architecture
news, vol. 40, no. 1. ACM, 2012, pp. 423–436.

[5] L. R. Moore, K. Bean, and T. Ellahi, “A coordinated reactive and predictive approach to
cloud elasticity,” 2013.

[6] J. Hwang and T. Wood, “Adaptive performance-aware distributed memory caching,” in Pro-
ceedings of the 10th International Conference on Autonomic Computing (ICAC 13), 2013,
pp. 33–43.

[7] M. Tighe, G. Keller, J. Shamy, M. Bauer, and H. Lutfiyya, “Towards an improved data centre
simulation with dcsim,” in Proceedings of the 9th International Conference on Network and
Service Management (CNSM 2013). IEEE, 2013, pp. 364–372.

[8] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and Experience, vol. 41, no. 1, pp.
23–50, 2011.

9

http://dx.doi.org/10.1007/978-3-319-29919-8_12
http://dx.doi.org/10.1007/978-3-319-29919-8_12
http://hal.inria.fr/hal-01017319
http://ita.ee.lbl.gov/html/contrib/WorldCup.html


[9] P. Bodik, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson, “Characterizing,
modeling, and generating workload spikes for stateful services,” in Proceedings of the 1st
ACM symposium on Cloud computing. ACM, 2010, pp. 241–252.

10


	Introduction
	Background
	Cloud Computing
	Typical Cloud Studies
	Typical Experimental Methodologies

	Contribution
	Scientific Needs
	Technical Needs

	Evaluation
	Raw performances
	Real Traces
	Functionalities

	Related Work
	Conclusion

