
HAL Id: hal-01762540
https://hal.archives-ouvertes.fr/hal-01762540

Submitted on 10 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Co-simulation of FMUs and Distributed Applications
with SimGrid

Benjamin Camus, Anne-Cécile Orgerie, Martin Quinson

To cite this version:
Benjamin Camus, Anne-Cécile Orgerie, Martin Quinson. Co-simulation of FMUs and Distributed
Applications with SimGrid. SIGSIM-PADS ’18 : 2018 SIGSIM Principles of Advanced Discrete Sim-
ulation, May 2018, Rome, Italy. 2018, <10.1145/3200921.3200932>. <hal-01762540>

https://hal.archives-ouvertes.fr/hal-01762540
https://hal.archives-ouvertes.fr


Co-simulation of FMUs and Distributed
Applications with SimGrid

Benjamin Camus
Univ. Rennes, Inria, CNRS, IRISA

F-35000 Rennes
benjamin.camus@inria.fr

Anne-Cécile Orgerie
Univ. Rennes, Inria, CNRS, IRISA

F-35000 Rennes
anne-cecile.orgerie@irisa.fr

Martin Quinson
Univ. Rennes, Inria, CNRS, IRISA

F-35000 Rennes
martin.quinson@irisa.fr

ABSTRACT

The Functional Mock-up Interface (FMI) standard is becom-
ing an essential solution for co-simulation. In this paper,
we address a specific issue which arises in the context of
Distributed Cyber-Physical System (DCPS) co-simulation
where Functional Mock-up Units (FMU) need to interact
with distributed application models. The core of the problem
is that, in general, complex distributed application behaviors
cannot be easily and accurately captured by a modeling for-
malism but are instead directly specified using a standard
programming language. As a consequence, the model of a
distributed application is often a concurrent program. The
challenge is then to bridge the gap between this program-
matic description and the equation-based framework of FMI
in order to make FMUs interact with concurrent programs.
In this article, we show how we use the unique model of exe-
cution of the SimGrid simulation platform to tackle this issue.
The platform manages the co-evolution and the interaction
between IT models and the different concurrent processes
which compose a distributed application code. Thus, SimGrid
offers a framework to mix models and concurrent programs.
We show then how we specify an FMU as a SimGrid model
to solve the DCPS co-simulation issues. Compared to other
works of the literature, our solution is not limited to a specific
use case and benefits from the versatility and scalability of
SimGrid.

CCS CONCEPTS

• Computing methodologies → Discrete-event sim-
ulation; Simulation tools; Continuous simulation; Dis-
tributed programming languages; • Computer systems or-
ganization → Embedded and cyber-physical systems;

KEYWORDS

co-simulation, FMI, distributed system, cyber-physical sys-
tem

ACM Reference Format:

Benjamin Camus, Anne-Cécile Orgerie, and Martin Quinson. 2018.

Co-simulation of FMUs and Distributed Applications with Sim-
Grid. In SIGSIM-PADS ’18 : 2018 SIGSIM Principles of Advanced

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record
was published in SIGSIM-PADS ’18 : 2018 SIGSIM Principles of
Advanced Discrete Simulation, May 23–25, 2018, Rome, Italy, https:
//doi.org/10.1145/3200921.3200932.

Discrete Simulation, May 23–25, 2018, Rome, Italy. ACM, New

York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/

3200921.3200932

1 INTRODUCTION

Cyber-Physical Systems (CPS) can be defined as ”physi-
cal and engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing and
communication core” [27]. In this article, we focus on a spe-
cific (although common) class of CPS called Distributed-
CPS (DCPS) that are CPS equipped with a geographically
distributed computing application –i.e. an application that
consists of several concurrent processes, possibly remotely
located, and interacting through message exchanges. Such
systems include notably smart-grid [21], smart-home [16],
cloud infrastructure [12] and smart-city [32].

In most cases, a Modeling and Simulation (M&S) process
is required to design and study DCPS systems. However,
several expert skills belonging to different scientific fields
may be required. In this multidisciplinary approach, each
domain comes with its own try and tested models and tools.
The challenge is then to have a unified approach with a set of
heterogeneous M&S tools (i.e. models and simulation pieces
of software). A growing strategy to tackle this challenge is
co-simulation [17] which consists in coupling different stand-
alone M&S tools, so that they simulate the whole system
together. The advantages of co-simulation include that (1)
it enables to study the global behavior of the system, (2) it
enforces a clear separation of concerns in the M&S process
and (3) it enables to reuse and factorize efforts put into the
development and validation of M&S tools. Yet, co-simulation
raises two main challenges. First, managing interoperabil-
ity [14] consists in ensuring that simulation software codes –
that may have different API and be written in different pro-
gramming languages – can exchange usable data during the
simulation. Then, the multi-paradigm challenge [29] requires
to bridge he different modeling formalisms that are used by
the M&S tools. In the case of CPS, this often implies manag-
ing a hybrid simulation that combines discrete dynamics (for
the computing systems) and continuous dynamics (for the
physical systems) [10].

Since 2010, the Functional Mock-up Interface (FMI) stan-
dard [4] of the Modelica Association is becoming an essen-
tial solution toward co-simulation. It offers a unified frame-
work and an API to control equation-based models of multi-
physical systems (e.g. electrical, mechanical, thermal sys-
tems). The strength of the standard is that it is supported by

https://doi.org/10.1145/3200921.3200932
https://doi.org/10.1145/3200921.3200932
https://doi.org/10.1145/3200921.3200932
https://doi.org/10.1145/3200921.3200932


over 100 M&S tools1. These tools enable (1) to design a model
and export it as an FMU (Functional Mock-up Unit) –i.e. a
simulation unit compliant with FMI– (2) and/or to import
and use an FMU as a component in their modeling environ-
ment. Several frameworks have been proposed to perform
co-simulation of FMUs [3, 11, 15], and to integrate continuous
FMUs into discrete event formalism environments [7, 13, 24].

In this paper, we address another issue which arises in the
context of DCPS co-simulation where FMU components need
to interact with distributed application models. The core of
the problem is that, in general, complex distributed applica-
tion behaviors cannot be easily and accurately captured by
a modeling formalism (e.g. finite automata) [9]. Instead, the
most common approach consists in directly specifying a dis-
tributed application using a standard programming language.
As a consequence, the model of a distributed application
corresponds often a concurrent program which runs on a
single computer. The challenge is then to bridge the gap be-
tween this programmatic description and the equation-based
framework of FMI in order to make FMUs interact with
concurrent programs. Considering the diversity of DCPS pre-
viously cited, an ad-hoc solution should be avoided in favor
of a more versatile approach.

In this article, we show how we use the unique execution
model of the SimGrid M&S platform [9] –and more precisely
its concept of separated entities’ virtualization– to tackle this
issue. SimGrid is a versatile platform for the simulation of
distributed systems which embeds a set of rigorously validated
IT models (e.g. CPU, IP network, disk, energy consumption).
The platform manages the co-evolution and the interaction
between these models and the different concurrent processes
which compose a distributed application code. Thus, SimGrid
offers a framework to mix models and concurrent programs.
Our contribution is then to specify an FMU as a SimGrid
model to ease the simulation of DCPS. Compared to other
works in the literature [6, 16, 21, 32], our solution is not
limited to a specific use case and benefits from the versatility
of SimGrid and its validated IT models.

The rest of the article is organized as follow. In Section 2,
we describe for illustration purpose the simple yet repre-
sentative use-case of a chiller failure in a data-center. This
use-case illustrates all along the article the challenges of
DCPS simulation and our contributions. Section 3 presents
the FMI standard and the SimGrid platform. Section 4 de-
tails how we integrate FMU into the SimGrid framework.
Finally, Section 5 shows how we validate our proposition with
the co-simulation of our use-case.

2 REPRESENTATIVE USE CASE

For illustration purpose, we consider the simulation of a
failure in the chiller of a data-center (DC) called DC1. We
consider that the failure occurs when the chiller demand
(which depends on the heat dissipation induced by compu-
tations) becomes too high. After the failure occurrence, a

1according to http://fmi-standard.org

Figure 1: Physical model of the data-center.

safety mechanism shuts down the power supply if the tem-
perature becomes too high to preserve machines. We want
to simulate the computing processes which cause and handle
the failure. This requires to model both the distributed ap-
plication deployed in the DC, and the physical processes of
heat transfers.

This use case is representative because it implies:

(1) coupling different M&S tools (OpenModelica and Sim-
Grid),

(2) which use different modeling paradigms (algebraic/dif-
ferential/discrete equations and concurrent programs),

(3) with discrete (distributed application execution) and
continuous (the temperature evolution) dynamics in
interaction (the distributed application changes the
computers’ heat dissipation, and the room tempera-
ture triggers power shutdown that kills the running
programs).

In the following we describe the different models, their
co-simulation and the faced challenges.

2.1 Physical system of the DC

To describe the nominal behavior of the physical systems,
shown in Figure 1, we use a simplified version of the model
of [12]. We consider a Computer Room Air Handler (CRAH)
that sends an airflow through the computing units (called
Physical Machines – PM) racks to cool the DC. Thanks to the
chiller, the inlet air temperature is always equal to the same
temperature 𝑇𝑅𝑖𝑛(𝑡). As the air passes through the rack, its
temperature increases because of the heat dissipation of the
DC 𝑄𝐷𝐶(𝑡). This quantity is defined as follows:

𝑄𝐷𝐶(𝑡) = 𝑃𝑙𝑜𝑎𝑑𝐷𝐶 (𝑡) +𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐷𝐶 (𝑡) (1)

𝑃𝑙𝑜𝑎𝑑𝐷𝐶 (𝑡) is an input of the model which corresponds
to the power consumption and heat dissipation of the PMs.
𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐷𝐶(𝑡) corresponds to the heat dissipation of the other
devices of the DC (e.g. lighting, Power Distribution Unit)
and is equal to:

𝑄𝑜𝑡ℎ𝑒𝑟𝑠𝐷𝐶 (𝑡) = 𝛼× 𝑃𝑙𝑜𝑎𝑑𝐷𝐶 (𝑡) (2)



Considering the mass of the air in the room 𝑚𝑎𝑖𝑟 and its
specific heat 𝐶𝑝, the outlet air temperature 𝑇𝑅𝑜𝑢𝑡(𝑡) corre-
sponds to:

𝑇𝑅𝑜𝑢𝑡(𝑡) = 𝑇𝑅𝑖𝑛 +
𝑄𝐷𝐶(𝑡)

𝑚𝑎𝑖𝑟 × 𝐶𝑝
(3)

The cooling demand of the chiller 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔(𝑡) is defined as
follows:

𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔(𝑡) = 𝑄𝐷𝐶(𝑡)/𝜂𝑐𝑐 (4)

With 𝜂𝑐𝑐, the inefficiency in the coil of the CRAH.
When the chiller stops working, the inlet and outlet air

temperatures become equal and they start increasing accord-
ing to the following equation:

𝑑𝑇𝑅𝑜𝑢𝑡

𝑑𝑡
=

𝑄𝐷𝐶(𝑡)

𝑚𝑎𝑖𝑟 × 𝐶𝑝
(5)

A boolean discrete variable 𝑝𝑜𝑤𝑒𝑟 determines the status
of the power supply in DC1. It is initially set to 1 meaning
that power supply is working. When the temperature reaches
a critical threshold 𝑡𝑒𝑚𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the power supply is shut
down –i.e. 𝑝𝑜𝑤𝑒𝑟 = 0. The following discrete equation models
the behavior of the safety mechanism:

when 𝑇𝑅𝑜𝑢𝑡(𝑡) >= 𝑡𝑒𝑚𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 𝑝𝑜𝑤𝑒𝑟 = 0 (6)

The status of the chiller is modeled by a boolean variable
𝑐ℎ𝑖𝑙𝑙𝑒𝑟. The chiller is initially in state 1, meaning that it
is working. When the load of the chiller reaches a critical
threshold 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑜𝑎𝑑, the failure occurs and the status of
the chiller switches to 0, meaning that it stops working. This
is modeled by the following discrete equation:

when 𝑄𝑐𝑜𝑜𝑙𝑖𝑛𝑔(𝑡) >= 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑜𝑎𝑑 then 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 = 0 (7)

The expected behavior of the system is that when the
chiller is working, the inlet temperature remains constant
and the load of the chiller varies with the power consumption
of the computing units. When that computing load is too
high, the chiller load will eventually reach the critical thresh-
old, inducing a chiller failure. The room temperature will then
increase with a rate proportional to the PMs’ power consump-
tion. Once the temperature reaches the critical threshold, the
power supply is shut down, stopping all computing units.

2.2 Distributed application of the DC

We consider a scheduling algorithm which sequentially de-
ploys Virtual Machines (VM) on the PM of the data center
DC1, while another data center DC2 is used as a backup
solution. The whole IT system is shown in Figure 2.

Each VM is a computer system emulation which requires
a given amount of the computing resources (i.e. CPU and
memory) of its PM to execute. When creating a VM, the
user specifies its size –i.e the maximum amount of computing
resources it can use on the PM. Thus, several VMs can run
on a single PM with sufficient resources. We consider for the
sake of simplicity that a VM always runs at full capacity

Figure 2: IT model of the data-centers.

Figure 3: Consumption model of the PM.

when deployed –i.e. 100% of the PM resources required by
the VM are used.

The scheduler behavior corresponds to a simple first-fit
algorithm (described by Algorithm 1). We consider that it
takes 10 seconds to deploy a VM on a PM. PMs consume
0W when turned off. When turned on, we use the power
consumption model of [20] which is based on real watt-meter
measurements and consider a PM to consumes 97W when
idle, 128W when using 1 core, and 220W when working at
full capacity. As shown in Figure 3, the power consumption
of a PM depends linearly on its CPU usage between 1 core
used and max [18]. As a consequence, with Algorithm 1 the
power consumption of DC1 will increase with the number of
deployed VMs.

Algorithm 1: Scheduling algorithm to deploy VM in
DC1

while DC1 is not full do
Let pmList be the list of PM of DC1.
for pm in pmList do

if pm as enough cores available to run a VM then
deploy VM on pm
break

end if
end for

end while



(a) Global system studied. (b) Data exchanges between SimGrid and OpenModelica

(OM)

Figure 4: Co-simulation of the chiller failure.

Algorithm 2: Emergency algorithm managing chiller
failure in DC1

wait for emergency message
shut down unused PM in DC1
Let deployedVM be the list of all VMs deployed on DC1.
for vm in deployedVM do

Let pm0 be the PM hosting vm.
Let pmList2 be the list of PMs of DC2.
for pm1 in pmList2 do

if pm1 as enough cores available to run vm then
migrate vm on pm1
if pm0 is empty then

shut down pm0
end if
break

end if
end for

end for

A probe monitors the chiller status. When a failure is de-
tected, the probe sends a message through an IP network to
an emergency manager deployed in another DC called DC2.
Upon reception, the emergency manager kills the scheduling
algorithm to stop the deployment of VMs in DC1. It also
immediately shuts down unused PMs to limit the room tem-
perature. Then, the emergency manager relocate the VMs
to DC2, to save as many as possible of them before the
power supply shutdown. We perform live migrations of VM
to ensure a continuity of service. With a live migration, the
memory of a VM is progressively sent to the destination PM
while the VM is running on the source PM. Once the transfer
is done, the VM is shut down on the source PM and restarted
on the destination PM. The time to migrate a VM strongly
depends on the memory transfer time [1]. The manager shuts
down the PM once all its VMs are migrated. The behavior
of the emergency manager is described by Algorithm 2.

The distributed application is then composed of several
processes, namely the scheduling algorithm, the emergency
manager processes, all the VM deployed on the PM, and the

probe monitoring the chiller. We implement this application
in SimGrid, and rely on its IT models of IP network, CPU
usage and energy consumption for the simulation.

2.3 Co-simulation challenges

To study the considered use-case, we employ dedicated sim-
ulation tools: OpenModelica for the equation-based chiller
failure model, and SimGrid for the distributed application
and its power consumption over the DC. We need to couple
our OpenModelica and SimGrid models as shown in Fig-
ure 4. The PM power consumption computed by SimGrid
is used as input (i.e. 𝑃𝑙𝑜𝑎𝑑𝐷𝐶 (𝑡)) of the physical models of
OpenModelica. On the other side, any change to the model’s
discrete variables (i.e. 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 and 𝑝𝑜𝑤𝑒𝑟) triggers events in
the distributed application.

This coupling rises the following issues:

∙ How to manage interoperability between OpenModelica
and SimGrid ?

∙ How to make the distributed application processes
co-evolve with the physical system models ?

∙ How to manage interactions between the computing
processes and the physical models ?

∙ How to detect discrete state changes in the continu-
ous system evolution, and trigger the induced discrete
events in the distributed application ?

In the following, we detail the FMI standard and the
SimGrid platform that we want to combine to address these
issues.

3 CONTEXT

3.1 The FMI standard

FMI [4] aims at proposing a generic way to export, import and
control equation-based models and their solvers. Using FMI,
a model which may be composed of a mixture of differential,
algebraic and discrete-time equations, can be exported under
a standard format as an FMU. This FMU is a black-box (thus
protecting the intellectual property of the model) with input
and output ports which correspond to the input and output
variables of the model. Each FMU can then be controlled



Figure 5: FMI for model-exchange.

Figure 6: FMI for co-simulation.

using a standardized API, regardless the M&S tool used to
generate it. In this way, FMI addresses the interoperability
issue between different M&S tools.

FMI provides two ways of exporting and importing a model:
FMI for co-simulation (FMI-CS) and FMI for model-exchange
(FMI-ME). With FMI-ME (depicted in Figure 5), only the
model (i.e. the equations) is exported. Thus an FMU-ME
requires a numerical solver in order to be simulated. As a
consequence, this export mode is mainly interesting in the
context of model exchanges between equation-based tools,
which is out of the scope of this article.

With FMI-CS (depicted in Figure 6), a model is exported
with a passive solver that can be controlled by any M&S
environment importing this FMU-CS. Because they do not
require any external solver, FMU-CS can be integrated into
a discrete M&S environments. This fits particularly well into
our context of DCPS simulation. In the following, we detail
this FMI-CS standard and its limits to make our proposition
fully understandable for non-specialist.

The co-evolution of an FMU-CS with its environment is
based on the concept of communication points. These commu-
nication points, which have to be set by the environment of
the FMU, correspond to points in the simulated time where
(1) the FMU simulation must be stopped, and (2) exchanges
of data can be performed between the FMUs and its environ-
ment. Between two communication points, an FMU evolves
independently of its environment.

From a software perspective, the FMU interface is com-
posed of a set of C functions, and an XML file. The C func-
tions control the FMU, whereas the XML file describes the
FMU capacities and interface. More precisely, the XML file
describes names, types (i.e. Real/Integer/Boolean/String),
variability (constant/discrete/continuous) and causality (in-
put/output/parameter) of the variables. The C interface
enables to control an FMU-CS with the following opera-
tions [22]:

∙ a doStep integrates the FMU until a given communi-
cation point. Note that, an FMU may enforce fixed
communication step-size. This limitation is then spec-
ified in the FMU description file. In this case, if the
step-size required by doStep is not compatible with
the fixed step-size, the method will fail to execute.

∙ a getOutput gets the current outputs of the FMU.
∙ a setInput sets the inputs of the FMU. In case of
instantaneous dependencies between inputs and out-
puts, this method may change the outputs of the FMU.
Depending on the FMU, a doStep of duration 0 may
also be required to update outputs.

∙ getState and setState are optional operations used to
export/import the model state. They enable to perform
a rollback during the simulation of the model.

In its current state, FMI-CS is not yet fully compliant
with hybrid simulation requirements [5, 11, 28]. In particular,
an FMU only supports continuous and piecewise continuous
input/output time signals. As a consequence, an FMU-CS
cannot produce discrete event signals which are essential
to communicate with event-based models. Also, the date of
the next discrete event cannot be obtained from a FMU-CS.
Although the scheduled 2.1 extension of the standard might
solve this issue2, we need to adapt to this constraint in the
meantime.

In the model of our use-case, we use FMI-CS to export
our thermal system model as an FMU using the dedicated
features of OpenModelica. Thus, we obtain a simulation unit
(shown in Figure 7) which is ready to interact and co-evolve
with other models in different M&S environments. However,
due to the limitation of the standard, the exact dates of
the power supply shutdown and the chiller failure cannot be
known in advance from the FMU. Also, the FMU is not able
to trigger an event at these moments to notify the distributed
application.

3.2 The SimGrid Platform

SimGrid [9] is a versatile platform dedicated to the scalable
simulation of distributed applications and platforms. It can
notably be used to study cluster, grid, peer-to-peer, Cloud,
wide/local-area networks. It is grounded on sound simulation
models of CPUs [30], TCP/IP networks [31], VMs [19], and
energy consumption [18] which are theoretically sound and
experimentally assessed. Using these models, SimGrid accu-
rately simulates the resources usage (i.e. CPU and bandwidth
sharing), the execution time and the energy consumption

2according to http://fmi-standard.org/downloads/ as of 24. Jan 2018.



Figure 7: Block diagram view of the thermal system
model of our use-case, exported as an FMU.

Figure 8: Example of simulation execution in Sim-
Grid (according to the real time).

of a distributed application code. Thus, platform enables to
simulate the behavior of a distributed system on a single-
computer. SimGrid has grounded over 200 scientific works.
SimGrid is implemented in C/C++ and available in open
source at http://simgrid.org.

The SimGrid models are used to determine:

(1) how much computing resources are allocated to each
action of the distributed application, e.g. how much
bandwidth is used by each data transfer.

(2) when each action ends, e.g. when do the data transfers
end.

The SimGrid models are based on the discrete event para-
digm, where an internal event corresponds to the completion
of an action. Each model can be controlled using two opera-
tions:

∙ updateModel() updates the model to the current sim-
ulated time.

∙ nextEvent() get the date of the next internal event of
the model.

SimGrid compartmentalizes the execution of the distributed
processes to strictly manage their co-evolution and interac-
tions with the models. This design, where each interaction
of the processes with their environment is strictly mediated
by a kernel is highly inspired from the classical design of an
Operating System. To that extend, SimGrid gives a dedi-
cated execution context to each process of the distributed
application. These execution contexts can be implemented
either with classical threads or with lighter continuations [2]
mechanisms.

Figure 9: Simulation architecture of SimGrid.

This architecture, depicted in Figures 8 and 9, was first
introduced to enable the parallel execution of the user pro-
cesses [26] without relying of fine-grain locking of the simula-
tor internals. It also enables the formal verification of legacy
distributed applications, since their interactions with their
environment are strictly controlled by the framework when
they run within the simulator [25].

During a typical SimGrid simulation, all user processes are
conceptually executed in parallel (in practice, parallelism can
be disabled on user request). A simulation kernel, which
has its own execution context, is in charge of:

(1) managing the simulation state (e.g. the simulation
clock),

(2) coordinating the processes and models’ executions, and
(3) mediating interactions between user code and models.

Some process actions can modify the state of a model. In
our use case, examples of such actions include: starting a VM,
sending data through the network, using CPU, migrating a
VM and turning off a PM. When a process wants to perform
an action that modifies the state of a model, it needs to
use the simcall mechanism of the kernel. This mechanism is
the equivalent of a system call in a classical OS. It causes
the process to be blocked until the requested action ends in
the simulation. As a consequence (1) the simulation clock
may change between the time when a process is blocked
and resumed by a simcall, and (2) every process computa-
tion that occurs between two simcalls are considered to be
instantaneous in the simulated time.

When all processes are blocked at given simulation time,
a context switch is performed to the kernel in order to move
forward simulation time. The kernel first sequentially (and in
a deterministic order) changes the models’ states according
to the requests made by the processes. Then, following a

http://simgrid.org


Figure 10: Integration of FMU into the simulation
architecture of SimGrid.

discrete event logic, it synchronizes the models and processes
executions by:

(1) calling the nextEvent method of each model in order
to determine the time of the earliest internal event;

(2) updating the simulation clock and sequentially calling
the updateModel method of all the models in order to
move forward the simulation to the earliest internal
event time;

(3) eventually resuming the processes whose simcalls ends.
This step cause a context switch to the processes.

The Figure 8 summarizes this simulation behavior. Thanks
to this unique model of execution, SimGrid can mix simu-
lation models with distributed application code in order to
perform scalable and deterministic simulation. We propose
to take advantage of this feature in our context of DCPS
simulation, by embedding each FMU-CS into a dedicated
SimGrid model. In the following, we detail this proposition.

4 CONTRIBUTION

As shown in Figure 10, our approach is to import FMU-
CS into a dedicated model which is added in the SimGrid
simulation kernel. The kernel can then control the FMU like
any other model. Note that with this mechanism, several
FMUs can be imported in SimGrid, each of them being
associated with a dedicated model. All the FMUs can then
interact separately with the distributed application processes.

In traditional discrete event and multi-physical equation-
based tools, such as an FMU co-simulation master, or Open-
Modelica, the input/output connections between an FMU

and its environment are determined a priori at the model
design time. Moreover, these links are in general hardwired
and cannot be changed at run-time. In order to integrate
FMU-CS in the SimGrid environment, we use a more flexible
interaction mechanism which can handle the complexity of
concurrent program behavior. Indeed, any of the computing
processes is likely to interact with an FMU. Moreover, some
of these processes may be created or killed during the simula-
tion. As a consequence, with some complex concurrent code,
it is very difficult –if not impossible– to determine a priori
the interactions between each process and an FMU.

In the following, we detail how the FMU execution is
coordinated with the distributed application (Section 4.1),
how FMUs and distributed programs interact (Section 4.2),
and how we overcome the FMI-CS limitation in terms of
hybrid simulation (Section 4.3).

We rely on FMI++ [33] to implement our solution. This
library provides high-level functionalities to load and ma-
nipulate FMUs in order to ease their integration in discrete
simulation tools.

4.1 Coordination of FMU and distributed
application

When the updateModel method of this SimGrid model is
called by the kernel, it performs a doStep in order to move
forward the FMU to the desired simulation time. This mech-
anism enables then to coordinate the simulations of the FMU
and the distributed application.

In order to simulate our use-case, we can then import the
FMU of our thermal system model in SimGrid. The thermal
system will then co-evolve with the distributed application
running in the data-centers.

Note that, as the SimGrid kernel performs discrete event
simulations, our synchronization mechanism requires the
FMU to support variable communication step-sizes. To handle
an FMU that does not comply with this constraint, we can use
the dedicated FixedStepSizeFMU wrapper of FMI++. This
wrapper, implements a fixed step-size simulation algorithm
that positions the FMU as close as possible to the required
communication point. This may induce inaccurate results as
the model synchronization is not perfectly done. However, this
inaccuracy is inherent to fixed-step size simulation models.

4.2 Continuous input and output
interactions

To enable flexible interactions between the FMUs and the
distributed applications, we make all the input and output
ports of all the FMUs imported in SimGrid accessible to
all the running processes. We extend the SimGrid API with
two methods that can be used by the processes in order to
interact with the FMUs:

∙ getReal/Integer/Boolean/String(string name) re-
turns the current value of the variable name.

∙ setReal/Integer/Boolean/String(string name,

double/int/bool/string value, bool doStep)



sets the value of the variable name to value. If needed,
the doStep parameter can be set to true in order to
perform a doStep of duration 0 to update the FMU
outputs. As it modifies the state of the FMU –which
is now considered as a SimGrid model– this function
triggers a SimGrid simcall. The inputs of the FMU is
then set within the kernel context of SimGrid in order
to maintain a deterministic simulation execution. This
simcall ends at the same simulation time, making the
set operations instantaneous from the simulation point
of view.

In our use-case, we use these methods to update the PM
power consumption in the FMU with the value computed by
SimGrid. The Algorithms 3 and 4 show how we easily extends
the Algorithms 1 and 2 for this purpose. We also design a
simple sampling process behavior (shown in Algorithm 5) to
observe the continuous state trajectory of the FMU (i.e. the
evolution of the temperature in DC1) during the simulation.

Algorithm 3: Extension (in red) of the scheduling algo-
rithm in order to interact with the FMU.

while DC1 is not full do
Let pmList be the list of PM of DC1.
for pm in pmList do

if pm as enough cores available to run a VM then
deploy VM on pm
Let 𝑝 be the current power consumption of DC1.
setReal("𝑃𝑙𝑜𝑎𝑑𝐷𝐶",𝑝)
break

end if
end for

end while

4.3 discrete event interaction

In order to comply with the requirements of hybrid modeling,
we have to overcome the limitations of FMI-CS in terms
of discrete event behavior (introduced in Section 3.1). We
design an event triggering mechanism which emulates discrete
event output signals from the continuous output of the FMU.
Thanks to this mechanism, discrete changes in the FMU (e.g.
the chiller failure and power supply shutdown in our use case)
can then be notified to the distributed application.

We extend the SimGrid API with the following method:

registerEvent(bool (*condition)(vector<string>),

void (*callback)(vector<string>),

vector<std::string> parameters)

This method registers an event notification request to
the SimGrid model that embeds the FMU. This mechanism
enables flexible interactions between the FMU and the dis-
tributed application since any process of the distributed
application can use it at any simulated time. Moreover, each
process is free to specify in which conditions the event occurs
by specifying the condition function. Each process also sets

Algorithm 4: Extension (in red) of the emergency algo-
rithm to interact with the FMU.

wait for emergency message
shutdown unused PM in DC1
Let 𝑝 be the current power consumption of DC1.
setReal("𝑃𝑙𝑜𝑎𝑑𝐷𝐶",𝑝)
Let deployedVM be the list of all VM deployed on DC1.
for vm in deployedVM do

Let pm0 be the PM of vm.
Let pmList be the list of PM of DC2.
for pm1 in pmList2 do

if pm1 as enough cores available to run vm then
migrate vm on pm1
if pm0 is empty then

shutdown pm0
end if
Update 𝑝.
setReal("𝑃𝑙𝑜𝑎𝑑𝐷𝐶",𝑝)
break

end if
end for

end for

Algorithm 5: sampling algorithm which monitors the
temperature evolution.

while true do
double temp = getReal("𝑇𝑅𝑜𝑢𝑡")

save the value of temp in output log
wait x seconds

end while

what is its impact on the distributed application by spec-
ifying the callback method. For instance, this effect can
range from simple logging activity to process kill, creation,
resuming or suspending. When executed, both condition

and callback receive parameters as input.
Each time registerEvent is called by a process, an instan-

taneous simcall, in terms of simulated time, is triggered to
ensure a deterministic simulation, and the event notification
request is stored in the SimGrid model which contains the
FMU. The event conditions are evaluated immediately and
after each modification of the FMU state –i.e. after each call
to setReal/Integer/Boolean/String and updateModel. When
the condition is satisfied, the associated callback function
is executed to propagate the event effect in the distributed
application. The event notification request is then deleted
(but note that the callback function is free to register another
similar request).

When at least one event notification request is pending,
we use a classical lookahead exploration strategy in order
to accurately determine the occurrence time of events. This
strategy, shown in Figure 11, consists in scheduling internal
events at regular intervals (using the nextEvent method
of the SimGrid model) in order to frequently check if an



Figure 11: Example of event detection with the looka-
head strategy.

Figure 12: Example of undetected event occurrence
with the lookahead strategy.

event has occur in the FMU. The fixed delay between these
intervals corresponds to the lookahead of the model. It is
determined by the user at the FMU import time. Setting the
lookahead is about finding a trade-off between accuracy and
performance, as both determine the event detection precision,
and the frequency of event checks. A known limitation of
this strategy is that it may miss some event occurrences if
the lookahead is too large (as shown in Figure 12). We could
have used other event detection algorithms that may be more
accurate and efficient (like bisectional search, regular falsi
or the Illinois algorithm [23]). However, these strategies are
less generic as they are only compliant with FMUs which
implement the optional rollback features [8]. As soon as there
are no pending event notification requests, the SimGrid model
containing the FMU stops scheduling internal events.

Getting back to our use-case, we can use this mechanism
to handle the events related to the chiller failure and the
power supply shutdown. The behavior of the probe that waits
for the chiller failure and sends a message to the emergency
manager is formalized by the Algorithm 6. This algorithm
uses a zeroValue condition function that returns true when
the 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 output variable of the FMU is equal to 0, and a
wakeMeUp callback function that simply resumes the probe
process execution. In order to manage the power supply
shutdown, we register an event notification at the beginning
of the simulation with a condition function that detects when
𝑝𝑜𝑤𝑒𝑟 = 0, and a callback function that creates the PM
shutdown process.

5 EVALUATION

To evaluate our solution, we perform the co-simulation of our
use-case and study the simulation results. In the following,
we detail how we validate our solution. We first describes

Algorithm 6: algorithm of the probe detecting chiller
failure.

registerEvent(zeroValue,wakeMeUp,nullptr)

suspend the execution of this process
send the message to the emergency manager

our experimental scenario in Table 1. Then, we detail and
interpret the simulation results in Section 5.1. Finally, we
detail our validation process in Section 5.2.

5.1 Results interpretation

Figure 13 shows the simulation results of our co-simulation
with SimGrid: the power consumption of the system, the
temperature of DC1, the status of the chiller, and the power
supply over time. We can see that from simulation time 0
to time 260, the power consumption of DC1 (computed by
SimGrid) and the chiller load (computed by the FMU-CS)
increase progressively. This is due to the scheduling algorithm
(Algorithm 1) that is deploying VM every 10 seconds.

At time 260, the chiller load exceeds the critical load of
23,000 W and the chiller stops functioning. As a consequence,
the chiller load falls immediately down to 0, the temperature
starts increasing, and the probe sends a message to notify
this issue. After a transmission delay simulated by the TCP
model of SimGrid, this message is received at time 260.263
by the emergency manager (Algorithm 2) which immediately
shutdowns the unused PM in DC1. As a consequence, the
power consumption of DC1 decreases suddenly from 17,310
W to 9,668.8 W.

Then, from time 260.263 to time 846.614, the emergency
manager migrates VMs from DC1 to DC2. This causes an
increase of the power consumption of DC2 and a decrease
of the power consumption of DC1. Note that the power
consumption of DC1 changes at a faster rate than the power
consumption of DC2. This is due to the PM shutdowns
performed by the emergency manager in DC1. We can see
that, by transferring the computation load from DC1 to DC2,
the emergency manager progressively limits the temperature
increase in DC1. However this is not sufficient and, at time
846.614, the temperature reaches the critical threshold of
40°C and the power supply of DC1 is shut down. This event
is successfully propagated to SimGrid as all the PMs are
immediately turned off and the total power consumption
rapidly reaches 0. These results are in complete accordance
with the expected behavior.

5.2 Validation

As shown in Figure 14, to validate this co-simulation, we
compare these results with the trajectory generated by a
monolithic simulation performed with OpenModelica. As
it is not possible to model and simulate our IT system in
Modelica, we use the power consumption traces generated
by SimGrid as input of OpenModelica. We found similar
simulation results. Because it immediately depends on the
PM power consumption, the chiller failure occurs at the exact



Domain Parameters Value

Physical system model

inlet air temperature 𝑇𝑅𝑖𝑛 24 °C
mass of the air in the room 𝑚𝑎𝑖𝑟 294 kg

specific heat 1.006 kJ/kg
cooling inefficiency 0.9

chiller critical load 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝐿𝑜𝑎𝑑 23 kW
temperature threshold 𝑡𝑒𝑚𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 40 °C

ratio of the other devices in the total DC heat dissipation 0.2

IT model

number of PM in each DC 129
PM core size 12

PM maximum power consumption 220 W
PM power consumption when using 1 core 128 W

PM idle power consumption 97 W
PM off power consumption 0 W

VM RAM size 3 Go
VM core size 6

VM deployment time (i.e. delay between two deployments) 10 sec

Co-simulation lookahead value (i.e. event detection precision) 0.01 sec

Table 1: Experimental conditions.

Figure 13: Simulation results of the use-case.

same simulation time. The power shutdown occurs less than
0.001 second earlier in the OpenModelica simulation. This is
accordance with our expectations because it corresponds to

the event detection precision (i.e. the lookahead) that we set
in our co-simulation.

In order to test our capacity to handle several FMUs, we
split our physical model into two FMUs. The first FMU
embeds the equation 7 and corresponds to the chiller failure
model. The second FMU contains the other equations of the
physical model. We modify the Algorithm 3 and 4 to update
the two FMU inputs. The event notification request related
to the chiller failure (resp. power supply shutdown) is now
registered in the first (resp. second) FMU. The co-simulation
results obtained are again similar to the monolithic simulation.
Therefore, these experiments demonstrates the validity of
our solution.

6 CONCLUSION

In this article, we detailed how FMU-CS are integrated into
the SimGrid platform in order to manage the co-simulation of
multi-physical models and concurrent programs. Our contri-
bution consists in embedding FMUs into a dedicated SimGrid
model. We proposed an extension of the SimGrid API that
enables flexible interactions between FMU and concurrent
program. In particular, we defined a dynamic generation
mechanism of discrete event signals that overcomes the lim-
itations of FMU in terms of hybrid simulation. We experi-
mentally validated our solution by demonstrating that our
co-simulation of a chiller failure in a data-center gives similar
results when compared to a monolithic simulation.

From a software perspective, it is important to note that
our solution does not require any extension of the SimGrid
simulation kernel. It corresponds then to a SimGrid plug-in.
All our code is open-source and it will be soon integrated in
the SimGrid distribution.

Our solution has several advantages:



Figure 14: Validation process.

∙ versatility: we can import models from the numerous
multi-physical M&S tools that support the FMI-CS
standard. Also, we benefit from the validated IT models
of SimGrid and its diversity of application contexts.
Thus, FMU-CS can now interact with Grids, Clouds,
High Performance Computing infrastructures or Peer-
to-Peer systems.

∙ reproducibility: we benefit from the OS-based sim-
ulation architecture of SimGrid that ensures deter-
ministic co-simulation between FMUs and concurrent
programs.

∙ scalability: thanks to the optimized model of execu-
tion of SimGrid, FMU-CS can simultaneously interact
with a very large amount a concurrent processes.

A limit of our approach is that we rely on a lookahead algo-
rithm to detect event occurrences in the FMU. This strategy
may be less efficient and accurate than other algorithms of the
literature but it is more generic in term of FMU integration.
Also, we are able to import simultaneously several FMUs into
SimGrid and make them interact with concurrent processes.
However, the potential interactions between these FMU have
to be handled in an ad-hoc way. Considering the complexity
of FMU interactions which often require numerical methods
(e.g. algebraic loop resolution, numerical error estimation) a
more generic and automatic solution is required.

In future work, we plan to extend our proposition in order
to integrate tools that support the FMU-ME standard. We
also plan to implement other event-detection algorithms to

increase the accuracy and performance of our co-simulations.
As soon as they will be available, we want to take advantage
of the new FMI 2.1 extensions for hybrid simulation. Finally,
we plan to use this work in order to simulate green computing
systems where Smart-Grid models interact with distributed
cloud infrastructures.

REFERENCES
[1] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper.

2010. Predicting the Performance of Virtual Machine Migration.
In 2010 IEEE International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems.
IEEE, Miami Beach, FL, USA, 37–46. https://doi.org/10.1109/
MASCOTS.2010.13

[2] A. W. Appel and T. Jim. 1989. Continuation-passing, Closure-
passing Style. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages
(POPL ’89). ACM, New York, NY, USA, 293–302. https:
//doi.org/10.1145/75277.75303

[3] Jens Bastian, Christop Clauß, Susann Wolf, and Peter Schneider.
2011. Master for Co-Simulation Using FMI. In Proceedings of
the 8th International Modelica Conference. Linköping University
Electronic Press; Linköpings universitet, Dresden, Germany, 115–
120.

[4] Torsten Blochwitz, Martin Otter, Johan Åkesson, et al. 2012.
Functional mockup interface 2.0: The standard for tool indepen-
dent exchange of simulation models. In Proc. 9th International
Modelica Conference. The Modelica Association, Munich, Ger-
many, 173–184.

[5] David Broman, Christopher Brooks, Lev Greenberg, Edward A.
Lee, Michael Masin, Stavros Tripakis, and Michael Wetter. 2013.
Determinate Composition of FMUs for Co-simulation. In Pro-
ceedings of the Eleventh ACM International Conference on
Embedded Software. IEEE Press, Piscataway, NJ, USA.

[6] Benjamin Camus, Fanny Dufossé, and Anne-Cécile Orgerie. 2017.
A Stochastic Approach for Optimizing Green Energy Consumption

https://doi.org/10.1109/MASCOTS.2010.13
https://doi.org/10.1109/MASCOTS.2010.13
https://doi.org/10.1145/75277.75303
https://doi.org/10.1145/75277.75303


in Distributed Clouds. In SMARTGREENS 2017 - Proceedings
of the 6th International Conference on Smart Cities and Green
ICT Systems. SciTePress, Porto, Portugal, 47–59. https://doi.
org/10.5220/0006306500470059

[7] Benjamin Camus, Virginie Galtier, Mathieu Caujolle, Vincent
Chevrier, Julien Vaubourg, Laurent Ciarletta, and Christine Bour-
jot. 2016. Hybrid Co-simulation of FMUs using DEV&DESS in
MECSYCO. In Proceedings of the Symposium on Theory of
Modeling & Simulation - DEVS Integrative M&S Symposium.
Society for Modeling & Simulation International (SCS), Pasadena,
CA, USA.

[8] Benjamin Camus, Thomas Paris, Julien Vaubourg, Yannick Presse,
Christine Bourjot, Laurent Ciarletta, and Vincent Chevrier.
2018. Co-simulation of cyber-physical systems using a DEVS
wrapping strategy in the MECSYCO middleware. SIMULA-
TION 0, 0 (2018), 0037549717749014. https://doi.org/10.1177/
0037549717749014

[9] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quin-
son, and Frédéric Suter. 2014. Versatile, Scalable, and Accu-
rate Simulation of Distributed Applications and Platforms. J.
Parallel and Distrib. Comput. 74, 10 (June 2014), 2899–2917.
http://hal.inria.fr/hal-01017319

[10] Francois E Cellier. 1979. Combined continuous/discrete system
simulation languages–usefulness, experiences and future develop-
ment. Methodology in systems modelling and simulation 9, 1
(1979), 201–220.

[11] Fabio Cremona, Marten Lohstroh, Stavros Tipakis, Christopher
Brooks, and Edward A. Lee. 2016. FIDE – An FMI Integrated
Development Environment. In SAC’16, ACM (Ed.). ACM, Pisa,
Italy.

[12] Leandro Fontoura Cupertino, Georges Da Costa, Ariel Oleksiak,
Wojciech Piatek, Jean-Marc Pierson, Jaume Salom, Laura Siso,
Patricia Stolf, Hongyang Sun, and Thomas Zilio. 2015. Energy-
Efficient, Thermal-Aware Modeling and Simulation of Datacen-
ters: The CoolEmAll Approach and Evaluation Results. Ad
Hoc Networks vol. 25 (February 2015), pp. 535–553. http:
//oatao.univ-toulouse.fr/15206/ Thanks to Elsevier editor. The
definitive version is available at http://www.sciencedirect.com
The original PDF of the article can be found at Ad Hoc Networks
website : www.sciencedirect.com/science/journal/15708705.

[13] Joachim Denil, Bart Meyers, Paul De Meulenaere, and Hans
Vangheluwe. 2015. Explicit Semantic Adaptation of Hybrid For-
malisms for FMI Co-simulation. In Proceedings of the Sympo-
sium on Theory of Modeling &#38; Simulation: DEVS Inte-
grative M&#38;S Symposium (DEVS ’15). Society for Com-
puter Simulation International, San Diego, CA, USA, 99–106.
http://dl.acm.org/citation.cfm?id=2872965.2872979

[14] Saikou Y. Diallo, Heber Herencia-Zapana, Jose J. Padilla, and
Andreas Tolk. 2011. Understanding interoperability. In Proceed-
ings of the 2011 Emerging M&S Applications in Industry and
Academia Symposium. SCS, San Diego, CA, USA, 84–91.

[15] Virginie Galtier, Stephane Vialle, Cherifa Dad, et al. 2015. FMI-
Based Distributed Multi-Simulation with DACCOSIM. In DEVS
’15 Proceedings of the Symposium on Theory of Modeling &
Simulation: DEVS Integrative M&S Symposium. Society for
Computer Simulation International, Munich, Germany, 39–46.

[16] Leilani Gilpin, Laurent Ciarletta, Yannick Presse, Vincent
Chevrier, and Virginie Galtier. 2014. Co-simulation Solution using
AA4MM-FMI applied to Smart Space Heating Models. In 7th
International ICST Conference on Simulation Tools and Tech-
niques. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), Lisbon, Portugal, 153–
159.

[17] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen,
and Hans Vangheluwe. 2017. Co-simulation: State of the art.
CoRR abs/1702.00686 (2017), 157. arXiv:1702.00686 http://
arxiv.org/abs/1702.00686

[18] Franz C. Heinrich, Tom Cornebize, Augustin Degomme, Arnaud
Legrand, Alexandra Carpen-Amarie, Sascha Hunold, Anne-Cécile

Orgerie, and Martin Quinson. 2017. Predicting the Energy Con-
sumption of MPI Applications at Scale Using a Single Node. In
IEEE Cluster. IEEE, Honolulu, HI, USA, 92–102.

[19] T. Hirofuchi, A. Lebre, and L. Pouilloux. 2015. SimGrid VM: Vir-
tual Machine Support for a Simulation Framework of Distributed
Systems. IEEE Transactions on Cloud Computing PP, 99 (Sept.
2015), 1–14.

[20] Yunbo Li, Anne-Cécile Orgerie, and Jean-Marc Menaud. 2015.
Opportunistic Scheduling in Clouds Partially Powered by Green
Energy. In IEEE International Conference on Green Computing
and Communications (GreenCom). IEEE, Sydney, Australia,
448–455.

[21] Saurabh Mittal, Mark Ruth, Annabelle Pratt, et al. 2015. A
System-of-systems Approach for Integrated Energy Systems Mod-
eling and Simulation. In Proceedings of the Conference on Sum-
mer Computer Simulation. SCS/ACM, Chicago, Illinois, USA,
1–10.

[22] MODELISAR Consortium and Modelica Association. 2014. Func-
tional Mock-up Interface for Model Exchange and Co-Simulation
– Version 2.0, July 25, 2014. Retrieved from https://www.
fmi-standard.org. (2014).

[23] Cleve Moler. 1997. Are We There Yet? Zero Crossing and Event
Handling for Differential Equations. Matlab News & Notes
Simulink 2, special edition (1997), 16–17.

[24] W. Muller and E. Widl. 2013. Linking FMI-based components
with discrete event systems. In Proc. SysCon. IEEE, Orlando, FL,
USA, 676–680. https://doi.org/10.1109/SysCon.2013.6549955

[25] Anh Pham, Thierry Jéron, and Martin Quinson. 2017. Verifying
MPI Applications with SimGridMC. In Proceedings of the First
International Workshop on Software Correctness for HPC Ap-
plications (Correctness’17). ACM, New York, NY, USA, 28–33.
https://doi.org/10.1145/3145344.3145345

[26] Martin Quinson, Cristian Rosa, and Christophe Thiery. 2012.
Parallel Simulation of Peer-to-Peer Systems. In Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (Ccgrid 2012) (CCGRID ’12). IEEE
Computer Society, Washington, DC, USA, 668–675. https://doi.
org/10.1109/CCGrid.2012.115

[27] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John
Stankovic. 2010. Cyber-physical Systems: The Next Comput-
ing Revolution. In Proceedings of the 47th Design Automation
Conference. ACM, New York, NY, USA, 731–736.

[28] Jean-Philippe Tavella, Mathieu Caujolle, Charles Tan, Gilles
Plessis, Mathieu Schumann, Stéphane Vialle, Cherifa Dad, Ar-
naud Cuccuru, and Sébastien Revol. 2016. Toward an Hybrid
Co-simulation with the FMI-CS Standard. (April 2016). Research
Report.

[29] Hans Vangheluwe, Juan De Lara, and Pieter J Mosterman. 2002.
An introduction to multi-paradigm modelling and simulation. In
Proceedings of the AIS’2002 Conference (AI, Simulation and
Planning in High Autonomy Systems). SCS, Lisboa, Portugal,
9–20.

[30] Pedro Velho. 2011. Accurate and Fast Simulations of Large-Scale
Distributed Computing Systems. Theses. Université Grenoble
Alpes.

[31] Pedro Velho, Lucas Schnorr, Henri Casanova, and Arnaud Legrand.
2013. On the Validity of Flow-level TCP Network Models for
Grid and Cloud Simulations. ACM Transactions on Modeling
and Computer Simulation 23, 4 (Oct. 2013), 23:1–23:26.

[32] Kunpeng Wang, Peer-Olaf Siebers, and Darren Robinson. 2017.
Towards Generalized Co-simulation of Urban Energy Systems.
Procedia Engineering 198 (2017), 366 – 374. https://doi.org/10.
1016/j.proeng.2017.07.092 Urban Transitions Conference, Shang-
hai, September 2016.

[33] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P. Palensky.
2013. The FMI++ library: A high-level utility package for FMI for
model exchange. In 2013 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems (MSCPES). IEEE, Berkeley,
CA, USA, 1–6. https://doi.org/10.1109/MSCPES.2013.6623316

https://doi.org/10.5220/0006306500470059
https://doi.org/10.5220/0006306500470059
https://doi.org/10.1177/0037549717749014
https://doi.org/10.1177/0037549717749014
http://hal.inria.fr/hal-01017319
http://oatao.univ-toulouse.fr/15206/
http://oatao.univ-toulouse.fr/15206/
http://dl.acm.org/citation.cfm?id=2872965.2872979
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1702.00686
https://www.fmi-standard.org
https://www.fmi-standard.org
https://doi.org/10.1109/SysCon.2013.6549955
https://doi.org/10.1145/3145344.3145345
https://doi.org/10.1109/CCGrid.2012.115
https://doi.org/10.1109/CCGrid.2012.115
https://doi.org/10.1016/j.proeng.2017.07.092
https://doi.org/10.1016/j.proeng.2017.07.092
https://doi.org/10.1109/MSCPES.2013.6623316

	Abstract
	1 Introduction
	2 Representative use case
	2.1 Physical system of the DC
	2.2 Distributed application of the DC
	2.3 Co-simulation challenges

	3 Context
	3.1 The FMI standard
	3.2 The SimGrid Platform

	4 Contribution
	4.1 Coordination of FMU and distributed application
	4.2 Continuous input and output interactions
	4.3 discrete event interaction

	5 Evaluation
	5.1 Results interpretation
	5.2 Validation

	6 Conclusion
	References

