
Jean-Marc Jézéquel / Mathieu Acher
jezequel@irisa.fr, mathieu.acher@irisa.fr

The (Hi)Story of Software
Engineering / Computer Science

17

• Infinite tape divided into Cells (0 or 1)

• Read-Write Head

• Transitition rules

18

Turing Machine

Write a symbol
or move to left (>>) or right
(<<)

Turing Machine
~ kind of state machine

19

Successor (add-one) function
assuming that number n as a block of n+1 copies of

the symbol ‘1’ on the tape (here, n=3)

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Question: what does it compute?

42

43

function succ (n) {
return n + 1;

}

(lambda (x) (+ x 1))

Successor (add-one) function
assuming that number n as a block of n+1 copies of

the symbol ‘1’ on the tape (here, n=3)

44

Addition of n+m

45

http://graphics.stanford.edu/~seander/bithacks.html
Maybe you prefer to use bit operations?

The (Hi)Story of Software
Engineering / Computer Science

46

47

Software
Languages

Programming the Turing Machine
Why aren’t we using tapes, states and

transitions after all ?

48

Distributed systems

Thousands of
engineers/expertise

Web dev.

Large-scale systems

Critical Systems

Complex Systems

Programming the Turing Machine

Why aren’t we using tapes, states and
transitions after all ?

49

You cannot be serious

Formulas are Turing complete

Formulas are Turing complete

http://fr.slideshare.net/Felienne/spreadsheets-are-code-online

Youtube video https://t.co/RTfJAxXYaX

Esoteric programming languages

• Designed to test the boundaries of computer
programming language design, as a proof of
concept, as software art, or as a joke.
– extreme paradigms and design decisions
– Eg https://esolangs.org/wiki/Brainfuck

• Usually, an esolang's creators do not intend
the language to be used for mainstream
programming.

(brainfuck)
What does it compute?

++++++++++[>+++++++>++++++++++>+++<<<-]>++.>+.+++++++
..+++.>++.<<+++++++++++++++.>.+++.------.--------.>+.

Questions to the audience

• Why assembly language is not the
mainstream language?

• Why spreadsheets are not used for building
Google?

• Why esoteric languages are not used for
mainstream programming?

The answer to such « though-provoking » questions seems obvious at first
glance

– Help to define the good properties of software languages we expect
– Help to understand why there is still innovation in language design

Programming the Turing Machine

Why aren’t we using tapes, states
and transitions after all ?

55

Software Languages
Hard to write and understand.
No abstractions.
Hard to debug and test.
Poor language constructs. Poor
tooling support.

Performance.
Usability, productivity,
reusability, safety,
expressiveness, learnability.

Question: what does it compute?

56

Performance, usability,
productivity, reusability, safety,
expressiveness, learnability.

Qualities and challenges

• Cognitive dimensions (see references after)

• Abstractions
– Eg Kramer “Abstraction and Modelling - A

Complementary Partnership” MODELS’08
• Separation of concerns/modularity

– Eg Tarr et al., ICSE’99
• Scalability

– Growing a language (like Scala)
• Performance
• …

58

Languages
Complex
Systems

We need languages
1. At a high level of abstraction

1. Still general-purpose

2. Generation of other artefacts written in other
languages

3. Transformation, refinement

2. Multiplicity of languages
1. Divide and conquer

2. Specific to a problem or “domain”

3. Induce a way to “compose” languages
(Combemale et al. “On the Globalization of Domain-Specific Languages”)

“Even variations in grammar can
profoundly affect how we see the
world.”

She’s talking about real languages; what about
synthetic, programming languages?

What is a language?

• « A system of signs, symbols, gestures, or
rules used in communicating »

• « The special vocabulary and usages of a
scientific, professional, or other group »

• « A system of symbols and rules used for
communication with or between
computers. »

61

ArchitectureArchitecture

CartographyCartography

BiologyBiology

ElectronicsElectronics

In Software Engineering

« Languages are the primary
way in which system developers
communicate, design and
implement software systems »

66

67

General Purpose
Languages
Assembly ?
COBOL ? LISP ? C ? C++ ?
Java? PHP ? C# ? Ruby ?

Limits of General Purpose Languages (1)
• Abstractions and notations used are not

natural/suitable for the stakeholders

68

• Not targeted to a particular kind of
problem, but to any kinds of software
problem.

69

Limits of General Purpose Languages (2)

• Targeted to a particular kind of problem,
with dedicated notations (textual or
graphical), support (editor, checkers, etc.)

• Promises: more « efficient » languages for
resolving a set of specific problems in a
domain

70

Domain Specific Languages

• Long history: used for almost as long as
computing has been done.

• You’re using DSLs in a daily basis

• You’ve learnt many DSLs in your
curriculum

• Examples to come! 72

Domain Specific Languages (DSLs)

HTML

Domain: web (markup)

73

CSS

Domain: web (styling)
74

SQL

Domain: database (query)
75

Makefile

Domain: software building
76

Lighthttpd configuration
file

Domain: web server (configuration)
77

Graphviz

Domain: graph (drawing)
78

PGN (Portable Game
Notation)

Domain: chess (games)
79

Regular expression

Domain: strings (pattern matching)
80

Question to the audience

Give three examples of domain-
specific languages (DSLs)

Domain: model management
82

self.questions->size
self.employer->size
self.employee->select (v | v.wages>10000)->size
Student.allInstances

->forAll(p1, p2 |
p1 <> p2 implies p1.name <> p2.name)

OCL

UML can be seen as a collection
of domain-specific modeling

languages

83

Behavioral

Structural

Problem
Space Solution

Space

Assembler

C, Java

DSLs

Abstraction
Gap

« Another lesson we should have learned from the recent past is
that the development of 'richer' or 'more powerful' programming
languages was a mistake in the sense that these baroque
monstrosities, these conglomerations of idiosyncrasies, are really
unmanageable, both mechanically and mentally.

I see a great future for very systematic and
very modest programming languages »

ACM Turing Lecture, « The Humble Programmer »
Edsger W. Dijkstra 85

aka Domain-
Specific
Languages

aka General-Purpose
Languages

86

« Domain-specific
languages are far more
prevalent than
anticipated »

87

What is a domain-specific
language ?

• « Language specially designed to perform a
task in a certain domain »

• « A formal processable language targeting at a
specific viewpoint or aspect of a software
system. Its semantics and notation is
designed in order to support working with that
viewpoint as good as possible »

• « A computer language that's targeted to a
particular kind of problem, rather than a
general purpose language that's aimed at any
kind of software problem. »

88

A GPL provides notations that are used to describe a computation in a
human-readable form that can be translated into a machine-readable
representation.

A GPL is a formal notation that can be used to describe problem
solutions in a precise manner.

A GPL is a notation that can be used to write programs.

A GPL is a notation for expressing computation.

A GPL is a standardized communication technique for expressing
instructions to a computer. It is a set of syntactic and semantic rules
used to define computer programs.

GPL (General Purpose Language)

What is offered?

Higher
abstractions

Higher
abstractions

Avoid
redundancy

Avoid
redundancy

Separation
of concerns
Separation
of concerns

Use domain
concepts

Use domain
concepts

Promises of domain-specific languages

BenefitsBenefits

ProductivityProductivity

QualityQuality

V&VV&V

CommunicationCommunication
Domain
Expert

No
Overhead

No
Overhead

Platform
Independent

Promises of domain-specific languages

General PLs vs Domain-SLs

The boundary isn’t as clear as it could be. Domain-
specificity is not black-and-white, but instead gradual: a
language is more or less domain specific

GeneralPL vs DomainSL

• Promises of DSL« improvement » in terms of
– usability, learnability, expressiveness, reusability, etc.

• Empirical study on the role of syntax
– C-style syntax induces problems in terms of usability

for novices; language more or less intuitive for (non-
)programmers (Stefik et al. 2014)

– Syntax issues with Java for students (Denny et al. 2011)

– PL usability: method namings/placement, use of
identifiers, API design (Ellis et al., Styllos et al., Clarke, Montperrus et
al., etc.)

• More specialized/sophicated tools/IDE can be
derived from a DSL
– editors, compilers, debuggers

93

Specializing syntax and
environment pays off?

External DSLs vs Internal DSLs

• An external DSL is a completely separate
language and has its own custom
syntax/tooling support (e.g., editor)

• An internal DSL is more or less a set of
APIs written on top of a host language
(e.g., Java).
– Fluent interfaces

95

External vs Internal DSL (SQL example)

96

Internal DSL (LINQ/C# example)

97

Internal DSL
• « Using a host language (e.g., Java) to give the

host language the feel of a particular
language. »

• Fluent Interfaces
– « The more the use of the API has that language like

flow, the more fluent it is »

98

SQL in… Java
DSL in GPL

99

Regular expression in…
Java

DSL in GPL

100

Internal DSLs vs External DSL

• Both internal and external DSLs have
strengths and weaknesses
– learning curve,
– cost of building,
– programmer familiarity,
– communication with domain experts,
– mixing in the host language,
– strong expressiveness boundary

• Focus of the course
– external DSL a completely separate language

with its own custom syntax and tooling support
(e.g., editor)

101

Question to the audience

Find a DSL that is both
internal and external

HTML

• External DSL: <html>….

• Internal DSLs
– PHP

– Scala (XML support included in the language)

https://github.com/julienrf/glitterTCS Wyvern (Omar et al., OOPLSA’14)

Scala

SQL

References
• Martin Fowler. Domain Specific Languages. Addison-

Wesley Professional, 2010.

• Markus Voelter et al. “DSL Engineering: Designing,
Implementing and Using Domain-Specific Languages.”
dslbook.org, 2013.

• Kramer “Abstraction and Modelling - A Complementary
Partnership” MODELS’08

• Tarr et al. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns” ICSE’99

• Benoit Combemale, Julien Deantoni, Benoit Baudry,
Robert France, Jean-Marc Jézéquel, and Jeff Gray.
« Globalizing Modeling Languages.” Computer, 2014.

References
• Leo A Meyerovich and Ariel S Rabkin. “Empirical

analysis of programming language adoption”
OOPSLA’13

• Felienne Hermans, Martin Pinzger, and Arie van
Deursen. “Domain-Specific languages in practice: A
user study on the success factors.“ MODELS’09

• Paul Denny, Andrew Luxton-Reilly, Ewan Tempero,
and Jacob Hendrickx. “Understanding the syntax
barrier for novices.” ITiCSE ’11

• Tiark Rompf et al . “Optimizing Data Structures in
High-Level Programs: New Directions for Extensible
Compilers based on Staging” POPL’13

References
• Mathieu Acher, Benoît Combemale, Philippe Collet:

“Metamorphic Domain-Specific Languages: A
Journey into the Shapes of a Language.” Onward!
2014

• Jeffrey Stylos and Brad A. Myers. “The implications
of method placement on api learnability” FSE’08

• Martin Monperrus, Michael Eichberg, Elif Tekes,
and Mira Mezini. “What Should Developers Be
Aware Of? An Empirical Study on the Directives of
API Documentation”. Empirical Software
Engineering, 17(6):703–737, 2012.

