Why3 a dit : gardez le contrôle en toute situation

Jean-Christophe Léchenet, Nikolai Kosmatov, Pascale Le Gall

26 janvier 2018
JFLA - Banyuls-sur-Mer
Arbitrary control dependence

Context: static backward program slicing
Definitions of control dependence

Danicic’s algorithm
Description
Illustration
Formalization in Coq

A new optimized algorithm
Presentation
Formalization in Why3
Experiments

Conclusion
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
Plan

Arbitrary control dependence

Context: static backward program slicing
Definitions of control dependence

Danicic’s algorithm
Description
Illustration
Formalization in Coq

A new optimized algorithm
Presentation
Formalization in Why3
Experiments

Conclusion
Definition

Static backward slicing (introduced by Weiser in 1981)

- simplifies a given program p but preserves the behavior w.r.t. a point of interest C (**slicing criterion**, typically a statement)
- removes irrelevant statements that do not impact C
- produces a simplified program q (**slice**)
Example: divisibility test

euclidean division of a by b

1 : quo = 0;
2 : r = a;
3 : while (b <= r) {
 4 : quo = quo + 1;
 5 : r = r - b;
}

is the remainder equal to 0 ?

6 : if (r != 0) {
 7 : res = 0;
} else {
 8 : res = 1;
}

Original program p

Slice q w.r.t. line 8

Jean-Christophe Léchenet Why3 a dit : gardez le contrôle en toute situation 26 janvier 2018 6 / 30
Example: divisibility test

1: quo = 0;
2: r = a;
3: while (b <= r) {
 4: quo = quo + 1;
 5: r = r - b;
}
6: if (r != 0) {
 7: res = 0;
 } else {
8: res = 1;
 }

Original program p Slice q w.r.t. line 8
Example: divisibility test

1: quo = 0;
2: r = a;
3: while (b <= r) {
 4: quo = quo + 1;
 5: r = r - b;
}
6: if (r != 0) {
 7: res = 0;
} else {
 8: res = 1;
}

Original program p

Slice q w.r.t. line 8
Example: divisibility test

```
1 : quo = 0;

2 : r = a;
3 : while (b <= r) {
   4 : quo = quo + 1;
   5 : r = r - b;
}
6 : if (r != 0) {
   7 : res = 0;
} else {
   8 : res = 1;
}
```

Original program p

```
2 : r = a;
3 : while (b <= r) {
   5 : r = r - b;
}
6 : if (r != 0) {
   8 : res = 1;
} else {
```

Slice q w.r.t. line 8
Plan

Arbitrary control dependence

Context: static backward program slicing

Definitions of control dependence

Danicic’s algorithm

Description

Illustration

Formalization in Coq

A new optimized algorithm

Presentation

Formalization in Why3

Experiments

Conclusion
On a concrete structured language

if \((l: b)\) {
 ...
 \(l_{\text{then}}\): stmt;
 ...
} else {
 ...
 \(l_{\text{else}}\): stmt;
 ...
}

while \((l: b)\) {
 ...
 \(l_{\text{body}}\): stmt;
 ...
}
On a control flow graph

Using post-dominance (for ex. [Ferrante et al., 1987])

- v is control-dependent on u iff u has two children u_1 and u_2 such that u_1 is post-dominated by v, but not u_2
On a control flow graph

Using post-dominance (for ex. [Ferrante et al., 1987])

- \(v \) is **control-dependent** on \(u \) iff \(u \) has two children \(u_1 \) and \(u_2 \) such that \(u_1 \) is post-dominated by \(v \), but not \(u_2 \)

```
start

quo=0

r=a

while (b<=r)

quo=quo+1

r=r-b

if (r!=0)

res=0

u

res=1

u_1

end
```

Jean-Christophe Léchenet Why3 a dit : gardez le contrôle en toute situation 26 janvier 2018 9 / 30
On a finite directed graph

- Elegant generalization of Danicic et al. in 2011
- A subset V' is closed under weak control dependence (or weakly control-closed) iff every node reachable from V' has at most one first-reachable node (observable) in V'.
On a finite directed graph

- Elegant generalization of Danicic et al. in 2011
- A subset V' is closed under weak control dependence (or weakly control-closed) iff every node reachable from V' has at most one first-reachable node (observable) in V'.
- $\text{weak control-closure}(V') = V' \cup \{ \text{all the vertices both reachable from } V' \text{ and } V'\text{-weakly deciding} \}$
- V'-weakly deciding $= \text{all the nodes giving rise to two non-trivial paths reaching } V' \text{ that share no vertex except their origin.}$

\[u \rightarrow v \rightarrow v_1 \rightarrow \cdots \rightarrow x \rightarrow y \rightarrow \cdots \rightarrow w \]

\[\text{obs}(x) = \{x\} \]
\[\text{obs}(w) = \{x\} \]
\[\text{obs}(u) = \{v_1, v_2\} \]
\[\text{obs}(v) = \{v_1, v_2\} \]
Running example

\[V' = \{u_1, u_3\} \]
Running example

\[V' = \{ u_1, u_3 \} \]
Running example

\[V' = \{ u_1, u_3 \} \]
Running example

\[V' = \{u_1, u_3\} \]
Running example

\[V' = \{ u_1, u_3 \} \]

Closure: \(\{ u_0, u_1, u_2, u_3, u_4, u_6 \} \)
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
Idea

• Iterative algorithm
• Predicate $H(u, V')$ such that:
 (H1) If $H(u, V')$ then u is V'-weakly deciding and reachable from V'
 (H2) If there is no node u satisfying $H(u, V')$, then there is no
 V'-weakly deciding vertex reachable from V'

H’s definition

$H(u, V')$: u is reachable from V', $|\text{obs}(u)| \geq 2$ and one of its
children v satisfies $|\text{obs}(v)| = 1$.
Danicic’s method to compute weak control closure

begin
 \(W \leftarrow V' \); \\
 \textbf{while} there exists a node \(u \) satisfying \(H(u, W) \) in \(V \) \textbf{do} \\
 \hspace{1em} choose such a node \(u \); \\
 \hspace{1em} \(W \leftarrow W \cup \{u\} \) \\
 \textbf{end} \\
\textbf{return} \(W \)
end

Key ideas:

- At each iteration, the weak control-closure of \(W \) is equal to the weak-control closure of \(V' \) (due to (H1)).
- At the end, \(W \) is weakly-control closed (due to (H2)).
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
Danicic’s algorithm on an example

\[V' = \{u_1, u_3\} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[V' = \{u_1, u_3\} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[\mathcal{V}' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]
Danicic’s algorithm on an example

\[V' = \{ u_1, u_3 \} \]

Closure: \(\{ u_0, u_1, u_2, u_3, u_4, u_6 \} \)
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
A few words about the formalization in Coq

- A subset of Danicic’s theory was formalized in Coq
- Danicic’s algorithm was implemented and proved correct
- Size: 4000 loc of spec, 8000 loc of proof
- A Coq library à la OCamlgraph was missing
Limitations of Danicic’s algorithm

A few small optimizations are possible:

- At each iteration, add all the nodes satisfying $H(u, W)$ instead of just one
- Weakening H: 2 and 1 are arbitrary, what is important is that $1 \leq |\text{obs}(v)| < |\text{obs}(u)|$.

More fundamentally, Danicic’s algorithm does not take advantage of previous iterations to speed up the following ones.
Plan

Arbitrary control dependence
Context: static backward program slicing
Definitions of control dependence

Danicic’s algorithm
Description
Illustration
Formalization in Coq

A new optimized algorithm
Presentation
Formalization in Why3
Experiments

Conclusion
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
The optimized algorithm

- Again an iterative algorithm: start with $W = V'$ and make W grow
- Each vertex is labeled with a node in W which is a good candidate for an observable, but sometimes is not
- This labeling survives the iterations and can be reused
- At the end, W is the weak control-closure of V' and each node is labeled with its observable in the closure
The optimized algorithm on an example

\[V' = \{u_1, u_3\} \]
The optimized algorithm on an example

\[V' = \{u_1, u_3\} \]
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]

Propagation of \(u_3 \)
The optimized algorithm on an example

\[V' = \{u_1, u_3\} \]

After propagation of \(u_3 \)
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]

Propagation of \(u_0 \)
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]

After propagation of \(u_0 \)
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]

After propagation of \(u_2 \)
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]
The optimized algorithm on an example

\[V' = \{u_1, u_3\} \]

After propagation of \(u_4 \)
The optimized algorithm on an example

\[V' = \{u_1, u_3\} \]

After propagation of \(u_6 \)
The optimized algorithm on an example

\[V' = \{ u_1, u_3 \} \]

Closure: \(\{ u_0, u_1, u_2, u_3, u_4, u_6 \} \)
Plan

Arbitrary control dependence
- Context: static backward program slicing
- Definitions of control dependence

Danicic’s algorithm
- Description
- Illustration
- Formalization in Coq

A new optimized algorithm
- Presentation
- Formalization in Why3
- Experiments

Conclusion
A few words about the formalization in Why3

The Why3 development is split into two parts:

- a small part of weak control dependence’s theory (80 loc)
 - everything proved
 - except one lemma is admitted (but is proved in the Coq formalization)
- the new algorithm (250 loc)
 - split into 4 functions
 - a lot of proofs are automatic
 - the preservations of the main invariants were done in Coq
Plan

Arbitrary control dependence
- Context: static backward program slicing
- Definitions of control dependence

Danicic’s algorithm
- Description
- Illustration
- Formalization in Coq

A new optimized algorithm
- Presentation
- Formalization in Why3
- Experiments

Conclusion
Experiments

- Both algorithms were implemented in OCaml using OCamlGraph.
- They were run on randomly generated graphs.
- Checked against the Coq extraction on small graphs.
Plan

Arbitrary control dependence
 Context: static backward program slicing
 Definitions of control dependence

Danicic’s algorithm
 Description
 Illustration
 Formalization in Coq

A new optimized algorithm
 Presentation
 Formalization in Why3
 Experiments

Conclusion
Conclusion:

- Formalization in Coq of an elegant theory of control dependence on finite directed graphs and of an algorithm computing closure under control dependence (Danicic et al., 2011)
- Design of an optimization of this algorithm
- Proof in Why3 of this new algorithm
- Experiments confirm the new algorithm outperforms Danicic’s method

Future work:

- Integrate this work in a theory of program slicing
- Weak control dependence \rightarrow strong control dependence
Weak control-closure on euclidean division

start

quo=0

r=a

while (b<=r)

quo=quo+1

r=r-b

if (r!=0)

res=0

end

res=1
Weak control-closure on euclidean division

```
start

quo=0

r=a

while (b<=r)

quo=quo+1

r=r-b

if (r!=0)

res=0

end

res=1
```

Jean-Christophe Léchenet Why3 a dit : gardez le contrôle en toute situation 26 janvier 2018 31 / 30
Graph theory

<table>
<thead>
<tr>
<th></th>
<th>Alt-Ergo (1.30)</th>
<th>CVC4 (1.5)</th>
<th>Coq (8.6.1)</th>
<th>Eprover (2.0)</th>
<th>Z3 (4.5.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>10</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Min time (s)</td>
<td>0</td>
<td>0,02</td>
<td>0,27</td>
<td>0,01</td>
<td>0</td>
</tr>
<tr>
<td>Max time (s)</td>
<td>0,01</td>
<td>0,67</td>
<td>0,37</td>
<td>0,44</td>
<td>0</td>
</tr>
<tr>
<td>Avg time (s)</td>
<td>0,01</td>
<td>0,083</td>
<td>0,3</td>
<td>0,093</td>
<td>N/A</td>
</tr>
</tbody>
</table>

+ 1 axiom (but proved in the Coq formalization)
Algorithm

<table>
<thead>
<tr>
<th></th>
<th>Alt-Ergo (1.30)</th>
<th>CVC4 (1.5)</th>
<th>Coq (8.6.1)</th>
<th>Eprover (2.0)</th>
<th>Z3 (4.5.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>233</td>
<td>12</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Min time (s)</td>
<td>0,01</td>
<td>0,08</td>
<td>0,32</td>
<td>0,08</td>
<td>0,34</td>
</tr>
<tr>
<td>Max time (s)</td>
<td>3,96</td>
<td>0,83</td>
<td>0,76</td>
<td>2,35</td>
<td>3,18</td>
</tr>
<tr>
<td>Avg time (s)</td>
<td>0,18</td>
<td>0,46</td>
<td>0,48</td>
<td>0,72</td>
<td>1,76</td>
</tr>
</tbody>
</table>