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Abstract. Text-to-Speech (TTS) systems rely on a grapheme-to-phone-
me converter which is built to produce canonical, or statically stylized,
pronunciations. Hence, the TTS quality drops when phoneme sequences
generated by this converter are inconsistent with those labeled in the
speech corpus on which the TTS system is built, or when a given expres-
sivity is desired. To solve this problem, the present work aims at auto-
matically adapting generated pronunciations to a given style by training
a phoneme-to-phoneme conditional random field (CRF). Precisely, our
work investigates (i) the choice of optimal features among acoustic, ar-
ticulatory, phonological and linguistic ones, and (ii) the selection of a
minimal data size to train the CRF. As a case study, adaptation to a
TTS-dedicated speech corpus is performed. Cross-validation experiments
show that small training corpora can be used without much degrading
performance. Apart from improving TTS quality, these results bring in-
teresting perspectives for more complex adaptation scenarios towards
expressive speech synthesis.

Keywords: Speech synthesis, pronunciation adaptation, feature selec-
tion, training data size.

1 Introduction

Text-to-speech (TTS) systems mainly rely on two steps. First, the input text
is converted to a canonical phoneme sequence using an automatic phonetizer.
Then, the waveform is generated from this phoneme sequence by querying a
dedicated database of speech segments or using generative models trained on this
database. In such a framework, and as used in current TTS systems, phonemes
generated by the phonetizer need to be consistent with those labeled in the
speech corpus in order to produce high quality synthetic speech samples. Given
an existing TTS application, this strong requirement makes it very difficult to
change the phonetizer to another, move to a new speech database, or to consider
expressive pronunciation variants, unless redesigning all the components from
scratch. As a consequence, TTS applications are nowadays still grounded on
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a very limited variety of voices, yielding to culturally centered and neutrally
accented systems [1]. One of the current challenges in TTS is thus to adapt
standard pronunciations to new conditions, especially expressivity, speaking style
or speaker characteristics [2].

To overcome this problem, our paper focuses on a new pronunciation adapta-
tion method which adapts canonical phonemes generated by the phonetizer to a
specific pronunciation style. Precisely, this method seeks here to adapt canonical
phonemes to pronunciations uttered in the speech corpus on which the TTS sys-
tem is built. Beyond the importance of this particular problem, our work is more
generally regarded as a case study towards more complex adaptation scenarios,
e.g., emotion or accent-specific adaptations. Using machine learning, the studied
pronunciation adaptation method consists in training adaptation models on a
target pronunciation corpus. In the perspective to deploy this method to various
use cases, investigations are conducted in this paper on (i) the choice of optimal
features and (ii) the minimal size of the pronunciation corpus to train reasonable
adaptation models. Looking for an optimal feature set to model pronunciations is
required to improve the adaptation accuracy without overfitting target pronun-
ciations. It implies the addition, selection and combination of relevant linguis-
tic, phonological, prosodic and articulatory features. Then, finding the minimal
quantity of material needed for training reliable models is of first importance
because the cost of casting, segmenting and annotating speech databases is still
very high. To provide robust conclusions, this question is studied on a variety of
feature configurations.

In recent literature, models of pronunciation have been proposed for both
automatic speech recognition (ASR) and TTS. Many statistical approaches have
already been used for pronunciation modeling. Among them, neural networks [3–
5] conditional random fields (CRFs) [3, 6, 7] and bayesian networks [8] are the
most frequent. In the present work, pronunciation is modeled with CRFs. Only
few studies report experiments on the quantity of speech training material [9, 10].
However, because the cost of data is still important it is necessary to evaluate
data requirements in terms of size and content. Of course, statistics require
large quantities of data, but in many fields of research –especially in affective
computing– only small sized corpora are available, thus causing the problem of
overfitting. In such cases, a compromise between both the quantity of training
material and the size of the feature set needs to be reached. Whereas the search
for data requirements has rarely been investigated, the search for an optimal
feature set has been extensively studied, for example in the field of affective
computing [11]. According to [12], with a small quantity of training material,
reduced feature sets usually lead to models which better generalize than large
feature sets. According to [13], “any subjective choice of which dimensions to
keep and what heuristic reasoning to apply inevitably involves some assumptions
about how the systems and workloads behave”. As a consequence, a widely used
method (also called brute-force method) begins with a large number of features,
then performs dimension reduction. Another commonly used approach, set up
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in the present work, is to introduce some human knowledge to select features a
priori.

The following work improves the method proposed by [14] and adapts it to
a French speech corpus. CRFs will be trained with different feature sets and
different quantities of training data. These experiments are able to estimate
which differences between phonemes generated by a phonetizer, and phonemes
from the speech corpus, can be fixed up with a small speech corpus. Apart from
improving TTS quality, the presented pronunciation adaptation method brings
interesting perspectives in terms of expressive speech synthesis.

In the remainder, the speech corpus, its derived features and the experimen-
tal set-up are introduced in Section 2. Features and phoneme window selection
experiments are presented in Section 3. Section 4 presents the training data
reduction protocol and its results. A pronunciation example is discussed in Sec-
tion 5. Conclusion and perspectives are drawn in the last section.

2 Material and method

This section is devoted to the presentation of the speech corpus used in the
experiments, the description of the feature set and the presentation of the ex-
perimental set-up.

2.1 Speech Corpus

Experiments were carried out on a French speech corpus dedicated to interactive
vocal system TTS. As such, this corpus covers all diphonemes present in French
and comprises most used words in the telecommunication field. It features a
neutral female voice sampled at 16 kHz (lossless encoding, one channel).

The corpus is composed of 7, 208 utterances, containing 196, 190 phonemes
and 16, 750 non-speech sounds, totaling 5h49 of speech. Pronunciations and non-
speech sounds have been strongly controled during the recording process. Other
information has been automatically added and manually corrected. The corpus
and its annotations are managed using the Roots toolkit [15].

2.2 Features

The goal of the present work is to reduce the differences between phonemes gen-
erated by the phonetizer during synthesis, referred to as canonical phonemes,
and phonemes as labeled in the speech corpus, referred to as realized phonemes.
To do so, the proposed method consists in training a CRF model which predicts
corpus-specific phonemes from canonical ones. To enrich the model, and hope-
fully improve the prediction accuracy, other state-of-the-art features are added.
Precisely, four groups of features have been investigated: linguistic, phonological,
articulatory and prosodic features, thereby leading to 52 feature set adapted from
[14]. Most features have been normalized to corpus or utterance and discretized.
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Canonical phonemes are generated with Liaphon [16], one of the most widely
used utterance phonetization system for French. Word frequencies in French are
extracted from Google n-grams [17]. Articulatory features are standard Inter-
national Phonetic Alphabet (IPA) traits. In an ideal system, prosody should
also be predicted from text. However, because this task is still a research issue,
prosodic features have been extracted in an oracle way, i.e., directly from the
recorded utterances of the speech corpus. Such a protocol allows to know to
what extent prosody affects pronunciation models. Prosodic features are based
on energy, fundamental frequency (F0) and duration. F0 shape is based on a
glissando value perceptually defined [18].

2.3 Experimental set-up

The phonemic sequences are modeled with CRFs, trained with the Wapiti toolkit
[19]. Realized phoneme sequences and statistically adapted phoneme sequences
are compared under the usual Phoneme Error Rate (PER). The speech corpus
has been randomly split in two: training and development set (70%), and a
validation set (30%). The training set has been divided in 7 folds. Models are
trained on 6 folds, developed on 1 fold and tested on the remaining validation
set. This protocol ensures that data used for training and testing do not overlap.
The feature set at least consists in the canonical phoneme sequence generated
with the phonetizer.

3 Optimal feature set

Finding an optimal feature set is a very important task in machine learning.
It helps identify the feature subset which best predicts pronunciation, usually
avoids overfitting the training data, and thus leads to models that generalize
more to unseen data. Lastly, it reduces the time and memory required during the
training process. In our method, features are selected for each group of features
separately, using a forward selection process. Then groups of selected features
are combined together with phoneme window to find the optimal configuration.

3.1 Feature selection within groups of features

Protocol A forward feature selection protocol has been adapted to French from
previous work on spontaneous English pronunciation [14]. A cross-validation
selection process was performed on the initial training set (six folds for training,
one for testing) without any phoneme window. For each group of features, the
selection starts with canonical phonemes only and other features are added one
at a time until the optimal subset is reached. In order to find the global subset
from the seven subsets obtained for each fold, a voting process has been set up.
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Table 1: Selected features used for pronunciation modeling names and LPrPh
feature set.

Group of feature # feat. Selected features

Linguistic (L) 2 Word � Stem

Phonological (Ph) 7 Canonical syllables � Syllable in word position �
Phoneme reverse position in syllable (numerical) �
Phoneme position and reverse position (numerical) �
Word length in phoneme (numerical) � Pause per Syl-
lable (low, normal, high)

Articulatory (A) 0 -

Prosodic (Pr) 6 Syllable Energy (low, normal, high) � Syllable and
phoneme tone (from 1 to 5) � F0 phoneme contour (de-
creasing, flat, increasing) � Speech rate (low, normal,
high) � Distance to previous pause (from 1 to 3)

Selected features In the end, 15 linguistic, prosodic and phonological features
were selected. Selected features are reported in the table 1. First, it appears that
two linguistic features were selected for all folds: the word itself and its stem.
Since these features are highly correlated, one would have expected only one fea-
ture to be selected. However, as stated in [20], “noise reduction and consequently
better class separation may be obtained by adding variables that are presumably
redundant”. Word expectation features, such as word frequency in French, re-
ceived only very few votes. Surprisingly, it appears that no articulatory features
have reached the minimal number of votes. Since previous studies have shown
the interest of such features for pronunciation variation modeling [8], they were
expected to have better votes. Then, seven phonological features were included
in the optimal set, most of them being related to phoneme positions in the ut-
terance. None of the syllable characteristics (such as syllable part, structure or
type) have been selected. Finally, six among seven prosodic features have been
selected. This result is in agreement with state-of-the-art and suggests that a
prosodic model is able to model a speaker’s pronunciation.

3.2 Feature group combinations

Different combinations of selected feature groups were evaluated in cross-
validation conditions, on the validation set without phoneme window. Average
PER obtained on the seven folds are reported in bold in the table 2. The base-
line is the PER obtained without any adaptation, between phoneme sequence
generated by the phonetizer and realized phoneme sequence (ground truth). An
improvement of 4.6 percentage point (pp) is reached while using a pronunciation
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Fig. 1: Effect of the phoneme window size on the average PER obtained on 7
folds. DIFFi = PER(Wi)− PER(Wi−1), i ∈ {1, 2, 3}.

model with canonical phonemes only, thus showing how pronunciation adapta-
tion can reduce the inconsistency between the phonetized output and the speech
corpus. Separately adding groups of selected features further improves the PER.
The most spectacular reduction lies in the linguistic group: with only two ap-
parently redundant features (word and its stem), a drop of 6.8 pp is obtained
from the baseline. Overall results show an improvement in PER when combining
selected feature groups. The combination of prosodic and linguistic groups lead
to a significant drop in PER of 7.7 pp with a minimum number of features. The
combination of the three feature groups brings the best PER, with an improve-
ment of 7.9 pp from the baseline. In the end, only almost a third of the initial
feature set remains.

3.3 Effect of phoneme window

In the search for an optimal feature set, a phoneme window is of real importance
for pronunciation modeling since, linguistic, phonological and prosodic features
of the current phoneme depend on the previous and next ones.

Protocol Only symmetrical windows have been tested since asymmetric win-
dows did not show any interesting improvements [14]. The application of a sym-
metrical phoneme window Wx (2 · x+1 phonemes) is performed on the current
canonical phoneme, and also its associated features therefore multiplying the
number of features in the CRF model by x. Four phoneme window sizes are
tested under cross-validation conditions using the same protocol as in the pre-
vious section. The results in terms of averaged PER on the seven folds and for
different feature combinations are reported in the table 2. The relative gain ob-
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tained while increasing the window size is represented on figure 1 for different
feature combinations.

Table 2: PER values averaged on 7 folds in cross-validation conditions with
adaptation. Different phoneme window sizes and different feature combinations.
Baseline is 11.2%.

Window C CL CPr CPh CLPr CLPh CPrPh CLPrPh
W0 6.6 4.4 4.8 4.5 3.5 4.0 3.7 3.3
W1 5.0 3.6 3.6 3.6 2.9 3.3 2.8 2.8
W2 4.1 3.4 3.3 3.3 2.9 3.2 2.8 2.7
W3 4.1 3.5 3.4 3.4 3.0 3.2 2.8 2.7

Results Figure 1 shows that adding features coming from one (black) or two
(hatched) surrounding neighbours have a positive effect on the global PER. A
seven phoneme window (W3) degrades the results, probably because as the num-
ber of feature increases, the model overfits the data. The effect of the phoneme
window size differs according to the combination of feature used for training
models. For instance, a phoneme window has a higher effect when models are
trained with prosodic features than linguistic or phonological features. Indeed,
prosodic features of the current phoneme highly depends on what precedes and
what succeeds. Finally, according to table 2, the combination of a window W2
and the 15 selected features brings the best results. In the next section, four
configurations are tested: two phoneme window W0 and W2, and two feature
sets: canonical phonemes only (C) and the 15 selected features with canonical
phonemes (CLPrPh).

Perceptive tests were realized on synthesized speech samples with different
feature combinations [21]. As in [22], the results are strongly linked with PER
and confirmed the relevancy of both the pronunciation adaptation model and
the selected features. Some samples are available on the team website1.

4 Minimal training data size

Because the cost of pronunciation corpora is very high, it is worth trying to find
the minimal quantity of training material required for pronunciation adaptation.
The obtained results would tell us the expected accuracy for a given duration of
training material. For a given quantity of training material, models are evaluated
in terms of PER in cross-validation conditions.

1 http://www-expression.irisa.fr/demos/: Corpus-specific adaptation
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4.1 Protocol

The training set (70% of the initial speech corpus) has been divided in Nf = 7
folds: 6 for training and the remaining for development purpose. The different
size of training material is obtained while splitting the initial training set in 2×7,
then 4×7, 8×7, etc. At each step, 6 folds are used for training models, one of the
remaining folds is kept for development. In order to limit the experimental time,
we have limited Nf to 100 for training durations less than 300 min While the
quantity of training material decreases, Nf increases thus making results more
reliable: from 243.3 min of training data (Nf = 7, 4321 utterances each) to 40 s
of training data (Nf = 100, 12 utterances each). The validation set consists in
120.2 min of data and 2161 utterances. Two feature sets (C and CLPrPh) and
two phoneme windows (W0 and W2) are tested. This choice allows to study the
effects of the number of features on accuracy and to estimate the danger of using
too much features while training on too few data.

4.2 Results

As expected, the averaged results on figure 2 (top) show that the smaller the
duration of training data, the higher the phoneme error rate. What is surprising
is that models trained with very small data improve the PER of 4.0 pp. from
baseline (best configuration W0-CLPrPh). Therefore, small training sets allow
fixing many phoneme errors: recurrent pronunciation, alphabet mapping, French
schwa and liaison (see section 5). Of course, with very small training set, standard
deviation computed on all the folds increase. Therefore, it appears that some
sets allow to reach a good PER, whereas some others do not. Thus, the minimal
quantity of training material does not lie in its duration only, but also in the
content of this set.

PER as a function of the duration of training data follows two different trends
whether duration is over 4.4 min or not. Interestingly, for training duration over
this threshold, the logarithmic curve of PER is almost linear with respect to
duration (correlation coefficient over 0.96, see table 3). This result is in agree-
ment with the results obtained in ASR experiments [10]. For small durations
(less than 4.4 min), phoneme window has almost no effect on PER whereas the
number of feature does. When training models with very little data, there is a
weak effect of window and feature sets (PER range is 0.9 pp.). The results show
that CRF models trained with small datasets are still better than the base-
line. All the more, multiplying the duration by 6.6 leads to an improvement of
2.6 pp. (best W0-CLPrPh configuration). For larger durations of training data
(more than 4.4 min), feature set has less effect compared to phoneme window.
Interestingly, increasing the amount of training data does not improve signif-
icantly the accuracy of models trained with W0-C configuration. In this case,
multiplying the duration by 10 leads to an improvement of only -0.5 pp. (best
W2-CLPrPh configuration).

The obtained results show that there is a threshold for duration of training
data at almost 5 min. Over this threshold, the addition of new data has a high
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Fig. 2: Average (top) and standard deviation (bottom) PER between canonical
and adapted phonemes obtained on the validation set. Average is computed on
all available folds for a given training duration (log-scale minutes). Baseline is
11.2 %.

Table 3: Linear regression results of PER w.r.t. training data duration (logarith-
mic scale).

Training duration Lin. Reg. W0-C W0-CLPrPh W2-C W2-CLPrPh
> 0.7 min Slope -0.17 -0.54 -0.58 -0.73

Corr. coef. 0.74 0.85 0.99 0.86
> 4.0 min Slope -0.04 -0.34 -0.62 -0.48

Corr. coef. 0.96 1.00 0.99 0.99

cost but a weak improvement in accuracy. Since the PER is log-linear with
respect to the duration, an ideal PER = 0 would be reached for 3 · 108 hours of
training data with W2-CLPrPh configuration.
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5 Discussion

Table 4: Example of pronunciation adaptations with different windows, features
and training size. The input text is Dans la montagne, les couleurs sont excep-
tionnelles. “In the mountains, colors are remarkable”
Win. Features dur(min) Phoneme sequence
Realized d Ã l a m Õ t a n j - l e k u l œ K s Õ t E k s E p s j o n E l -
Canonical d Ã l a m Õ t a ñ - @ l e k u l œ K s Õ - E k s E p s j O n E l @
W2 CLPrPh 243.3 d Ã l a m Õ t a n j - l e k u l œ K s Õ z E k s e p s j O n E l -
W2 C 243.3 d Ã l a m Õ t a n j - l e k u l œ K s Õ t e k s E p s j o n E l -
W0 C 243.3 d Ã l a m Õ t a n j - l e k u l œ K s Õ - E k s E p s j O n E l -
W2 CLPrPh 4.4 d Ã l a m Õ t a n j @ l e k u l œ K s Õ t E k s E p s j o n E l -
W2 C 4.4 d Ã l a m Õ t a n j - l e k u l œ K s Õ t E k s E p s j o n E l -
W0 C 4.4 d Ã l a m Õ t a n j - l e k u l œ K s Õ - E k s E p s j o n E l -
W2 CLPrPh 0.7 d Ã l a m Õ t a g - e l e k u l œ K s Õ - E k s E p s j o n E l -
W2 C 0.7 d Ã l a m Õ t a K - - l e k u l œ K s Õ t E k s E p s j o n E l -
W0 C 0.7 d Ã l a m Õ t a K - - l e k u l œ K s Õ - E k s E p s j O n E l -

CRF models trained with small datasets bring better results than the baseline
in terms of PER, hence underlying the power of such pronunciation adaptation
models. Models trained with very few utterances are able to fix some regular
errors between canonical and realized phonemes: recurrent pronunciation, French
schwa and liaisons. Generally, canonical phonemes and realized phonemes are
not encoded using the same alphabet, therefore introducing phoneme differences
which are not typical errors. Interestingly, CRF are able to solve the alphabet
issues.

Table 4 shows an example of adaptation results on the pronunciation of an
utterance in the validation set. This example illustrates typical errors. First, a
one-phoneme window (W0) is not able to model French liaisons (in the example:
/s Õ t E/), whatever the duration of the training set. A larger phoneme window
combined with C or CLPrPh is able to model the liaison, but the result is not
always correct (/z/ instead of /t/ with 243.3 min of training data). CRF models
trained with 40 s of data are not able to label correctly the canonical symbol
/ñ/: labels /n j/ are not found but /K/ or /g/. The deletion of French schwa is
realized in all configurations at the end of the utterance. Models trained with
the full CLPrPh feature set and few data label the schwa with either /e/ or /@/
(probably because models overfit the data). The substitution /O/→ /o/ is better
modeled with a large phoneme window. CRF models are able to map alphabets
from canonical to realized. For example, the symbol /ñ/ in the canonical sequence
does not exist in the alphabet used for the realized phoneme annotation. Most
models trained with more than 4 min of data are able to adapt the canonical
symbol to the realized one. In the context of speech synthesis, some phoneme
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errors are more harmful than others. For example in Table 4, the substitution
/o/ → /O/ or /o/ is not as important as the substitution of /n,j/ → /K/ or /g/.
Therefore an adapted error rate based on how close are phonemes could improve
statistical approaches for speech synthesis.

6 Conclusion

In this paper, we have presented a pronunciation adaptation method which
adapts phonemes generated by the phonetizer to the speech corpus. A CRF pro-
nunciation model trained with linguistic, phonological, articulatory and prosodic
features predicts an adapted phoneme sequence from a canonical phoneme se-
quence. The present work investigates an optimal feature set (features and
phoneme window) and a minimal quantity of training material for TTS.

First a cross-validation forward feature selection methodology is proposed.
This method allows to select 15 linguistic, phonological and prosodic features
(LPrPh). Different feature group combinations are tested together with differ-
ent phoneme window sizes. An optimal feature set (W2-CLPrPh) brings the best
improvement (-8.5 pp) in terms of PER on the validation set. Hence, we have
shown that pronunciation adaptation to the speech corpus itself helps to signifi-
cantly reduce the inconsistency between phonemes as labeled in the underlying
speech corpus and those generated by the phonetizer. Moreover, a statistical
approach has the advantage of being easily reproducible.

Second, a cross-validation experiment was conducted with decreasing quan-
tities of training material. We can conclude from these experiments that there is
a threshold for duration of training data at almost 5 min. Over this threshold,
the addition of new data has a high cost but a weak improvement in accuracy:
multiplying the duration of training data by 10 improves the PER of 0.5 pp.
An ideal PER = 0 would be reached for 3 · 108 hours of training data with W2-
CLPrPh configuration. Therefore for exploratory researches on pronunciation,
5 min of training data seem to be enough. However, for end-user applications,
the more data, the better.

The advantage of large-scaled data is to introduce several weighted phoneme
adaptations for each canonical phoneme. Then, including n-best predicted
phonemes into phoneme lattices together with weighted phoneme errors could be
relevant for speech synthesis applications. Apart from improving TTS quality,
the presented pronunciation adaptation method brings interesting perspectives
in the use of small-scaled speech corpora for expressive TTS.
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