
On Load Balancing & Routing in Peer-to-Peer Systems

by

George Giakkoupis

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2009 by George Giakkoupis

Abstract

On Load Balancing & Routing in Peer-to-Peer Systems

George Giakkoupis

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2009

A peer-to-peer (P2P) system is a networked system characterized by the lack of centralized

control, in which all or most communication is symmetric. Also, a P2P system is supposed

to handle frequent arrivals and departures of nodes, and is expected to scale to very large

network sizes. These requirements make the design of P2P systems particularly challenging.

We investigate two central issues pertaining to the design of P2P systems: load balancing

and routing. In the first part of this thesis, we study the problem of load balancing in the

context of Distributed Hash Tables (DHTs). Briefly, a DHT is a giant hash table that is

maintained in a P2P fashion: Keys are mapped to a hash space I — typically the interval

[0, 1), which is partitioned into blocks among the nodes, and each node stores the keys that

are mapped to its block. Based on the position of their blocks in I, the nodes also set

up connections among themselves, forming a routing network, which facilitates efficient key

location. Typically, in a DHT it is desirable that the nodes’ blocks are roughly of equal

size, since this usually implies a balanced distribution of the load of storing keys among

nodes, and it also simplifies the design of the routing network. We propose and analyze

a simple distributed scheme for partitioning I, inspired by the multiple random choices

paradigm. This scheme guarantees that, with high probability, the ratio between the largest

and smallest blocks remains bounded by a small constant. It is also message efficient, and

the arrival or departure of a node perturbs the current partition of I minimally. A unique

feature of this scheme is that it tolerates adversarial arrivals and departures of nodes.

In the second part of the thesis, we investigate the complexity of a natural decentralized

ii

routing protocol, in a broad family of randomized networks. The network family and routing

protocol in question are inspired by a framework proposed by Kleinberg to model small-world

phenomena in social networks, and they capture many designs that have been proposed for

P2P systems. For this model we establish a general lower bound on the expected message

complexity of routing, in terms of the average node degree. This lower bound almost matches

the corresponding known upper bound.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Vassos Hadzilacos, for

supporting me in every possible way. With his unmatched clarity of thought and intelligence,

and his integrity as a human being, he has been a role model for me for life. I also want to

thank the members of my examining committee: Peter Marbach, Allan Borodin, and Sam

Toueg, for their insightful feedback.

I am greatly indebted to my wife, Vasso, for her support, love, and understanding. I am

especially grateful to her for bringing little Nikitas-Paraskevas into our life. My gratitude

also goes to my three sibling in Greece: Panayiota, Katerina, and Michalis, for their love

and care. Finally, I would like to thank my friends in Toronto for making my stay there

more enjoyable.

iv

in memory of my parents,

Παρασκευά and Iωάννας Γ ιακκoύπη

v

Contents

List of Figures ix

Index of Notation x

1 Introduction 1

1.1 The peer-to-peer paradigm . 1

1.2 Distributed Hash Tables . 3

1.3 Small-world models and P2P networks . 6

1.4 Our contribution . 7

1.5 Road-map of the thesis . 8

2 Balanced key-space partitioning in DHTs 9

2.1 Introduction . 9

2.2 Existing key-space partitioning schemes . 12

2.2.1 Early schemes . 12

2.2.2 Schemes that achieve bounded ρ . 14

2.3 A new key-space partitioning scheme . 17

2.3.1 Description of the scheme . 17

2.3.2 Properties . 18

2.4 Road-map of the analysis . 20

3 Analysis of our scheme – Part I: Switching to a simpler process 22

3.1 The model . 22

3.2 Binary partitions . 23

3.3 Basic operations on binary partitions . 25

3.4 Comparing the balance of binary partitions: the � relation 28

3.5 Two random processes on binary partitions 32

vi

3.5.1 B-processes . 33

3.5.2 S-processes . 35

3.6 Bounding the balance in a B-process by that in an S-process 39

3.6.1 The fB mapping . 39

3.6.2 Proof of Theorem 3.10 . 40

4 Analysis – Part II: Starting from a balanced partition 47

4.1 Statement of the main result: from a safe to a safe partition 48

4.2 Outline of the proof . 49

4.3 Comparing the balance of safe partitions . 51

4.4 On the outcome of a single step . 54

4.5 On the outcome of a series of steps: A-times and R-times 55

4.6 Proof of Theorem 4.1 . 66

5 Analysis – Part III: Starting from an unbalanced partition 74

5.1 Statement of the main result: from a non-safe to a safe partition 74

5.2 Outline of the proof . 75

5.3 Tailed, left-heavy, and almost-safe partitions 77

5.4 From a thick-tailed to a normal-tailed partition 80

5.4.1 R̃-times . 80

5.4.2 Proof of Lemma 5.4 . 82

5.5 From a normal-tailed to a short-tailed partition 85

5.5.1 More on A-times . 85

5.5.2 Proof of Lemma 5.9 . 88

5.6 From an arbitrary to an almost-safe partition 93

5.7 From an almost-safe to a safe partition . 103

5.7.1 From a short-tailed to a short-tailed partition 104

5.7.2 Ak-times . 105

5.7.3 Proof of Lemma 5.19 . 107

5.8 Proof of Theorem 5.1 . 111

6 Analysis – Part IV: Putting the pieces together 117

6.1 From a safe/non-safe to a safe binary partition 117

6.2 From a safe to an unbalanced to a safe binary partition 119

6.2.1 Expected time to reach a safe binary partition 121

vii

6.2.2 Proof of Theorem 6.3 . 122

7 Greedy routing in uniformly-augmented rings 127

7.1 Introduction . 127

7.2 Discussion and related work . 129

7.2.1 Decentralized routing in small worlds 132

7.2.2 Routing networks for DHTs . 133

7.3 Rigorous statement of our result . 134

8 Proof of the lower bound 136

8.1 Statement of auxiliary results and derivation of Theorems 7.1 and 7.2 136

8.2 Definitions . 138

8.3 Proofs of Lemmata 8.1 and 8.2 . 138

8.4 Routing trees . 140

8.5 Proof of Lemma 8.3 . 142

8.6 More on routing trees . 145

8.7 Proof of Theorem 8.4 . 147

9 Concluding remarks and future work 165

9.1 Adversarial load balancing in DHTs . 165

9.2 Complexity of greedy routing in augmented grids 165

Bibliography 167

viii

List of Figures

3.1 (a) A binary partition and the corresponding partition tree; (b) example of a

Vk→k′ operation. 25

3.2 An example of two sorted binary partitions of the same size that are not

comparable in terms of the � relation. S1 6� S2 follows from Lemma 3.4 and

the fact that µ(S1) < µ(S2); S2 6� S1 follows from Lemma 3.4 and fact that

ξ(S2) > ξ(S1). 29

3.3 Functions used in the definition of a B-processes. 36

3.4 Functions used in the definition of an S-processes. 36

3.5 Examples of FB and fB. 40

5.1 Relationship between the various classes of partitions. 79

8.1 (a) Example of a G ∈ G8; (b) the routing tree of G; (c) the 2-prefix of G’s

routing tree. 141

8.2 (a) The 7-descendants of nodes 1 and 15 are the nodes 1, . . . , 7, and 15, 16, 17,

respectively; the 7-successors of node 1 are the nodes 8, 9, 13; (b) the 4-

significant nodes are marked with filled circles; the (12, 4)-partition is {[0..3],

{4}, [5..8], [9..11]}. 146

ix

Index of Notation

� a binary relation on Sn defined in Section 3.4, 28

[i..j] {k ∈ Z : i ≤ k ≤ j}; i, j ∈ Z, 28

〈〈i, k〉〉 [i..i + k − 1]; i, k ∈ Z, 140

AS,W a set of sequences of binary partitions defined in Section 4.5, 56

Ak,S,W a set of sequences of binary partitions defined in Section 5.7.2, 105

Bn the set of binary partitions of size n; n ∈ N
∗, 23

B
⋃

n Bn, 23

Bi(n, p) binomial random variable with parameters n and p; n ∈ N
∗, p ∈ [0, 1], 89

blk(B, z) the block of B that contains z; B ∈ B, z ∈ I, 24

ε constant equal to 1/16, 48

fB a bijective function on I defined in Section 3.6.1; B ∈ B, 39

Fn the set of safe sorted binary partitions of size n; n ∈ N
∗, 51

f (k)(x) the function f(x) iteratively applied k times to an initial value of x; k ∈ N,

154

Γ the set of binary segments, 23

Gn the set of directed graphs on the set of nodes [0..n − 1] that contain as a

subgraph the directed ring 0→ 1→ 2→ · · · → (n− 1)→ 0; n ∈ N
∗, 138

G(ϕ) the (uniformly-)augmented ring where the long-range contacts of nodes are

selected using distribution ϕ; ϕ ∈ Φn,ℓ, 127

I [0, 1), 23

Ik {j2−k : j = 0, . . . , 2k − 1}; k ∈ N, 34

λ+/− sampling-size functions, 18, 33, 35

λ(k) min{λ+(k), λ−(k)}, 48, 118

L(G, u, v) delivery time of greedy routing in G from u to v; G ∈ Gn, u, v ∈ [0..n − 1],

134

L(G) (1/n)
∑

0≤v<n L(G, 0, v); G ∈ Gn, 138

x

ℓk(B) the total length of blocks of depth k in B; k ∈ N, B ∈ B, 24

ℓ⊲⊳k(B) the total length of blocks in B ∈ B whose depths belong to the set {i : i ⊲⊳ k};

B ∈ B, k ∈ N, ⊲⊳ ∈ {≥, >, <,≤}, 24

log∗ n min{k ≥ 0 : log(k) n ≤ 1}; n ∈ N
∗, xi

m mod n the r ∈ [0..n− 1] such that m = kn + r, for some k ∈ Z; m ∈ Z, n ∈ N
∗, xi

µ(B) the minimum depth of blocks in B; B ∈ B, 24

N the set of natural numbers {0, 1, 2, . . .}, xi

N
∗

N− {0}, xi

Φn,ℓ the set of all probability distributions ϕ on the powerset of [2..n−1] such that
∑

∆⊆[2..n−1](ϕ(∆) · |∆|) = ℓ; n ∈ N
∗, ℓ ∈ [0, n− 2];, 134

Π̌n the borderline-safe partition of size n; n ∈ N
∗, 53

ρ imbalance, 10

̺(B) the balance factor ξ(B)− µ(B) of B; B ∈ B, 24

RS,W a set of sequences of binary partitions defined in Section 4.5, 58

R̃S,W a set of sequences of binary partitions defined in Section 5.4.1, 81

Sn the set of sorted binary partitions of size n; n ∈ N
∗, 23

S
⋃

n Sn, 23

sbl(b) the sibling of b; b ∈ Γ− {I}, 23

sk(B) the number of blocks of depth k in B; k ∈ N, B ∈ B, 24

s⊲⊳k(B) the number of blocks in B whose depths belong to the set {i : i ⊲⊳ k}; B ∈ B,

k ∈ N, ⊲⊳ ∈ {≥, >, <,≤}, 24

srt(B) the sorted binary partition that has the same number of blocks of each depth

as B; B ∈ B, 23

θ(b) the depth of b; b ∈ Γ, 23

θ(B, z) the depth of blk(B, z); B ∈ B, z ∈ I, 24

T (ϕ) the expected delivery time in G(ϕ), E[(1/n2)
∑

0≤u,v<n L(G, u, v)]; ϕ ∈ Φn,ℓ,

134

T (n, ℓ) inf{T (ϕ) : ϕ ∈ Φn,ℓ}; n ∈ N
∗, ℓ ∈ [0, n− 2], 134

T (n) T (n, 1); n ∈ N, n ≥ 3, 137

ξ(B) the maximum depth of blocks in B; B ∈ B, 24

Z the set of integers, xi

xi

Chapter 1

Introduction

In this chapter we set the context for the problems we will study in this thesis. We

begin, in Section 1.1, with an introduction to the peer-to-peer model. In Section 1.2, we

describe Distributed Hash Tables, a common substrate for P2P systems. In Section 1.3, we

talk about small-world models and how they have been used as prototypes for designing P2P

networks. In Section 1.4, we give a brief outline of our work. We conclude, in Section 1.5,

with a road-map of the rest of the thesis.

1.1 The peer-to-peer paradigm

One of the most intriguing trends in distributed computing in the past few years has been the

surge in popularity of the peer-to-peer (P2P) paradigm for building Internet applications. A

P2P system is a networked system characterized by the lack of centralized control or a-priori

hierarchical organization, in which all or most communication is symmetric. This system

is supposed to work in a dynamic setting where nodes (i.e., machines) join and leave the

system frequently. It is also expected to scale gracefully as the size of the system grows.

The common model used for implementing P2P systems is that of an overlay network.

The nodes participating in a P2P system are connected via some (often much larger) un-

derlying network, e.g., the Internet. A node u in the P2P system can establish a virtual

connection to any other node v (say a TCP connection, if the underlying network is the

Internet) as long as u knows the address of v in the underlying network (v’s IP address).

Each node maintains such connections to a small set of other nodes. The union of these

connections forms the P2P network.

1

Chapter 1. Introduction 2

The P2P paradigm is attractive for several reasons [9]:

• P2P systems provide the opportunity to aggregate and make use of vast untapped

resources across the Internet that would otherwise go unused, such as processing power

for large-scale computations, and enormous storage potential.

• The deployment and maintenance of a P2P system is relatively easy and inexpensive

since no centralized administration or costly specialized hardware are required — as

opposed to centralized systems.

• Designed to operate in dynamic environments, P2P systems have the potential to be

robust to failures or malicious attacks.

Broadly speaking, there are two categories of P2P systems: structured and unstructured.

In unstructured P2P systems the nodes choose their overlay neighbors arbitrarily. Typically,

such systems are easy to build, they support complex queries, and remain functional despite

frequent arrivals and departures of nodes. However, they offer no performance guarantees —

they work on a best-effort basis. Unstructured systems have enjoyed great success, especially

in the form of file-sharing applications, like Napster, Gnutella, Kazaa, eMule, and Bittorrent,

which are used by millions of users.

For applications where imprecise/partial results to queries are acceptable, unstructured

P2P systems are sufficient. For applications that require stronger guarantees on data storage

and retrieval, structured P2P designs have been proposed. In these systems the set of overlay

connections between nodes is dictated by some pre-defined topology. Because of the stronger

guarantees on performance and correctness that these system are expected to deliver, they

are typically harder to engineer. So far, structured systems have not witnessed deployments

of the scale of unstructured P2P file-sharing systems. However, a wide range of applica-

tions have been proposed and deployed, mainly by the research community. These applica-

tions include cooperative data storage and archival (CFS [16], OceanStore [70], PAST [73],

Ivy [61]), censorship-resistant storage (Freenet [14]), Web caching (Squirrel [33]), group

communication and event notification (Bayeux [85], CAN-Multicast [69], Scribe [74], i3 [76],

CorONA [66], POST [58]), naming and resource discovery (INS/Twine [10], SETS [12],

CoDoNS [67]), content distribution (Coral [25], SplitStream [13]), DB query and indexing

(PIER [32], OverCite [78]). Also the file-sharing applications eMule and Bittorrent have

recently incorporated structured P2P components that they use for indexing.

Chapter 1. Introduction 3

1.2 Distributed Hash Tables

Most of the structured P2P systems that have been proposed use a Distributed Hash Table

(DHT) as a substrate. Briefly, a DHT is a giant hash table that is maintained in a P2P

manner by a large and dynamic set of nodes. This hash table is divided into pieces, one for

each node, and every node stores the piece that is assigned to it. Connections that are set

up among nodes allow each node to efficiently locate the node that is responsible for any

given key.

A DHT is a large-scale, decentralized, self-organizing, distributed repository of data

items. The nature of the data items depends on the P2P application that uses the DHT;

e.g., in a file storage application a data item can be a file (or a piece of a file). Each

item is identified by a key, which is assumed to be chosen uniformly at random from some

(sufficiently large) key-space. In practice, the key-space is usually the set {0, 1}m, for some

large m, and the key associated with each item is generated by applying a cryptographic

hash function (such as MD5 or SHA-1) to the item’s name/description. Without loss of

generality we will assume that the key-space is the unit interval [0, 1). Also we will often

assume that this interval wraps around such that point 1 coincides with 0 — thus, forming

the unit ring.

Every node in a DHT is associated with a subset of the key-space, called the node’s block,

such that the blocks of the nodes that are in the system at any given time form a partition

of the key-space. Each node stores the items whose keys lie in its block. For example, the

following simple scheme is used in the Chord DHT [77] to partition its unit ring key-space

into nodes’ blocks. Every node, upon its arrival to the system, is associated with a randomly

selected point in the key-space, called the node’s ID. The block of each node is the arc

consisting of the points that are closer to the node’s ID than to the IDs of the other nodes,

with respect to the clockwise distance along the ring — from the point to the ID. Note that

every time a node arrives or departs from the system, the partition of the key-space changes;

and each item whose key is in the subset of the key-space that gets reassigned to a different

node must be transferred to the node that becomes responsible for that key.

Communication between nodes is facilitated by maintaining overlay connections between

them. Specifically, each node maintains connections to a carefully selected, small set of

nodes, such that the resulting network can support efficient decentralized routing from any

node to the node responsible for any given key. A node chooses the nodes it connects to

based on the positions of its block and of their blocks in the key-space. For example, Chord

Chapter 1. Introduction 4

employs a hypercube-like routing network, where each node u has connections to the nodes

that are responsible for the points at clockwise distances 2−k, for k = 1, 2, . . . , from u’s ID. It

also uses the following distance-halving routing scheme: A node u greedily forwards requests

for keys that u and its clockwise successor node in the ring are not responsible for to the

furthest neighbor of u whose ID precedes the requested key. Note that the routing network

must be updated when nodes arrives or depart from the system.

It is straightforward how a node can insert, retrieve or update a data item in a DHT.

First it computes the key of the item (the hash-value of its name/description), and then it

hands in the request for this key to the routing network which routes the request to the node

responsible for this key.

DHTs have received considerable attention from the research community. Among the

designs that have been proposed are CAN [68], Chord [77], Tapestry [31], Pastry [72],

Viceroy [48], Kademlia [56], Symphony [52], Koorde [34], DH [62], d2b [22], and many more.

Also a number of DHT implementations are available (Chord[77], Bamboo[71], P-Grid [1]).

The design of a DHT can be divided into thee components [51]: the key-space partitioning

scheme, the routing network, and the data management protocol.

I. Key-space partitioning scheme: This is the protocol that describes how the key-

space is partitioned among the nodes. Specifically, it describes how a new node is

assigned its own block (pieces of which previously belonged to old nodes), and how

the block of a departing node is redistributed among (some of) the remaining nodes.

A good key-space partitioning scheme should be decentralized; it should have low

message complexity; each arrival and departure should incur minimal perturbation

to the current partition of the key-space; and it should ensure that all blocks are

roughly of the same size. The last requirement is motivated by load balancing, and

we quantify it in terms of the ratio ρ between the largest and smallest block sizes the

scheme achieves. Specifically, we require that ρ should be small, ideally close to 1. As

we will see in Chapter 2, under some reasonable assumptions, ρ is an accurate estimate

of the ratio of maximum over minimum number of items stored per node. So, small ρ

yields a balanced distribution of the storage load among the nodes. We will talk about

key-space partitioning schemes in more detail in Chapter 2.

II. Routing network: This component specifies how each node chooses the set of nodes

it connects to, and how these connections are updated in the face of arrivals and

departures of other nodes. It also describes a decentralized routing protocol for the

Chapter 1. Introduction 5

resulting network that facilitates routing from any node to the node responsible for

any given key.

The dynamism and scale of P2P systems stipulate that each node in a DHT should

maintain only a small number of connections to other nodes. On the other hand, these

connections should facilitate short routing paths between arbitrary nodes. Typical

designs achieve logarithmic (in the network size) path lengths, using a logarithmic

number of connections per node. A common strategy in the design of routing networks

for DHTs is to first identify a static graph family that is known to possess good prop-

erties, e.g., one of the classical interconnection networks (the hypercube, the butterfly,

and the de Bruijn graph) [43], or a probabilistic variation of them; and then describe a

dynamic network that “approximates” the topology of this static graph family in the

face of arrivals/departures, and large variations in the number of nodes. The dynamic

network maintains desired properties of the static graph family including low degree,

and efficient routing protocol. Several designs have been proposed that approximate

specific static families of graphs. We review some of these designs in Chapter 7. In

addition, techniques have been suggested for approximating arbitrary static families

of graphs [49, 2, 50, 63]. Note that the task of approximating a static graph family is

significantly simplified if the key-space partitioning scheme achieves ρ that is bounded

by a small constant [50]. This is an additional motivation (besides load balancing) for

designing partitioning schemes that guarantee small ρ.

Short routing paths (in the overlay network) do not necessarily mean paths of low

latency. Thus, it is also desired that the latency of every routing path be close to the

latency of routing between the same pair of nodes in the underlying network (e.g., the

ping-time, when the underlying network is the Internet). Routing paths of low latency

can be achieved by taking into account the latency between nodes when a node chooses

the nodes it sets up connections to, and also when it chooses the next hop to forward

a message to in routing. (E.g., see [64, 72, 31, 50].)

Network maintenance is straightforward assuming that any two operations (arrivals

or departures of nodes) do not overlap in time, or they affect non-overlapping sets of

nodes. Updating the overlay network after each arrival or departure requires then a

number of message that is proportional to the degree of the nodes. However, mainte-

nance in the face of frequent (concurrent) arrivals and departures, and possibly failures

is a more involved task. For work on this problem see [77, 45, 31, 44, 71].

Chapter 1. Introduction 6

III. Data management protocol: This component is responsible for the availability of

data items in the face of failures, and for the alleviation of hot spots (i.e., the overloading

of nodes responsible for keys that are requested extremely often). Various replication

and caching protocols have been suggested for this purpose (e.g., see [68, 31, 17, 63]).

1.3 Small-world models and P2P networks

Randomized network constructions that model the Small-World Phenomenon — the premise

that any two people in a society are connected with short chains of acquaintances, have

attracted a lot of research interest recently. The quantitative study of the phenomenon

started with Milgram’s experiments in the 1960’s [57], where people were asked to send

letters to unfamiliar targets only through acquaintances. Watts and Strogatz [81] observed

that the Small-World Phenomenon is common in many large-scale real-world networks. They

also suggested modeling the phenomenon using a simple random graph model: Individuals

are the nodes in a ring lattice; each node is connected to its k nearest ring neighbors, for

some small constant k — the node’s “local contacts,” and to a small number of nodes chosen

uniformly at random from the set of nodes — the node’s “long-range contacts.” This model

captures two crucial properties of social networks: high clustering, and low diameter — the

model has high clustering because of the local contact links, and it has low diameter (like

uniform random graphs) because of the long-range contact links.

Kleinberg initiated the study of an algorithmic perspective of the Small-World Phe-

nomenon [39]: small-world experiments showed not only that short paths exist in social

networks, but that individuals can find such paths based on local information. He proposed

a simple and elegant framework to model this ability of small-world networks to support

efficient decentralized search. In his model, which extends the model of Watts and Strogatz,

individuals are the nodes in a d-dimensional lattice. As in Watts and Strogatz’s model, each

node has links to its lattice neighbors (local contacts) and to a small number of random,

independently selected, long-range contacts. Now, however, each long-range contact of a

node u is chosen from a non-uniform distribution: a node at lattice distance s from u is

selected with probability proportional to 1/sα, for some constant parameter α of the model.

Kleinberg showed that efficient decentralized search is possible only for α = d. In particular,

when α = d, a simple greedy search algorithm works: each node forwards a request to its

(local or long-range) contact that is closest to the destination node, with respect to the

lattice distance.

Chapter 1. Introduction 7

Besides modeling a common property of social networks, Kleinberg’s work implicitly

suggested a new design principle for large-scale networked systems that support efficient

decentralized routing. A natural application for this design principle has been the design of

P2P systems. There are many examples of structured P2P systems [6, 52, 29, 84], where,

as in Kleinberg’s model: nodes are embedded in a d-dimensional lattice (with d = 1 in most

cases); each node has links to its lattice neighbors, and to a small number of long-range

contacts selected independently for each node, from a distribution that favors closer nodes

over distant ones (in the lattice); and the routing protocol used is the greedy one, with

respect to the lattice distance. This combination of network topology and routing protocol

is particularly attractive for P2P systems, mainly for its simplicity and the nice properties

of greedy routing. We discuss this model and its properties in greater detail in Chapter 7.

1.4 Our contribution

We study two issues that are central to the design of P2P systems: load balancing, and

routing. Specifically, we focus on the following two problems.

Load balancing in DHTs

In the first part of this thesis, we propose and analyze a simple and efficient key-space

partitioning scheme that guarantees, with high probability,1 that ρ remains bounded by a

small constant. A unique feature of this scheme is that it can tolerate adversarial arrivals

and departures of nodes. A preliminary version of this work appeared in [27].

The complexity of greedy routing in uniformly-augmented rings

In the second part of this thesis, we study the message complexity of a natural greedy routing

protocol, in a broad class of ring-based random networks, called uniformly-augmented rings.

This model is inspired by Kleinberg’s model for small worlds, and captures many P2P designs

that have been proposed. For this model we establish a lower bound on its routing complexity,

which almost matches the corresponding known upper bound. A preliminary version of this

work was published in [28].

1By “with high probability” (whp) we mean “with probability 1−O(n−c) for some constant c > 0, for a
system of size n.”

Chapter 1. Introduction 8

1.5 Road-map of the thesis

The rest of this thesis is organized as follows. In Chapter 2, we study the problem of load

balancing in DHTs, and present a novel key-space partitioning scheme. Chapters 3–6 contain

an analysis of the load balancing properties of this scheme. In Chapter 7, we investigate the

complexity of greedy routing in the class of uniformly-augmented rings, and we present a new

lower bound. A proof of this bound is described in Chapter 8. We conclude, in Chapter 9,

with a brief summary of our results, and an outline of some open research problems that are

closely related to them.

Chapter 2

Balanced key-space partitioning in

DHTs

In this chapter and the next four, we propose and analyze a simple key-space partitioning

scheme for DHTs. This scheme is inspired by the multiple random choices paradigm [8, 59].

It achieves, with high probability, a ratio of at most 4 between the loads of the most and

least burdened nodes, in the face of both arrivals and departures of nodes. Each arrival and

departure incurs an O(log2 n) message cost, where n is the number of nodes, and causes the

relocation of keys between at most two nodes (for arrivals) or three nodes (for departures).

A unique feature of this scheme is that it provides the above performance guarantees even

when the sequence of arrivals and departures is controlled by an adversary.

2.1 Introduction

One of the main components of a DHT is its key-space partitioning scheme, which determines

how the key-space is divided among the nodes in the system. More precisely, it describes

a protocol for repartitioning the key-space, which is executed every time a new node joins

the system or an old one departs from it. So, when a new node arrives it is assigned its

own block, pieces of which previously belonged to old nodes, and when an old node departs

its block is redistributed among some of the remaining nodes. Besides transferring pieces of

the key-space to the arriving node or from the departing node, the arrival or departure of a

node may involve transferring pieces of the key-space between (a few) other nodes, as well.

Typically, a key-space partitioning scheme specifies that the arriving (or departing) node

9

Chapter 2. Balanced key-space partitioning in DHTs 10

u, which is assumed to be oblivious of the other nodes’ blocks initially, learns the blocks of

a small sample of other nodes, and then it decides how these blocks should be updated to

accommodate the arrival (or departure) of u. In general, u can find out about the block of

another node in one of two ways:

• Local probe: u retrieves the block of one of its neighbors in the overlay network, or the

block of some neighbor of a node that u had previously discovered; for this operation,

a constant overhead is required in terms of routing messages in the overlay network.

• Random probe: u retrieves the block containing a point selected (uniformly) at random

from the key-space, by routing a request to the corresponding node through the overlay

network; the incurred overhead is that of routing in the overlay network.

We will quantify the performance of a key-space partitioning scheme using the following

three measures:

◦ Message cost : the number of routing messages in the overlay network required to

determine how the partitioning of the key-space should be updated to accommodate

the arrival or departure of a node. (We do not count the messages needed to transfer

the actual items that are reassigned to different nodes, or the messages used to update

the overlay connections.)

◦ Perturbation: the number of nodes whose blocks are modified per arrival (departure),

in addition to the arriving (departing) node.

◦ Imbalance ρ: the ratio between the largest and smallest block sizes in the system.

The scalability requirement of DHT designs dictates that the message cost of a key-space

partitioning scheme should be low; i.e., at most poly-logarithmic in the system size. The

perturbation measure is indicative of the amount of changes that result from the arrival or

departure of a node. Note that when the block of a node u is modified, say from b to b′, the

items with keys in b − b′, which are currently stored in u, need to be transferred to other

nodes, and the items with keys in b′ − b stored in other nodes must be transferred to u.

Also, overlay connections to and from u may need to be modified. It is, hence, desirable

that the perturbation be small, ideally equal to 1. The imbalance ρ measures how balanced

the storage load is. Notice that in the (typical) setting where the number of items stored

in the system is significantly larger than the number of nodes, ρ is very close to the ratio of

maximum over minimum number of items stored per node — recall that the items’ keys are

selected independently and uniformly at random over the key-space. It is therefore desirable

Chapter 2. Balanced key-space partitioning in DHTs 11

that ρ remains small, ideally bounded by a constant close to 1. An additional advantage

of having ρ bounded by a small constant is that it typically simplifies the overlay network

construction — it makes it easier to approximate static network topologies [62, 50]. Also,

it simplifies a number of useful operations such as obtaining an accurate estimate of the

network size, and choosing a node uniformly at random [38].

In the analysis of key-space partitioning schemes it is typical to assume that arrivals

and departures of nodes take place sequentially. Note, however, that, since in most of these

schemes the outcome of an arrival or departure depends only on a very small, randomly

selected fraction of the system, it is very likely that two concurrent operations involve disjoint

sets of nodes, and, thus, they appear as if they occurred sequentially. Hence, usually similar

results apply up to some degree of concurrency, as well.

In general, the performance of a key-space partitioning scheme depends on how the

sequence of arrivals and departures that takes place is decided. We distinguish two different

models.

⋆ Random arrivals/departures: the order in which arrivals and departures occur is de-

termined before the first of these operations takes place. The actual node that departs

when a departure takes place is decided later, when the departure is about to occur;

the node to depart is selected uniformly at random among the nodes in the system at

that time.

⋆ Adversarial arrivals/departures: the order in which arrivals and departures take place,

and the actual node that departs when a departure occurs are determined by an adap-

tive adversary; the adversary decides the next operation to take place based on the

complete history of the system up to that point.

Using standard terminology of online algorithms, in the first model the order in which

arrivals and departures take place is determined by an oblivious adversary, while in the

second model the order of arrivals and departures, and the nodes that depart are determined

by an adaptive online adversary. Some of the key-space partitioning scheme that have been

proposed were analyzed assuming that no nodes ever depart from the system. Note that

under this restriction, the two models we described above are equivalent.

In the rest of this chapter, we first survey key-space partitioning schemes that have been

proposed in the literature, in Section 2.2. Then, in Section 2.3, we describe a novel key-

space partitioning scheme, discuss its properties, and compare it to existing schemes. We

conclude, in Section 2.4, with a road-map of the analysis of this scheme, which is described

Chapter 2. Balanced key-space partitioning in DHTs 12

in Chapters 3–6.

2.2 Existing key-space partitioning schemes

2.2.1 Early schemes

Most of the DHT structures that have been proposed so far employ one of two key-space par-

titioning schemes, suggested in early DHT designs. We will refer to them as the consistent-

hashing paradigm, and the random-tree paradigm. We describe each of these schemes below.

Consistent-hashing paradigm

This scheme was first used in Chord [77], and it was inspired by the consistent-hashing

technique [35]. The key-space used in this scheme is a ring, and every node is responsible for

the keys in some arc of this ring. Specifically, every node upon its arrival is associated with

a random ID, drawn independently and uniformly from the key-space. The block each node

is responsible for is the arc consisting of the points that are closer to the ID of that node

than to the ID of any other node in the system, with respect to the clockwise distance along

the ring, from the point to the ID. (Other distance functions, such as the absolute distance

along the ring, have also been considered.) Whenever a new node arrives to the system or

an old one departs, the partition of the key-space is updated accordingly.

This scheme is very efficient in terms of message cost, since it requires a single random

probe per arrival, while departures do not require any probes — the clockwise successor node

of the departing node assumes responsibility of its blocks. Also, the incurred perturbation is

minimum, i.e., the block of just one other node is modified per arrival or departure. However,

this scheme does not achieve ρ bounded by a constant. Specifically, if arrivals and departures

are random then the ratio of largest to average block sizes in an n-node system is Θ(log n),

with high probability (whp) [48]; and the ratio of average to smallest block sizes is Ω(n/ ln n),

whp (see [38]).

If every physical node acts as k = Ω(log n) independent virtual nodes, each associated

with a distinct arc, then ρ is bounded by a constant, whp, in the face of random arrivals and

departures [35, 77]. However, this approach inflates the message cost and the perturbation

by a factor of k. The number of overlay connections a node should maintain is also increased

by that factor.

Chapter 2. Balanced key-space partitioning in DHTs 13

A useful property of the consistent-hashing paradigm is that the current key-space parti-

tion depends only on the set of IDs currently in the system; specifically, it does not depend

on the history of nodes’ arrivals and departures that have taken place. On the other hand,

the random-tree paradigm we describe next does not have this property. Consequently, the

analysis of the consistent-hashing paradigm is simpler. We discuss this issue in more detail

at the end of Section 2.3.

Random-tree paradigm

This is the key-space partitioning scheme proposed in CAN [68]. The key-space used is a d-

dimensional hyper-rectangle, for some d ≥ 1, and the block of each node is a d-dimensional

hyper-rectangular subspace. Arrivals and departures of nodes are handled as follows. A

newly-arrived node performs a random probe; the block retrieved is split in half along one

of the dimensions; and the new node assumes responsibility for one half, while the other

half remains with the node previously responsible for the whole block. Note that the split is

done by assuming a certain ordering of the dimensions in deciding along which dimension the

block is to be split, so that blocks can be re-merged when nodes depart (as we describe next).

To describe how departures are handled we will need the following two definitions. The two

blocks that result by splitting a block in half are called sibling blocks; and the blocks that

result from a block by one or more splits are called the descendants of that block. When

a node departs from the system, it hands over its block b to the node responsible for the

sibling b′ of b, if b′ is not currently split in smaller blocks. Otherwise, two existing sibling

blocks a, a′ that are descendants of b′ are identified. (There is always at least one such pair

of blocks.) a and a′ are then merged and the resulting block is assigned exclusively to one

of the two nodes previously responsible for them, while the other node becomes responsible

for b.

The above scheme can be conveniently described as a process executed on a binary tree.

Think of the blocks in the current partition of the key-space as the leaves of a full binary

tree. Each internal vertex of this tree represents a block that no longer exists — it was split

at some previous time; its children correspond to the two sibling blocks into which it was

split. We call this tree the partition tree. The procedure for handling the arrival of a new

node in the system can then be described as: pick a leaf at random such that a leaf that is

at depth ℓ is chosen with probability 2−ℓ (i.e., proportional to the size of the corresponding

block), and attach two children to it. Likewise, the procedure for handling the departure of

Chapter 2. Balanced key-space partitioning in DHTs 14

a node simply removes the leaf that corresponds to the departing node and its sibling vertex

v, if v is also a leaf; if v is not a leaf, it removes, instead, two sibling leaves that are in the

subtree rooted at v.

Note that the difference between the maximum and minimum depths of leaves in the

partition tree is log ρ. So, the notion of balance of a key-space partition readily translates

into the balance of the corresponding partition trees. Another useful observation is that the

depth of a leaf in a balanced partition tree is a very accurate estimate of log n; in particular

it approximates log n within a log ρ additive term.

It is not difficult to show that if no nodes ever depart from the system, the scheme

achieves the same ratio of largest to average block sizes as the consistent-hashing paradigm,

and better ratio of average to smallest block sizes. (The latter is Ω(log n/ log log n), whp.)

The message cost and perturbation per arrival are the same as in the consistent-hashing

paradigm. For departures, the message cost is O(log ρ), and the perturbation is at most 2.

(For the message cost of departures, we assume that each node u maintains connections to

all the nodes whose blocks are adjacent to u’s in the key-space. So, the departing node can

identify the pair of sibling blocks that should be merged using at most log ρ+1 local probes.)

2.2.2 Schemes that achieve bounded ρ

Neither of the key-space partitioning schemes we described in the previous section achieves

imbalance bounded by a constant (unless we employ the costly technique where each node

acts as Θ(log n) virtual nodes.) A number of schemes were subsequently proposed specifically

to address this issue. Four of them [2, 4, 50, 37] are variations of the random-tree paradigm,

and one [36] is a variant of the consistent-hashing paradigm. Two of these schemes [50, 36]

provably maintain bounded ρ in the face of both (random) arrivals and departures. The

other three either describe a procedure for handling departures but they do not analyze it,

or they do not handle departures at all. We briefly describe these schemes below.

Variations of the random-tree paradigm

All the variations of the random-tree paradigm follow roughly the same approach. The

arrival of a node is handled by sampling a set A of Θ(log n) blocks, and then picking a

largest block in A and splitting this block between the new node and its previous owner, as

in the random-tree paradigm. (Recall that log n can be estimated within a log ρ additive

term, from the size of the block of a node.) The departure of a node is accommodated by

Chapter 2. Balanced key-space partitioning in DHTs 15

again sampling a set D of Θ(log n) blocks, picking a smallest block in D, switching blocks

between the owner of the block picked and the departing node, and then executing the

procedure for departures of the original random-tree paradigm. The variations proposed are

differentiated mainly by the way the sets A and D are chosen.

Inspired by the multiple random choices paradigm [8, 59], Abraham et al. [2] analyzed

the scheme for handling only arrivals, where the sample set A consists of the blocks retrieved

by k ≥ 2 independent random probes. (Recall that in the original random-tree paradigm

k = 1.) They showed that after a sequence of n arrivals (starting from an empty system),

ρ = O(22 log log n/ log k), whp; hence, for k = Ω(log n), ρ = O(1). If k = Θ(log n) the message

cost is Θ(R log n), where R is the message complexity of routing in the overlay network. The

same protocol (for k = Θ(log n)) was independently studied by Naor and Wieder [62].

Adler et al. [4] studied the variation where A consists of a block b retrieved using a

random probe, and of the blocks of the overlay neighbors of b’s owner (retrieved using local

probes); and D consists of the block of the departing node and the blocks of its overlay

neighbors. Clearly, this scheme cannot achieve balanced partitions for arbitrary overlay

networks. However, Adler et al. showed that it guarantees bounded ρ when combined with a

hypercube-like overlay network of a logarithmic node degree that they described. Specifically,

they proved that, whp, ρ is bounded after a sequence of n arrivals (starting from an empty

system). Experimental evaluation suggests that the scheme works well in the face of random

departures of nodes, as well, but no analytical results are known in this case. The message

cost is R + Θ(log n) for arrivals, and Θ(log n) for departures, where R = Θ(log n).

Manku [50] studied two variations of the random-tree paradigm: one that handles arrivals

only, and a more involved version of it, which also supports departures. In the first scheme,

A is chosen as follows. We perform a random probe; let b be the block retrieved. A then

consists of the blocks that are leaves of a subtree T of the partition tree such that T contains

b and has size Θ(log n). The blocks in A−{b} are retrieved using local probes. This scheme

has similar performance and provides analogous guarantees as the scheme proposed by Adler

et al. [4].

In the more involved variation of the random-tree paradigm that Manku described in [50],

A is selected as before, and, similarly, D consists of the leaves in a subtree of size Θ(log n) that

contains the block of the departing node. The scheme also assigns to each node a random ID.

A node’s ID is initially the point selected by the random probe that is performed upon the

node’s arrival, but it may change subsequently — the node may switch its ID with another

node’s. When a node departs, its current ID disappears from the system. These IDs affect

Chapter 2. Balanced key-space partitioning in DHTs 16

the choice of which among the blocks in A is split during an arrival, and which blocks in

D are merged during a departure. Roughly speaking, the following invariant is maintained:

each subtree T of size Θ(log n) is balanced, and the IDs associated with its leaves belong to

the block that corresponds to the root of T . This scheme guarantees that, starting from an

empty system, a sequence of random arrivals and departures results in ρ ≤ 4, whp (in the

final number of nodes in the system). The message cost is R + Θ(log n) for arrivals, and

Θ(log n) for departures.

Kenthapadi and Manku [37] proposed a scheme for handling only arrivals, which combines

the first of the schemes presented in [50] and the scheme in [2, 62]. A is chosen as follows.

We perform k independent random probes, where k is a system parameter, and it may be a

function of the system size. Let b1, . . . , bk be the blocks retrieved by these probes. A consists

then of the blocks that are leaves in the subtrees T1, . . . , Tk of the partition tree, where Ti

contains bi, and has size Θ(1
k

log n). Note that when k = 1 the scheme is the same as that

in [50], while for k = Θ(log n) it resembles the scheme in [2, 62]. For k = O(log n), it is

shown that ρ ≤ 8, whp, and the message cost is Θ(kR + log n). A procedure symmetric to

that of handling arrivals was suggested to handle departures but no analysis was provided.

A variation of the consistent-hashing paradigm

Karger and Ruhl [36] proposed the following variation of the consistent-hashing paradigm.

The key-space is the unit ring [0, 1). Each node is associated with Θ(log n) randomly selected

IDs — points in [0, 1), only one of which is active at any time. The key-space is partitioned

among nodes as in the consistent-hashing paradigm, based on the nodes’ currently active

IDs. A node chooses its active ID as follows. Consider the following ordering of all points in

[0, 1) that have a finite binary representation: 0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . .

(Note that the i-prefix of this sequence divides the unit ring into i arcs of lengths 2−⌊log i⌋ and

2−⌈log i⌉.) After a newly-arrived node has chosen its IDs, it activates the one that results in

assigning to the new node the block containing a point x that appears earliest in the above

ordering. This may cause the node previously responsible for x to change its own active

ID, and so on. Departures are also followed by chained reactions of nodes that change their

active IDs. Karger and Ruhl showed that this scheme always converges to a (unique) stable

key-space partition, and that this partition has ρ = O(1), whp (assuming random arrivals

and departures). The incurred perturbation, for both arrivals and departures, is O(log log n)

expected, and O(log n) whp. Finally, the message cost is O(R log n) per arrival and O(log n)

Chapter 2. Balanced key-space partitioning in DHTs 17

per departure.

Other approaches

Two key-space partitioning schemes that use additional data structures are sketched in [48]

and [62], namely the Bucket Solution and the Cyclic Scheme, respectively. These schemes

presumably achieve bounded ρ, but their details and formal analysis are not provided. The

basic idea behind the Bucket Solution is similar to that in the scheme proposed by Manku

in [50]: nodes are organized into buckets of size Θ(log n), and the nodes inside each bucket

balance the load among them. The Cyclic Scheme is deterministic and it works, roughly,

by ensuring that each block (in the unit ring key-space) has length 2⌊log n⌋ or 2⌈log n⌉, and

all large blocks are in one contiguous interval — and, thus, the same is true for the small

blocks. A serious limitation of this scheme is that it does not allow for concurrent arrivals

or departures of nodes.

2.3 A new key-space partitioning scheme

The key-space partitioning scheme we propose is a variation of the random-tree paradigm,

and is inspired by the multiple random choices paradigm [8, 59] — similarly to the scheme

suggested in [2, 62]. Below we give a detailed description of this scheme and discuss its

properties.

2.3.1 Description of the scheme

As in the variations of the consistent-hashing paradigm we saw in Section 2.2.2, the scheme

we propose differs from the original random-tree paradigm (described in Section 2.2.1) in

the way it chooses which block is split when a new node arrives, and which pair of sibling

blocks is merged when an old node departs. Roughly speaking, the arriving or departing

node performs a logarithmic number of independent random probes; the block split in case

of an arrival is the largest among those discovered; while the pair of blocks merged in case

of a departure corresponds to the smallest block discovered.

More precisely, a newly-arrived node u performs the following steps. First it executes

a single random probe. Let δ be the depth of the block retrieved — i.e., the depth of the

corresponding leaf in the partition tree. u then curries out λ+(δ)−1 additional independent

random probes, where function λ+ is a parameter of the scheme such that λ+(k) = Θ(k).

Chapter 2. Balanced key-space partitioning in DHTs 18

Next, u picks a largest block b among those discovered (including the block retrieved in the

initial probe). Finally, as in the original random-tree paradigm, b is split into two halves, and

one half becomes the block of u while the other remains with the node previously responsible

for b.

The departure of a node u is handled as follows. Before u leaves the system it performs

λ−(δ) independent random probes, where δ is the depth of u’s block, and λ− is again a

parameter of the protocol such that λ−(k) = Θ(k). If any of the blocks discovered by the

random probes is smaller than u’s, then u exchanges blocks with the owner of a smallest

of these blocks. (Otherwise, no exchange of blocks takes place.) Finally, u executes the

procedure that handles the departure of a node in the original random-tree paradigm.

2.3.2 Properties

As in the original random-tree paradigm, the depth of each block in an n-node system is

within log n ± log ρ. Hence, the number of random probes the scheme performs per arrival

or departure of a node is O(log n + log ρ). In particular, when ρ is bounded by a constant,

Θ(log n) random probes are performed. The number of local probes required per departure

is O(log ρ) — the same as in the random-tree paradigm. Therefore, the message cost of

the scheme is O(R · (log n + log ρ)) for both arrivals and departures, where R is the message

complexity of routing in the overlay network. In particular, when ρ is bounded by a constant,

the message cost is Θ(R log n). Also, as in the random-tree paradigm, the perturbation is 1

for arrivals, and at most 2 for departures.

The scheme achieves ρ bounded by a constant in the face of adversarial arrivals and

departures. We show that if functions λ+ and λ− are large enough (i.e., λ±(k) ≥ ak + b, for

large enough constants a and b) then the following two results hold. We call a partition of

the key-space safe if, roughly speaking, either ρ ∈ {1, 2}, or ρ = 4 and most blocks are of

intermediate size.

(a) If we start from a safe partition of the key-space then, whp, in Θ(n) operations (arrivals

or departures) another safe partition is reached, and all intermediate partitions have

ρ ≤ 4.

(b) Starting from any non-safe partition of the key-space, a safe partition is reached after

O(d2d) operations, whp, where d is the maximum depth of blocks initially.

Combining the above two results we also show that (for large enough λ+, λ−) the scheme

typically results in “long” intervals where ρ ≤ 4, interrupted by “much smaller” intervals

Chapter 2. Balanced key-space partitioning in DHTs 19

where it may be ρ > 4.

Our analysis of the load balancing the scheme achieves depends critically on two prop-

erties of the scheme: (1) when a node arrives, a block of depth d is split only after Ω(d)

random probes have been preformed; and (2) during each departure at least Ω(µ) random

probes are performed, where µ is the minimum depth of blocks in the system. So, the same

analysis applies even if the first of the blocks sampled during an arrival (and, thus, δ) is

chosen by the adversary — not by a random probe. Also, in departures, any value for δ such

that δ ≥ µ would work; we let δ be the depth of the departing node just for simplicity.

Comparison with other schemes

In the scheme we presented, the procedure for handling arrivals is very similar to that

suggested in [2, 62]. The procedure for handling departures, however, is novel, and so is the

analysis of the scheme’s load balancing properties.

A unique feature of our scheme is that it achieves bounded ρ in the face of adversarial

arrivals/departures — resolving an open problem posed in [82]. As we saw in Section 2.2.2,

only two other schemes provably achieve ρ bounded by a constant in the face of both arrivals

and departures; namely those proposed in [36] and [50]. However, both of them do so under

the (strict) model of random arrivals/departures.

About the other performance measures, the message cost of our scheme is larger by

a logarithmic factor compared to the scheme in [50], while both schemes incur the same

perturbation. Compared to the scheme in [36], our scheme has similar message cost (the

same cost for arrivals and worse cost by a logarithmic factor for departures), and smaller

perturbation.

The schemes in [36] and [50] possess the nice property that the partition of the key-space

at each time depends only on the IDs of the nodes that are in the system at that time; so,

it does not depend on the actual sequence of nodes’ arrivals and departures that resulted in

these IDs.1 This Markovian property means that the system can be analyzed as if it were

static, with a fixed set of nodes and resources. Such an analysis is generally much simpler

than a dynamic, history-dependent analysis. Our scheme, on the other hand, does not have

this property, thus, its analysis is more intricate. It is important to stress, however, that

this complexity is an aspect of the analysis, not of the scheme itself. Our scheme is much

simpler than the schemes in [36] and [50].

1More precisely, this is true for the scheme in [36]; for the scheme in [50] a slightly weaker invariant holds.

Chapter 2. Balanced key-space partitioning in DHTs 20

We conclude with an informal explanation of why the schemes in [36] and [50] cannot

guarantee that ρ stays bounded by a constant in the face of adversarial arrivals/departures.

As we mentioned above, in both schemes at each time ρ depends only on the IDs of the nodes

that are in the system at that time. The schemes’ ability to guarantee that ρ stays bounded

under random arrivals/departured depends critically on the fact that in this model the IDs

that there are in the system at each time are distributed independently and uniformly over

the key-space. (Recall that new IDs are generated independently and uniformly at random;

the order of arrivals and departures is predetermined; and in each departure the ID that is

deleted is selected independently and uniformly at random among the existing IDs.) Under

the adversarial model of arrivals/departures, however, the IDs in the system may not be

distributed independently and uniformly. For example, the adversary may choose to remove

all the IDs that fall in certain parts of the key-space resulting in an arbitrarily skewed

distribution.

2.4 Road-map of the analysis

In the next four chapters we provide an analysis of the key-space partitioning scheme we

presented above.

In Chapter 3, we formulate as a random process the evolution of the key-space partition

in a DHT that employs the above scheme; we call this a B-process. We then describe a slight

variation of this process, called S-process, which is easier to analyze and is shown to have

worse load balancing performance that the B-process. This result will allow us to analyze

the S-process, instead, and obtain performance bounds that also apply to the B-process.

In Chapters 4 and 5, we study the load balancing properties of the S-process. Specifically,

in Chapter 4, we consider the case where the initial partition of the key-space is safe. We

show that if we start from a safe partition of n blocks (and λ+, λ− are large enough) then,

whp, in Θ(n) steps (i.e., arrivals or departures) another safe partition is reached, and all

intermediate partitions have ρ ≤ 4. In Chapter 5, we consider the complementary case,

where the starting partition is not safe, and we provide a probabilistic upper bound on the

number of steps required to reach a safe partition. In particular, we show that if λ+, λ−

are large enough then a safe partition is reached after O(d2d) steps, whp, where d is the

maximum depth of blocks initially.

Finally, in Chapter 6, we use the result of Chapter 3 to show that the results of Chapters 4

and 5, which were shown for the S-process, readily apply to the B-process, as well. Also, we

Chapter 2. Balanced key-space partitioning in DHTs 21

establish a lower bound on the expected fraction of time in the B-process during which we

have ρ ≤ 4.

Chapter 3

Analysis of our scheme – Part I:

Switching to a simpler process

In this chapter we formulate as a random process the evolution of the key-space partition

of a DHT that uses the key-space partitioning scheme described in Section 2.3. We then

describe a slight variation of this process, which is easier to analyze, and we show it has

“stochastically worse” performance than the original process, with respect to load balancing.

In the next chapters we analyze this new process, and then use the results of this chapter to

show that certain performance bounds we proved for the new process apply to the original

process, as well.

We begin, in Section 3.1, with a description of the model of arrivals and departures

we will assume in the analysis. In Section 3.2, we describe binary partitions, the class of

feasible partitions under the scheme we consider, and we introduce some related terminology.

We define some basic operations on binary partitions in Section 3.3, and describe a means

to compare the balance of different binary partitions in Section 3.4. In Section 3.5, we

introduce the two random processes we mentioned above. We compare these two processes,

with respect to their load balance, in Section 3.6.

3.1 The model

As is typical in the analysis of key-space partitioning schemes, we only consider the case

where arrivals and departures of nodes occur sequentially. (Recall the relevant discussion

in Section 2.1.) The sequence of arrivals and departures that takes place is assumed to

22

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 23

be controlled by an adaptive online adversary : the adversary decides the next operation

— i.e., whether a new node arrives or an old one departs, and, in the latter case, which

particular node departs — based on the past history of the system so far. The adversary

cannot affect the nodes’ random choices, nor does she know the outcome of those random

choices in advance.

As in the random-tree paradigm, the key-space partitioning scheme we propose works

for any underlying key-space that is a d-dimensional hyper-rectangle (or a d-torus), for

d ≥ 1. For the sake of concreteness of the analysis, however, we will assume (without loss

of generality) that the key-space is one-dimensional (d = 1) and has unit size; i.e., it is the

unit interval I = [0, 1).

3.2 Binary partitions

In this section we look at the partitions of the key-space I = [0, 1) that can result by using

the key-space partitioning scheme we proposed in Section 2.3; we call these partitions binary

partitions.

The set of binary segments, denoted Γ, is the set of intervals that is recursively defined

by

− I ∈ Γ, and

− if [x, y) ∈ Γ then [x, x+y
2

) and [x+y
2

, y) are also in Γ.

Note that each binary segment b is a subinterval of I, and it has length 2−k, for some k ∈ N;

this k is called the depth of b, and is denoted θ(b). I has depth 0, and all the other binary

segments have depth ≥ 1. For every b ∈ Γ − {I}, the sibling of b, denoted sbl(b), is the

(unique) binary segment such that

b ∩ sbl(b) = ∅ and b ∪ sbl(b) ∈ Γ

For example, if b = [3/8, 1/2) then sbl(b) = [1/4, 3, 8). Note that

θ(sbl(b)) = θ(b) and θ(b ∪ sbl(b)) = θ(b)− 1

A partition of I into blocks is called a binary partition if all the blocks are binary segments.

For n ≥ 1, we denote by Bn the set of all binary partitions of size n, and define B =
⋃

n Bn.

It is easy to see that B represents the set of all partitions that can result by using our key-

space partitioning scheme (or, any key-space partitioning scheme that follows the random-

tree paradigm). In most of our analysis we deal with a special class of binary partitions,

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 24

called sorted binary partitions. A binary partition is sorted if its blocks are sorted (from

left to right) in non-decreasing depth (or, equivalently, in non-increasing length); i.e., for any

two blocks b = [x, y) and b′ = [x′, y′), if x < x′ then θ(b) ≤ θ(b′). For any B ∈ B, there is

a unique sorted binary partition that has the same number of blocks of each depth as B;

we denote it by srt(B). Similarly to Bn and B, we let Sn be the set of all sorted binary

partitions of size n, and S =
⋃

n Sn.

Next, we introduce some notation for quantities associated with B ∈ B. The total

number of blocks of depth k, for k ≥ 0, is denoted sk(B), and the sum of their lengths

is denoted ℓk(B); so, ℓk(B) = 2−ksk(B). For ⊲⊳ ∈ {≥, >, <,≤}, we denote by s⊲⊳k(B) the

number of blocks whose depths belong to the set {i : i ⊲⊳ k}; e.g., s≥k(B) =
∑

i≥k si(B).

We define ℓ⊲⊳k(B) analogously. The minimum depth of blocks in B is denoted µ(B), and the

corresponding maximum ξ(B). The difference ξ(B)−µ(B) is called the balance factor of B,

and is denoted ̺(B). Note that if ρ is the imbalance of B (i.e., the ratio between the largest

and smallest block sizes) then

̺(B) = log ρ

For any z ∈ I, blk(B, z) denotes the block of B that contains z, and θ(B, z) denotes the

depth of this block; i.e., θ(B, z) = θ(blk(B, z)).

In all the above notation, we will often omit parameter B when it is clear which binary

partition we are referring to. For example, we will say “for every B ∈ B, µ ≤ ξ” instead of

“for every B ∈ B, µ(B) ≤ ξ(B);” also, we will write ℓξ(B) instead of ℓξ(B)(B) — or even ℓξ

when B is clear from the context.

Partition trees

In our analysis, it will often be convenient to think of a binary partition B in terms of a

binary tree. Each node in this tree is a binary segment, and it has either two children or

none: The root of the tree is the whole interval I. For every internal node [x, y), its left and

right children are the binary segments [x, x+y
2

) and [x+y
2

, y), respectively. The leaves of the

tree are the blocks of B. We call this tree the partition tree of B. An example is illustrated

in Figure 3.1(a). Note that for any node u of the tree, θ(u) is equal to the depth of u in the

tree — i.e., u’s distance from the root. Also sbl(u) is precisely the sibling node of u in the

tree — i.e., the node with the same parent as u. Finally, note that if B is sorted then in

each level of the tree the nodes of the tree occupy the rightmost spots consecutively, with

no spot left unoccupied in between any two.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 25

0 1/2 13/41/4 3/8

V3 2

5/16

V2 3

(a) (b)

Figure 3.1: (a) A binary partition and the corresponding partition tree; (b) example of a

Vk→k′ operation.

3.3 Basic operations on binary partitions

The two most basic operations on a binary partition are splitting a given block into two

blocks, and merging a given pair of sibling blocks into a single block. Let B ∈ B and b ∈ B.

We denote by spltBlk(B, b):

the binary partition that results from B by splitting b into two sibling blocks

If also |B| > 1 and sbl(b) ∈ B, we denote by mrgBlk(B, b):

the binary partition that results from B by merging b and sbl(b) into a single block

Thinking of binary partitions in terms of their partition trees, spltBlk(B, b) adds a pair of

children to leaf b in the partition tree of B, while mrgBlk(B, b) deletes leaf b and its sibling

node (which must also be a leaf).

We describe now a variation of the above two operations that are specific for sorted binary

partitions. For any S ∈ S and k ∈ N such that sk(S) > 0, we define

Sk(S) = spltBlk(S, b), where b is the last (rightmost) block in S of depth k.

Also, if sk(S) ≥ 2 we let

Mk(S) = mrgBlk(S, b′), where b′ is the first (leftmost) block in S of depth k.

Clearly, Sk(S) and Mk(S) are also sorted binary partitions. In the context of partition trees,

Sk(S) attaches a pair of children to the rightmost leaf in the partition tree of S at depth k,

while Mk(S) removes the two leftmost leaves at depth k.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 26

The next lemma states a simple relation between spltBlk and S, and the analogous

relation between mrgBlk and M. The proof is straightforward and is omitted.

Lemma 3.1. For all B ∈ B and b ∈ B,

(a) srt(spltBlk(B, b)) = Sθ(b)(srt(B))

(b) if |B| > 1 and sbl(b) ∈ B then srt(mrgBlk(B, b)) = Mθ(b)(srt(B))

The lemma below, describes some simple properties of S and M. Parts (a) and (b) say

that Sk and Mk+1 are the inverse of one another. Parts (c)–(e) give sufficient conditions under

which two such operations commute. To simplify notation when we have nested applications

of S and/or M operations, we will often omit all pairs of brackets except for the innermost

pair; for example, we will write Sk3
Sk2

Mk1
(S) to denote Sk3

(Sk2
(Mk1

(S))).

Lemma 3.2. For all S ∈ S and k, k′ ∈ N

(a) if sk ≥ 1 then Mk+1 Sk(S) = S

(b) if sk ≥ 2 then Sk−1 Mk(S) = S

(c) if k 6= k′ and sk, sk′ ≥ 1 then Sk′ Sk(S) = Sk Sk′(S)

(d) if k 6= k′ and sk, sk′ ≥ 2 then Mk′ Mk(S) = Mk Mk′(S)

(e) if k = k′ and sk ≥ 3, or k 6= k′ and sk ≥ 1 and sk′ ≥ 2 then Mk′ Sk(S) = Sk Mk′(S)

The proof of Lemma 3.2 is straightforward and is omitted.

We now define another operation that we will use extensively. We begin by describing

the operation in the context of partitions trees, where its definition is more natural, and then

we express it in terms of the basic operation we defined earlier. Let S ∈ S and k, k′ ∈ N be

such that in the partition tree of S

(i) there is a pair of (sibling) leaves that are at depth k+1 — or, equivalently, their parent

is at depth k; and

(ii) there is a leaf at level k′ 6= k, different from the pair of leaves in (i).

We denote by Vk→k′(S) the sorted binary partition that results from S, if in the partition

tree of S the leftmost pair of sibling leaves whose parent is at depth k are detached from

their parent and then attached to the rightmost leaf at depth k′. An example is illustrated

in Figure 3.1(b). Note that if k > k′ the two leaves move closer to the root, while if k < k′

they move farther away. In the former case we say that a move-up operation occurs, while

in the latter that a move-down operation occurs. Notice that a move-up operation results

in a more balanced partition tree than the original, while a move-down operation results in

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 27

a less balanced tree. We will make use of this observation in Section 3.4 to compare binary

partitions in terms of their balance.

It is straightforward to verify that conditions (i) and (ii) above are equivalent to

k′ = k + 1 and sk+1 ≥ 3 or k′ /∈ {k, k + 1} and sk+1 ≥ 2 and sk′ ≥ 1

and that Vk→k′(S) can be expressed as

Vk→k′(S) = Sk′ Mk+1(S),

By Lemma 3.2(e), we also have the following equivalent definition for Vk→k′(S):

Vk→k′(S) = Mk+1 Sk′(S)

Finally note that, by Lemmata 3.2(a) and (b),

Sk′ Mk+1(S) = S ′ ⇒ Mk+1(S) = Mk′+1(S
′) ⇒ S = Sk Mk′+1(S

′)

therefore,

Vk→k′(S) = S ′ ⇒ S = Vk′→k(S
′) (3.1)

The above result is also immediate from the definition of Vk→k′(S) in terms of the partition

trees.

Recall that to apply operation Sk or Mk′ to S ∈ S we must ensure that sk(S) ≥ 1 or

sk′(S) ≥ 2, respectively. We now define two operations that extend S and M, by relaxing

the above preconditions. Recall that µ(S) denotes the minimum depth of blocks in S, and

ξ(S) denotes the corresponding maximum. For any S ∈ S and k ≥ µ(S), we let

Ŝk(S) = Sa(S), where a = max{i ≤ k : si(S) ≥ 1}.

Also, for any S ∈ S such that |S| > 1, and any k′ ≤ ξ(S), we let

M̂k′(S) = Ma′(S), where a′ = min{i ≥ k′ : si(S) ≥ 2}.

(a′ is well defined since sξ(S) ≥ 2.) Note that if sk(S) ≥ 1 then Ŝk(S) = Sk(S), and if

sk′(S) ≥ 2 then M̂k′(S) = Mk′(S).

When we have nested application of V, Ŝ, and M̂, we will use the same convention

regarding brackets that we use for S and M.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 28

3.4 Comparing the balance of binary partitions: the �

relation

A simple measure of the balance of a binary partition is its balance factor ̺. (Recall that ̺

is the difference between the maximum depth ξ of blocks and the corresponding minimum

µ.) For our analysis, however, we will need a more elaborate measure. We describe a

partial order on S, which provides for a very natural way to compare the balance of sorted

binary partitions. Non sorted binary partitions can also be compared, by considering their

respective sorted binary partitions.

We define the binary relation � on Sn (the set of all sorted binary partitions of size n)

as follows. For any S, S ′ ∈ Sn, S � S ′ if it is possible to obtain S ′ by applying zero or more

move-down operations to S. Formally, S � S ′ iff one of the next two conditions holds:

• S ′ = S

• S ′ = Vkj→k′

j
· · ·Vk1→k′

1
(S), where j ≥ 1 and ki < k′

i for all i ∈ [1..j].1

Equivalently, S � S ′ if we can obtain S by applying zero or more move-up operations to S ′.

(The equivalence follows from (3.1).) We define relations �, ≻, and ≺ on Sn in the obvious

way.

Lemma 3.3. � is a partial order.

Proof. Reflexivity and transitivity are immediate from the definition of �. Antisymmetry

follows from the observation that a move-down operation strictly increases the average depth

of nodes in the partition tree of the binary partition it is applied to. �

The � relation provides for an intuitively reasonable means to compare the balance of

sorted binary partitions. S � S ′ implies that S ′ can be obtained from S via a sequence

of operations that make the partition tree of S progressively more unbalanced (by moving

pairs of sibling leaves farther from the root). Therefore, it makes sense to say that if S � S ′

then “S is at least as balanced as S ′.” Note that it is not possible to compare the balance

of binary partitions of different sizes based on the � relation. There are even pairs of sorted

binary partitions of the same size that we cannot compare, as illustrated in Figure 3.2; i.e.,

� is not a total order. However, this approach suffices for the purposes of our analysis.

The next lemma says that if S is at least as balanced as S ′, with respect to �, then the

same is true when balance is measured in terms of ̺.

1By [i..i′], for integers i and i′, we denote the set {k ∈ Z : i ≤ k ≤ i′}.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 29

S1 S2

Figure 3.2: An example of two sorted binary partitions of the same size that are not com-

parable in terms of the � relation. S1 6� S2 follows from Lemma 3.4 and the fact that

µ(S1) < µ(S2); S2 6� S1 follows from Lemma 3.4 and fact that ξ(S2) > ξ(S1).

Lemma 3.4. If S � S ′ then µ(S) ≥ µ(S ′), ξ(S) ≤ ξ(S ′), and ̺(S) ≤ ̺(S ′).

Proof. We show that the three inequalities above hold for the case where S ′ = Vd→d′(S),

for some d < d′. The general case follows then by induction. Recall that S ′ results from S

by merging two blocks of depth d + 1 ≤ d′, and splitting a block of depth d′. Clearly, these

operations do not increase µ nor reduce ξ. Specifically,

µ(S ′) = min{µ(S), d} and ξ(S ′) = max{ξ(S), d′ + 1}

So, the first two inequalities hold. The third follows directly from them. �

An attractive property of � on which our analysis will be heavily based is that, roughly

speaking, if S � S ′ and

− P results from S by applying to it an Ŝ (or M̂) operation

− P ′ results from S ′ by applying to it a “similar or worse” Ŝ (or M̂) operation

then P � P ′, as well. We describe this property formally in the two lemmata below.

Lemma 3.5.

(a) If S � S ′ and k′ ≥ k ≥ µ(S) then Ŝk(S) � Ŝk′(S ′).

(b) If S � S ′ and k′ ≤ k ≤ ξ(S) then M̂k(S) � M̂k′(S ′).

Proof. Part (a) is immediate from Claims 3.6 and 3.7 that we prove below. The proof for

part (b) is similar and is omitted.

Claim 3.6. Ŝk(S) � Ŝk′(S).

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 30

Proof. Let

a = max{i ≤ k : si(S) ≥ 1} a′ = max{i ≤ k′ : si(S) ≥ 1}

Since k ≤ k′, a ≤ a′.

If a = a′ then

Ŝk(S) = Sa(S) = Sa′(S) = Ŝk′(S)

If a < a′ then

Ŝk(S) = Sa(S) = Sa(Ma′+1 Sa′(S)) = Va′→a(Ŝk′(S)) � Ŝk′(S)

where the second relation holds because Ma′+1 Sa′(S) = S, by Lemma 3.2(a), and the last

relation holds because a′ > a. � {of Claim 3.6}

Claim 3.7. Ŝk′(S) � Ŝk′(S ′).

Proof. We consider only the case where S ′ = Vd→d′(S), for some d < d′. The general case

follows then by induction. Let

a = max{i ≤ k′ : si(S) ≥ 1} a′ = max{i ≤ k′ : si(S
′) ≥ 1}

We distinguish three cases, depending on the values of k′, d, and d′.

Case 1: k′ < d.

For all i < d, si(S
′) = si(S), so,

a = a′ < d

We have

Ŝk′(S ′) = Sa′(S ′) = Sa′(Md+1 Sd′(S)) = Md+1 Sa′ Sd′(S)

= Md+1 Sd′ Sa′(S) = Vd→d′ Ŝk′(S) � Ŝk′(S)

The last relation in the first line holds because of Lemma 3.2(e), since a′ < d; in the second

line, the first relation holds because of Lemma 3.2(c), since a′ < d < d′ + 1, the second

because a = a′, and the last because d < d′.

Case 2: d ≤ k′ ≤ d′.

Since k′ ≤ d′, by Claim 3.6 we have

Ŝk′(S) � Ŝd′(S) = Sd′(S)

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 31

where the second relation holds because, by definition, sd′(S) > 0. Similarly, since k′ ≥ d,

Ŝk′(S ′) � Ŝd(S
′) = Sd(S

′)

Also,

Sd(S
′) = Sd(Md+1 Sd′(S)) = Sd′(S)

by Lemma 3.2(b). Combining the above three results, yields Ŝk′(S ′) � Ŝk′(S).

Case 3: k′ > d′.

For all i > d′ + 1, si(S
′) = si(S); also sd′+1(S

′) > sd′+1(S). From these two facts it follows

that

a = a′ ≥ d′ + 1 or a < d′ + 1 = a′

If the first of the two conditions holds then the proof is very similar to that of Case 1 and is

omitted. So, suppose that the second condition holds. Since a ≤ d′, by Claim 3.6,

Ŝk′(S) = Ŝa(S) � Ŝd′(S)

Similarly, since k′ > d′,

Ŝk′(S ′) � Ŝd′(S
′)

Also, by Case 2,

Ŝd′(S) � Ŝd′(S
′)

Combining the above three results, yields Ŝk′(S) � Ŝk′(S ′).

� {of Claim 3.7 and Lemma 3.5}

The next lemma is similar to Lemma 3.5, but it uses different conditions on the depths

k and k′. Recall that ℓ<k(B) and ℓ≤k(B) are the total lengths of the blocks in B that have

depths < k and ≤ k, respectively. So, for a sorted binary partition, ℓ<k is the left endpoint

of the first block of depth ≥ k, if µ ≤ k ≤ ξ; and ℓ<k = 1, if k > ξ. Similarly, for k ≤ ξ, ℓ≤k

is the right endpoint of the last block of depth ≤ k. In particular, if sk > 0 then ℓ<k is the

left endpoint of the first block of depth k, and ℓ≤k is the right endpoint of the last block of

depth k.

Lemma 3.8.

(a) If S � S ′ and ℓ<k(S) < ℓ≤k′(S ′) and k ≥ µ(S) then Ŝk(S) � Ŝk′(S ′).

(b) If S � S ′ and ℓ≤k(S) > ℓ<k′(S ′) and k ≤ ξ(S) then M̂k(S) � M̂k′(S ′).

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 32

Proof. We only show part (a); the proof for part (b) is similar and is omitted. We begin

by proving the following claim. Recall that, for B ∈ B and x ∈ I, blk(B, x) is the block of

B that contains x, and θ(B, x) is the depth of that block.

Claim 3.9. For all z ∈ I, Sθ(S,z)(S) � Sθ(S′,z)(S
′).

Proof. We consider only the case where S ′ = Vd→d′(S), for some d < d′. (The general case

follows then by induction.) We distinguish two cases:

If blk(S ′, z) is the last block in S ′ of depth d then θ(S, z) = d + 1 and θ(S ′, z) = d. So,

Sθ(S′,z)(S
′) = Sd(Md+1 Sd′(S)) = Sd′(S) � Sθ(S,z)(S)

where the second relation holds because of Lemma 3.2(b), and the last relation holds because

of Lemma 3.5(a), since θ(S, z) = d + 1 ≤ d′.

If blk(S ′, z) is not the last block in S ′ of depth d then it is easy to verify that θ(S, z) ≤ θ(S ′, z),

and, so, the claim follows from Lemma 3.5(a). � {of Claim 3.9}

Let

z = ℓ<k(S)

If sk(S) > 0 then θ(S, z) = k, otherwise, θ(S, z) > k; hence, in either case, θ(S, z) ≥ k. So,

by Lemma 3.5(a),

Ŝk(S) � Sθ(S,z)(S)

Since z < ℓ≤k′(S ′), we have that if ℓ<k′(S ′) ≤ z then θ(S ′, z) = k′, otherwise, θ(S ′, z) < k′;

hence, θ(S ′, z) ≤ k′. So, by Lemma 3.5(a),

Ŝk′(S ′) � Sθ(S′,z)(S
′)

Combining the above two relations and Claim 3.9, yields the desired result. �

3.5 Two random processes on binary partitions

We describe two families of random processes on binary partitions. The random processes of

the first family, called B-processes, model the evolution of the key-space partition of a DHT

that uses the key-space partitioning scheme described in Section 2.3.1, under the model

of adversarial arrivals/departures described in Section 3.1. The second family of random

processes, called S-processes, is a slight variation of the first one that considers sorted binary

partitions (instead of arbitrary ones). We introduce S-processes because they are easier to

analyze, and their analysis yields performance bounds that apply to B-processes, as well.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 33

3.5.1 B-processes

We begin with an informal description. A B-process generates an infinite sequence B0, B1, . . .

of binary partitions, where B0 is provided as a parameter of the process, and for each t ≥ 1,

Bt is generated (in step t of the process) from Bt−1 by applying to it either a single spltBlk

or a single mrgBlk operation. The decision of which of the two types of operations will

take place is the result of a random experiment that depends on the history of the process

up to step t − 1. The outcome of this experiment, denoted Et, is either the + symbol or

a block in Bt−1. If Et = + then a spltBlk operation takes place; otherwise a mrgBlk

operation occurs. The actual experiments used to determine the Et, or, equivalently the

distributions of the Et conditioned on the process’ history up to step t − 1, is a parameter

of the process. We can perceive this parameter as a randomized (adversarial) strategy for

deciding the sequence of operations. The block that is split or the pair of blocks that is

merged in step t is determined as follows. We sample a sequence Xt = 〈Xt,1, Xt,2, . . .〉 of

points in I, each point selected independently and uniformly at random. (More correctly, the

points are chosen form a “quantization” of I, as we describe later.) If Et = +, Xt consists of

λ+(δ) points, where δ is the depth of the block containing the first point Xt,1, and function

λ+ is a parameter of the process. The block that is split in this case is the largest among

the blocks containing the points in Xt. If Et 6= + (thus, Et is a block of Bt−1), Xt consists of

λ−(δ′) points, where δ′ is the depth of Et, and function λ− is also a parameter of the process.

Let a be the smallest among Et and the blocks containing the points in Xt. If the sibling a′

of a is a leaf then a and a′ are merged; otherwise, a pair of sibling leafs that are descendants

of a′ are merged, instead.

More formally, a B-processes is parameterized by:

1. an initial partition B0 ∈ B;

2. a pair of non-decreasing functions λ+, λ− : N→ N
∗, called the sampling-size functions ;

and

3. a family of distributions, called the strategy of the adversary ; we elaborate on this

later.

In each step t = 1, 2, . . . of the process, a binary partition Bt is randomly generated as

follows. Assume the outcome of all random choices made before step t are known. First we

choose Et from the set {+} ∪ Bt−1 according to a distribution specified by the strategy of

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 34

the adversary. Next, we choose a sequence Xt = 〈Xt,1, Xt,2, . . . , Xt,Λt〉 of points in I, where

Λt =

{

λ+(θ(Bt−1, Xt,1)), if Et = +

λ−(θ(Et)), if Et ∈ Bt−1

(3.2)

Each Xt,i is chosen independently and uniformly at random from the set Iξ(Bt−1). Ik, for

k ∈ N, denotes the set of all points in I whose binary representation has length (at most)

k; i.e.,

Ik = {j2−k : j = 0, . . . , 2k − 1}

Note that Ik consists of the left endpoints of all the binary segments of depth k. Finally, we

set

Bt =

{

addBlk(Bt−1, Xt), if Et = +

rmBlk(Bt−1, Et, Xt), if Et ∈ Bt−1

(3.3)

The functions addBlk and rmBlk are described in Figure 3.3.

The strategy of the adversary specifies, for each step t, the conditional distribution of Et

given the history of the process up to (and including) step t− 1; i.e.,Pr[Et = e | E1, X1, . . . , Et−1, Xt−1], for all e ∈ {+} ∪ Γ

(Recall Γ denotes the set of binary segments.) We require that, for all t, either Et = + or

Et be a block of Bt−1; in particular, if Bt−1 consists of a single binary segment then Et = +.

Formally, Pr[Et ∈ {+} ∪Bt−1] = 1 and Pr[{Et 6= +} ∩ {|Bt−1| = 1}] = 0

Note that choosing the Xt,i independently and uniformly at random from the discrete

interval Iξ(Bt−1) is equivalent, with respect to the resulting Bt, to choosing the Xt,i indepen-

dently and uniformly at random from the continuous interval I. We use the first approach

to avoid dealing with uncountably infinite probability spaces.

It is easy to see that a B-process describes the evolution of the key-space partition of

a DHT that employs the key-space partitioning scheme of Section 2.3.1, when arrivals and

departures of nodes take place as described in Section 3.1. B0 is the initial key-space parti-

tion, and Bt, for t ≥ 1, is the corresponding partition right after the t-th operation (arrival

or departure) has been completed. If Et = +, the t-th operation is the arrival of a node;

otherwise, it is a departure, and the departing node is that responsible for block Et. The

sampling-size functions correspond to the functions λ+, λ− the scheme uses to determine the

number of random probes that should be performed in each operation. The sample points

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 35

used in the random probes during the t-th operation are the elements of Xt. (As we dis-

cussed above choosing the Xt,i from Iξ(Bt−1) is effectively equivalent to choosing them from

I.) Finally, note that the model of arrivals and departures is determined by the strategy

of the adversary, which can be used to describe any adaptive online adversary, who makes

decisions in each step t based on the past history of the process up to step t − 1. In our

analysis, we will not impose any restrictions on the strategy of the adversary.

We will refer to 〈B0, B1, . . .〉 as the partition-sequence of the B-process.

3.5.2 S-processes

Again we start with an informal description. As in a B-process, a sequence S0, S1, . . . of

binary partitions is generated. Unlike a B-process, however, the binary partitions are sorted.

Also, the sequence has a finite length, which is a parameter of the process. S0 is also

provided; each St, for t 6= 0, is generated from St−1 by applying to it either a single S or

a single M operation. Again, the type of operation that will take place is the result of a

random experiment that depends on the past history of the process and is a parameter of

the process. The outcome of this experiment, denoted Vt, takes one of the two values +

or −. If Vt = + an S operation takes place; if Vt = − an M operation occurs. (More

correctly, the outcome of the experiment is denoted Ut and takes values in some finite set

U; Vt is a function of Ut that takes values in {+,−}.) The depth of the block that is split

or the depth of the blocks that are merged in step t is determined as follows. We sample a

sequence Yt = 〈Yt,1, Yt,2, . . .〉 of points in I, each point selected independently and uniformly

at random. (Again, for technical reasons, the points are actually chosen from a quantization

of I. Also, the number of points that Yt consists of is the same for all t.) If Vt = +, the depth

of the block that is split is the largest integer d such that: (i) d is smaller or equal to the

depths of the blocks containing the points Yt,1, . . . , Yt,λ+(d), where λ+ is a parameter of the

process; and (ii) Bt−1 contains at least one block of depth d. If Vt = −, instead, the depth

of the blocks that are merged is the smallest integer d′ such that: (i′) d′ is greater or equal

to the depths of the blocks containing the points Yt,1, . . . , Yt,λ−(δ), where δ is the minimum

depth of blocks in Bt−1, and λ− is a parameter of the process; and (ii′) Bt−1 contains at least

two blocks of depth d.

More precisely, like a B-process, an S-process is parameterized by:

1. an initial partition S0 ∈ S;

2. a pair of non-decreasing sampling-size functions λ+, λ− : N→ N
∗; and

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 36

In the definitions below:
− B ∈ B; b ∈ B; and Z = 〈z1, z2, . . .〉 is a sufficiently long sequence of zi ∈ I, i.e.,
|Z| ≥ λ+(θ(B, z1)) for the first two definitions, and |Z| ≥ λ−(θ(b)) for the other two

− functions spltBlk and mrgBlk are defined in Section 3.3
− in lines 6, 12, and 16 ties are broken in an arbitrary but deterministic way

1: function addBlk(B, Z)
2: b← getLrgBlk(B, Z)
3: return spltBlk(B, b)

4: function getLrgBlk(B, Z)
5: δ ← θ(B, z1)
6: return a largest block in {blk(B, zi) : i = 1, . . . , λ+(δ)}

7: function rmBlk(B, b, Z)
8: a← getSmlBlk(B, b, Z)
9: if |b| ≤ |a| then

10: a← b
11: if sbl(a) /∈ B then
12: a← a block c ∈ B such that sbl(c) ∈ B and c ⊆ sbl(b)

13: return mrgBlk(B, a)

14: function getSmlBlk(B, Z)
15: δ ← θ(b)
16: return a smallest block in {blk(B, zi) : i = 1, . . . , λ−(δ)}

Figure 3.3: Functions used in the definition of a B-processes.

In the definitions below:
− S ∈ S; and Z = 〈z1, z2, . . .〉 is a sufficiently long sequence of zi ∈ I, i.e.,
|Z| ≥ λ+(ξ(S)) for the first two definitions, and |Z| ≥ λ−(µ(S)) for the other two

− functions M̂k and Ŝk are defined in Section 3.3

17: function addBlkS(S, Z)
18: k ← getSmlDpth(S, Z)
19: return Ŝk(S)

20: function getSmlDpth(S, Z)
21: return max

{
j : j ≤ min{θ(S, zi) : i = 1, . . . , λ+(j)}

}

22: function rmBlkS(S, Z)
23: k ← getLrgDpth(S, Z)
24: return M̂k(S)

25: function getLrgDpth(S, Z)
26: return max{θ(S, zi) : i = 1, . . . , λ−(µ(S))}

Figure 3.4: Functions used in the definition of an S-processes.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 37

3. a strategy of the adversary, which we explain later.

Unlike B-processes, S-processes are finite. Also the number of points sampled in each step

and the space from which they are chosen is the same for all steps. To address these issues,

two additional parameters are used:

4. a length N ∈ N, that is the number of steps the process involves; and

5. a precision g ∈ N, such that

g ≥ |S0|+ N (3.4)

that is the (maximum) length in bits of the points sampled.

In each step t = 1, 2, . . . , N of the process, a sorted binary partition St is randomly generated

as follows. Assume the outcome of all random choices made before step t are known. First

we choose Ut according to a finite distribution specified by the strategy of the adversary.

From Ut we then compute Vt = Vt(Ut), also as described in the strategy of the adversary; Vt

takes values in the set {+,−}. Next, we choose a sequence Yt = 〈Yt,1, Yt,2, . . . , Yt,Λ〉 of points

in I, where

Λ = λ+(g) + λ−(g) (3.5)

and each Yt,i is chosen independently and uniformly at random from Ig. Finally, we set

St =

{

addBlkS(St−1, Yt), if Vt = +

rmBlkS(St−1, Yt), if Vt = −
(3.6)

where functions addBlkS and rmBlkS are described in Figure 3.4.

The definitions of functions addBlkS and rmBlkS are similar to those of addBlk

and rmBlk, in Figure 3.3, adapted for sorted binary partitions. We now briefly explain

the definition of getSmlDpth(S, Z) — the rest of the definitions are straightforward. Let

Q(j), for j ∈ N, denote the assertion: j is smaller or equal to the depths of all the blocks in

S that contain the points z1, . . . , zλ+(j). Note that Q(j) may be true only for j ≤ ξ(S), since

λ+(j) ≥ 1 and θ(S, z1) ≤ ξ(S). Also, since λ+ is non-decreasing, if Q(j) holds then Q(j′)

holds for all j′ < j, as well. getSmlDpth(S, Z) returns the largest j such that Q(j) holds.

The strategy of the adversary specifies, for each step t ∈ [1..N], the conditional distribu-

tion of Ut given the history of the process up to step t− 1; i.e.,Pr[Ut = u | U1, Y1, . . . , Ut−1, Yt−1], for all u ∈ U

where U is some finite set. It also describes a mapping ϕt : U→ {+,−}; we let Vt = ϕ(Ut).

The strategy of the adversary should ensure that if |Bt−1| = 1 then Vt = +. Note that we

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 38

could have defined the strategy of the adversary in a more direct way, by having Ut be +

or − and using Ut in place of Vt (i.e., letting U = {+,−} and ϕt be the identity function).

The approach we use, however, simplifies the coupling of B-processes and S-processes we

describe in Section 3.6.

Unlike the Xt in the definition of a B-process, whose size and the space from which their

elements are drawn vary with t, all the Yt have the same size Λ, and their elements are drawn

from the same set Ig. Note that, by (3.4), g > ξ(St), for all t ≤ N . Thus, each Yt contains

at least as many elements as required by the addBlkS or rmBlkS operation executed at

step t, and the resulting St has the same distribution as if the Yt,i were drawn uniformly

from I. We follow this approach, instead of defining the Yt similarly to the Xt, because it is

more convenient for our analysis. Notice that this choice dictates that S-processes be finite

— unlike B-processes.

As in a B-process, we will refer to 〈S0, . . . , SN〉 as the partition-sequence of the S-process.

We will use the term random point-vector to denote a vector 〈Z1, . . . , Zm〉, where each

Zi is chosen independently and uniformly at random from Ik, for some k ∈ N; we call m and

k the height and precision of the random point-vector, respectively. Also, we will use the

term random point-array to denote a vector of d independent random point-vectors of the

same height and precision; we call d the length of the random point-array. The height and

precision of a random point-array are the height and precision of its elements. For example,

each Yt is a random point-vector of height Λ and precision g, and 〈Y1, . . . , YN〉 is a random

point-array of length N .

Remark: In our analysis of S-processes, in Chapters 4 and 5, we will often use the phrase

“long enough S-process” in the context: “for all long enough S-processes, a certain condi-

tion is met (with some probability) within a given number steps, say k.” This should be

interpreted as: “for all S-process of length N ≥ k, a certain condition is met. . . ”

We will use a similar convention regarding random point-vectors/arrays. Typically, a

random point-vector will be used as an argument to an addBlkS and/or rmBlkS operation

for some S ∈ S, and some underlying sampling-size functions. In this context, we will say a

“large enough random point-vector” to denote that its height is at least equal to that required

to perform the operation, and its precision is at least equal to ξ(S). Likewise, we will typically

use the elements of a random point-array as arguments in a sequence of addBlkS and/or

rmBlkS operations, with respect to some starting S ∈ S, and some sampling-size functions.

In such a setting, a “large enough random point-array” is one whose length is at least equal

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 39

to the number of operations to be performed, its height is at least equal to that required

to perform each operation, and its precision is at least equal to the largest ξ of the binary

partitions the operations are applied to.

3.6 Bounding the balance in a B-process by that in an

S-process

In this section, we relate the balance of the binary partitions in a B-process to the balance

of the sorted binary partitions in some S-process. Roughly speaking, we show that given

any B-process, we can construct a parallel S-process that has “similar” parameters and its

random choices depend on those of the B-process, such that the partition-sequence of the B-

process is more balanced than that of the S-process. The rigorous statement of this result, as

Theorem 3.10 below, uses the concept of coupling [79]. Informally, a coupling of two random

elements X, Y (defined on different probability spaces) is another pair of random elements

〈X̂, Ŷ 〉, defined on the same probability space, such that X̂ has the same distribution as X

and Ŷ the same as Y .

Theorem 3.10. For any B-process PB and any n ∈ N, there is an S-process PS such that

(i) S0 = srt(B0), N = n, and both PB,PS have the same λ+, λ−; and

(ii) there is a coupling 〈P̂B, P̂S〉 of PB,PS such that, for all t ∈ [0..n], srt(B̂t) � Ŝt.

(B̂t and Ŝt denote the binary partitions in P̂B and P̂S , respectively.)

We will use Theorem 3.10 later in our analysis (in Chapter 6) to argue that certain

probabilistic bounds with respect to balance we show for S-processes (in Chapters 4 and 5),

apply to B-processes as well. We describe the proof of Theorem 3.10 in Section 3.6.2. Before

that, in Section 3.6.1, we define the concept of an fB mapping, which we will use in the

coupling construction.

3.6.1 The fB mapping

Consider the one-to-one mapping between the blocks of B ∈ B and those of srt(B) that pairs

blocks of the same depth, while preserving the relative order of blocks of the same depth.

More formally, for any B ∈ B, let FB : B → srt(B) such that

(i) for all b ∈ B, θ(FB(b)) = θ(b), and

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 40

0 1/2 13/41/4 3/8

0 1/2 13/41/4 7/8

FB:

B

srt(B)

z = 1/2+1/6

fB(z) = 1/4+1/6

Figure 3.5: Examples of FB and fB.

(ii) for all b, b′ ∈ B such that θ(b) = θ(b′), if b.x < b′.x then FB(b).x < FB(b′).x.

By a.x we denote the left endpoint of a ∈ Γ.

We let fB be the one-to-one mapping from I to itself induced by the “reordering” of the

blocks in B described by FB. More formally, fB : I → I such that, for every z ∈ I,

fB(z) = FB(blk(B, z)).x + (z − blk(B, z).x)

An example of the above definitions is illustrated in Figure 3.5. The next lemma states a

simple property of fB. The proof is straightforward and is omitted.

Lemma 3.11. For all B ∈ B and z ∈ I, θ(srt(B), fB(z)) = θ(B, z).

For any Z = 〈z1, . . . , zm〉 ∈ Im, we will write fB(Z) to denote the vector 〈fB(z1), . . . , fB(zm)〉.

3.6.2 Proof of Theorem 3.10

Condition (i) describes three of the five parameters of PS ; so, we need to specify the other

two. PS ’s precision g can be arbitrary — as long as it satisfies (3.4). The strategy of the

adversary will become apparent from the coupling, so, we postpone its description.

Before we describe the coupling, we state a simple result we exploit in the construction.

Its proof is straightforward and is omitted.

Lemma 3.12. Let Z = 〈Z1, . . . , Zm〉 be a random point-vector of precision κ. Then,

(a) For any k ∈ N with k ≤ κ,
〈
⌊Z12

k⌋/2k, . . . , ⌊Zm2k⌋/2k
〉

is a random point-vector of

precision k.

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 41

(b) For any B ∈ B with ξ(B) ≤ κ + 1, fB(Z) is a random point-vector of precision κ.

We now describe the coupling construction. We use “hatted” notation to denote quan-

tities associated with P̂B and P̂S , to distinguish them from the corresponding quantities of

PB and PS . The construction proceeds in steps, where each step t decides the values of

Êt, X̂t, B̂t and Ût, V̂t, Ŷt, Ŝt. We let

B̂0 = B0 Ŝ0 = S0 = srt(B0)

In each step t = 1, . . . , N , first we choose Êt based on the Ê1, X̂1, . . . , Êt−1, X̂t−1, according

to PB’s strategy of the adversary. We also let

Ût =

{

Êt, if t = 1

〈X̂t−1, B̂t−1, Êt〉, if t 6= 1
V̂t =

{

+, if Êt = +

−, otherwise

Then, we choose Xt = 〈Xt,1, . . . ,Xt,Λ〉 independently and uniformly at random from IΛ
g . (Λ

was defined in (3.5).) We set

X̂t =
〈
⌊Xt,i2

ξ(B̂t−1)⌋/2ξ(B̂t−1)
〉Λ̂t

i=1
Ŷt = fB̂t−1

(Xt)

where Λ̂t is defined as in (3.2). Note that, for all t ∈ [1..N],

Λ̂t ≤ Λ ξ(B̂t−1) ≤ g

Finally, B̂t and Ŝt are determined as in (3.3) and (3.6), respectively.

For t = N + 1, N + 2, . . ., we choose Êt, X̂t, B̂t according to the definition of a B-process.

We show now that P̂B and P̂S have the desired (marginal) distributions. That P̂B has

the same distribution as PB is immediate from the following fact. For each t ∈ [1..N],

conditioned on the event {Λ̂t = k} ∩ {ξ(B̂t−1) = d}, for k and d such that this event occurs

with positive probability, X̂t is a random point-vector of height k and precision d. This fact

follows from Lemma 3.12(a) and the observation we made earlier that ξ(B̂t−1) ≤ g. To show

that P̂S has the same distribution as PS (for some strategy of the adversary for PS), we need

to show that:

1. Ŷt is a random point-vector of height Λ and precision g, and it is independent of

Û1, Ŷ1, . . . , Ût−1, Ŷt−1, Ût.

2. Û1, . . . , ÛN corresponds to a valid strategy of the adversary.

By Lemma 3.12(b), we have that, conditioned on any value for B̂t−1, Ŷt is a random point-

vector of height Λ and precision g. From this it is immediate that 1 holds. To show 2 we

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 42

describe the strategy of the adversary for PS that is induced by the coupling construction.

Essentially, this strategy “simulates” a copy of PB that is coupled with PS , in the same way

that P̂B is with P̂S . We will use primed notation to denote quantities associated with this

copy of PB. In the first step of PS , we choose U1 = E ′
1 according to the strategy of the

adversary of PB. In each step t ∈ [2..N], we choose Ut = 〈X ′
t−1, B

′
t−1, E

′
t〉 as follows. First

we let

X ′
t−1 =

〈
⌊f−1

B′

t−2

(Yt−1,i) · 2
ξ(B̂t−2)⌋/2ξ(B̂t−2)

〉Λ′

t−1

i=1

Note that B′
t−2 and E ′

t−1 were decided in step t − 1 when Ut−1 was chosen. B′
t−1 is then

computed from X ′
t−1 B′

t−2, and E ′
t−1 — the last two are elements of Ut−1. Finally, E ′

t is

chosen according to the strategy of the adversary of PB, based on E ′
1, X

′
1, . . . , E

′
t−1, X

′
t−1 —

which, except for X ′
t−1, are elements of U1, . . . , Ut−1.

To complete the proof of the theorem it remains to show that

srt(B̂t) � Ŝt, for all t ∈ [0..N] (3.7)

For this, we will use the next two lemmata, whose proofs are given at the end of this section.

Lemma 3.13. For all B ∈ B, b ∈ B, and Z ∈ Im, for a large enough m,

(a) srt(addBlk(B, Z)) � addBlkS(srt(B), fB(Z))

(b) srt(rmBlk(B, b, Z)) � rmBlkS(srt(B), fB(Z))

Lemma 3.14. If S � S ′ and Z ∈ Im, for a large enough m,

(a) addBlkS(S, Z) � addBlkS(S ′, Z)

(b) rmBlkS(S, Z) � rmBlkS(S ′, Z)

We show (3.7) by induction on t. For t = 0, it is Ŝ0 = srt(B0) = srt(B̂0). For 1 ≤ t ≤ N , we

distinguish two cases, depending on the value of Êt.

If Êt = + then,

srt(B̂t) = srt(addBlk(B̂t−1, X̂t)) = srt(addBlk(B̂t−1,Xt))

So, by Lemma 3.13(a),

srt(B̂t) � addBlkS(srt(B̂t−1), fB̂t−1
(Xt))

By the induction hypothesis, srt(B̂t−1) � Ŝt−1, so, by applying Lemma 3.14(a) to the right-

hand side of the above relation, we obtain

srt(B̂t) � addBlkS(Ŝt−1, fB̂t−1
(Xt)) = Ŝt

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 43

where the second relation holds because V̂t = + (since Êt = +).

If Êt 6= + the proof is similar, using Lemmata 3.13(b) and 3.14(b) in place of Lem-

mata 3.13(a) and 3.14(a), respectively.

Proof of Lemma 3.13

We begin by proving the following claim.

Claim 3.15.

(a) θ(getLrgBlk(B, Z)) ≤ getSmlDpth(srt(B), fB(Z))

(b) θ(getSmlBlk(B, Z)) ≥ getLrgDpth(srt(B), fB(Z))

Proof. Let k = θ(getLrgBlk(B, Z)), and Z = 〈z1, . . . , zm〉. By the definition of function

getLrgBlk,

k = min{θ(B, zi) : i ≤ λ+(θ(B, z1))}

So, k ≤ θ(B, z1), and, thus, (since λ+ is non-decreasing)

k ≤ min{θ(B, zi) : i ≤ λ+(k)} (3.8)

From the definition of getSmlDpth,

getSmlDpth(srt(B), fB(Z)) = max{j : j ≤ min{θ(srt(B), fB(zi)) : i ≤ λ+(j)}}

= max{j : j ≤ min{θ(B, zi) : i ≤ λ+(j)}}

by Lemma 3.11. Combining this and (3.8), yields

getSmlDpth(srt(B), fB(Z)) ≥ k

Hence, part (a) holds.

For part (b), from the definitions of getSmlBlk and getLrgDpth we have

θ(getSmlBlk(B, Z)) = max{θ(B, zi) : i ≤ λ−(θ(b))}

≥ max{θ(B, zi) : i ≤ λ−(µ)}

= max{θ(srt(B), fB(zi)) : i ≤ λ−(µ)}

= getLrgDpth(srt(B), fB(Z))

where the second line holds because θ(b) ≥ µ and λ− is non-decreasing; and the third line

holds because of Lemma 3.11. �

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 44

We now show part (a) of the lemma. By the definition of addBlk,

addBlk(B, Z) = spltBlk(B, b), where b = getLrgBlk(B, Z)

So,

srt(addBlk(B, Z)) = srt(spltBlk(B, b)) = Sθ(b)(srt(B)) = Ŝθ(b)(srt(B)) (3.9)

where the middle relation holds because of Lemma 3.1(a). By the definition of addBlkS,

addBlkS(srt(B), fB(Z)) = Ŝk(srt(B)), (3.10)

where

k = getSmlDpth(srt(B), fB(Z))

By Claim 3.15(a), we have that k ≥ θ(b); so, by applying Lemma 3.5(a) to the right-hand

side of (3.10) we obtain

addBlkS(srt(B), fB(Z)) � Ŝθ(b)(srt(B))

Combining this and (3.9), yields part (a).

Next, we show part (b). From the definition of rmBlk

rmBlk(B, b, Z) = mrgBlk(B, a)

for some a ∈ B such that sbl(a) ∈ B and

θ(a) ≥ θ(getSmlBlk(B, Z)) (3.11)

So,

srt(rmBlk(B, b, Z)) = srt(mrgBlk(B, a)) = Mθ(a)(srt(B)) = M̂θ(a)(srt(B)) (3.12)

where the middle relation holds because of Lemma 3.1(b). From the definition of rmBlkS,

rmBlkS(srt(B), fB(Z)) = M̂k(srt(B)) (3.13)

where

k = getLrgDpth(srt(B), fB(Z))

By Claim 3.15(b), we have that k ≤ θ(getSmlBlk(B, Z)), so, by (3.11), k ≤ θ(a). Hence,

by applying Lemma 3.5(b) to the right-hand side of (3.13) we get

rmBlkS(srt(B), fB(Z)) � M̂θ(a) srt(B)

which, combined with (3.12), yields part (b).

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 45

Proof of Lemma 3.14

We begin by proving the following claim.

Claim 3.16.

(a) if getSmlDpth(S, Z) > getSmlDpth(S ′, Z) then

ℓ<getSmlDpth(S,Z)(S) < ℓ≤getSmlDpth(S′,Z)(S
′)

(b) ℓ≤getLrgDpth(S,Z)(S) > ℓ<getLrgDpth(S′,Z)(S
′)

Proof. Let Z = 〈z1, . . . , zm〉. For part (a), let also

k = getSmlDpth(S, Z) k′ = getSmlDpth(S ′, Z)

From the definition of getSmlDpth we have

k ≤ min{θ(S, zi) : i ≤ λ+(k)} = θ(S, z∗)

where

z∗ = min{zi : i ≤ λ+(k)}

Therefore,

ℓ<k(S) ≤ ℓ<θ(S,z∗)(S) ≤ z∗ (3.14)

From the definition of getSmlDpth we also have that

k′ ≥ min{θ(S ′, zi) : i ≤ λ+(k′ + 1)} ≥ min{θ(S ′, zi) : i ≤ λ+(k)} = θ(S ′, z∗)

where the second relation holds because k > k′ (or, equivalently, k ≥ k′ + 1) and λ+ is

non-decreasing. Therefore,

ℓ≤k′(S ′) ≥ ℓ≤θ(S′,z∗)(S
′) > z∗

Combining this with (3.14) yields ℓ<k(S) < ℓ≤k′(S ′), as desired.

For part (b), let

d = getLrgDpth(S, Z) d′ = getLrgDpth(S ′, Z)

From the definition of getLrgDpth,

d = max{θ(S, zi) : i ≤ λ−(µ(S))} = θ(S, ẑ)

where

ẑ = max{zi : i ≤ λ−(µ(S))}

Chapter 3. Analysis of our scheme – Part I: Switching to a simpler process 46

Therefore,

ℓ≤d(S) > ẑ (3.15)

Similarly,

d′ = max{θ(S ′, zi) : i ≤ λ−(µ(S ′))} ≤ max{θ(S ′, zi) : i ≤ λ−(µ(S))} = θ(S ′, ẑ)

where the second relation holds because µ(S) ≥ µ(S ′) (by Lemma 3.4) and λ− is non-

decreasing. So,

ℓ<d′(S
′) ≤ ẑ

Combining this and (3.15) yields part (b). �

We can now show part (a) of the lemma as follows. By the definition of addBlkS,

addBlkS(S, Z) = Ŝk(S), where k = getSmlDpth(S, Z)

and

addBlkS(S ′, Z) = Ŝk′(S ′), where k′ = getSmlDpth(S ′, Z)

By Claim 3.16(a), we have that k ≤ k′ or ℓ<k(S) < ℓ≤k′(S ′). So, by Lemma 3.5(a) (if k ≤ k′)

and by Lemma 3.8(a) (if ℓ<k(S) < ℓ≤k′(S ′)), we have

Ŝk S � Ŝk′ S ′

Therefore, addBlkS(S, k) � addBlkS(S ′, k′).

The proof of part (b) is similar, using Claim 3.16(b) in place of Claim 3.16(a), and

Lemma 3.8(b) instead of Lemmata 3.5(a) and 3.8(a).

Chapter 4

Analysis – Part II: Starting from a

balanced partition

In this chapter and the next we study the balance of the partitions in an S-process.1

Specifically, in this chapter we consider the case where the initial partition of the S-process

is “very balanced”: either it has ̺ < 2, or ̺ = 2 and most blocks are of intermediate size;

we call such a partition safe. (Recall that ̺ = i when the depths of all blocks belong to a

set of i + 1 consecutive depths.) We show that if we start from a safe initial partition of

size n and we use sufficiently large sampling-size functions, then, with high probability, in

Θ(n) steps another safe partition is reached, and all intermediate partitions have ̺ ≤ 2. In

Chapter 5, we consider the complementary case where we start from a non-safe partition,

and we provide an upper bound on the number of steps required to reach a safe partition,

with high probability.

In Section 4.1, we describe the main result of the chapter. An outline of its proof is

provided in Section 4.2. In Sections 4.3–4.5 we show some auxiliary results, which we use in

Section 4.6 to derive the main result.

1Throughout Chapters 4 and 5, whenever we say “partition” we mean “sorted binary partition.”

47

Chapter 4. Analysis – Part II: Starting from a balanced partition 48

4.1 Statement of the main result: from a safe to a safe

partition

In this chapter we consider S-processes that have a “very balanced” initial partition S0, and

sampling-size functions

λ+(k), λ−(k) = Θ(k)

that are “sufficiently large.” We also assume that the processes’ length N is “large enough.”

We elaborate on these requirements below. We do not impose any constraints on the strategy

of the adversary, or the precision g. For any such S-process of |S0| = n, we show that,

roughly speaking, with probability at least 1−1/nΘ(1), in Θ(n) steps we reach another “very

balanced” partition, and all intermediate partitions have ̺ ≤ 2 — i.e., in each of these

partitions, the depths of all blocks belong to a set of 3 consecutive depths.

We quantify what we mean by a “very balanced” partition by introducing the class of

safe partitions. A partition is safe if it satisfies one of the following two conditions:

• ̺ < 2

• ̺ = 2 and max{ℓµ, ℓξ} ≤ 1/4 + ε, where ε = 1/16.

(The threshold 1/4 + ε was chosen for convenience; any threshold within a certain range

would work for our analysis.)

We now state the main result of this chapter formally. We use the following notation

with respect to a given S-process. For t = 0, 1, . . . , N, we let

µt = µ(St) ξt = ξ(St) ̺t = ̺(St)

Also, for k ≥ 0, we let

λ(k) = min{λ+(k), λ−(k)}

The big-oh notation below is with respect to |S0| → ∞.

Theorem 4.1. For any long enough S-process such that S0 is safe, with probability

1−O(2µ0e−(1/4−ε)λ(µ0)) (4.1)

there is τ ∈ [c12
µ0 ..c22

µ0], where c1, c2 are positive constants, such that

(i) Sτ is safe

(ii) for all t < τ , ̺t ≤ 2

(iii) for all t ≤ τ , ξt ≤ ξ0 + 1.

Chapter 4. Analysis – Part II: Starting from a balanced partition 49

By “long enough” S-process we mean that it has length N ≥ c22
µ0 . (See the remark at

the end of Section 3.5.2.)

Since S0 is safe, µ0 = log |S0| − O(1). Hence, the endpoints of the interval to which τ

belongs are both in Θ(|S0|). Also, since λ(k) ∈ Θ(k), there is a constant a > 0 such that

λ(k) ≥ ak, for all large enough k. Therefore,

O(2µ0e−(1/4−ε)λ(µ0)) ⊆ O(|S0|
1−a·(1/4−ε) log e) ⊆ O(|S0|

1−a/4)

So, the big-oh term in (4.1) can be made smaller than any given polynomial of 1/|S0|, by

using sufficiently large sampling-size functions.

Note that τ may not correspond to the first step when a safe partition is reached; i.e.,

it is possible that St is safe for some 0 < t < c12
µ0 . By stipulating that τ ≥ c12

µ0 , instead

of τ ≥ 1, we ensure that Theorem 4.1 argues about the balance of the partitions in the first

Θ(|S0|) steps of the S-process, instead of the first O(|S0|) steps. Note that we cannot provide

similar guarantees for a number of steps τ that is ω(|S0|), even if we drop (iii). Since the

strategy of the adversary can be arbitrary, the system size may become very small after |S0|

steps, in which case we cannot ensure that ̺t stays ≤ 2 with high probability (in |S0|).

4.2 Outline of the proof

First, we provide an informal justification for a slightly simpler version of Theorem 4.1,

where we require that τ ∈ [1..c2µ0] instead of τ ∈ [c12
µ0 ..c22

µ0] — so, τ corresponds to the

first step when a safe partition is reached. We also assume that ε = 0. In an S-process,

whenever an addBlkS operation is applied to a partition of size n and µ = Θ(log n), the

depth of the block split is smaller or equal to the depths of Ω(log n) randomly probed blocks.

Similarly, a rmBlkS operation applied to such a partition merges a pair of blocks of depth

greater or equal to the depths of Θ(log n) randomly probed blocks. It is easy to see that,

for that number of random probes, with high probability, the smallest random point chosen

is < 1/4 and the largest is > 3/4. We will refer to this fact as Result 1. By Result 1, if

ℓµ0
(S0) ≥ 1/4 and an addBlkS operation occurs in the first step then, with high probability,

a block of depth µ0 is split. Likewise, if ℓξ0(S0) ≥ 1/4 and a rmBlkS operation occurs first,

a pair of blocks of depth ξ0 are merged. Thus, in both cases the resulting partition is safe.

By Result 1, we also have that if max{ℓµ0
(S0), ℓµ0+2(S0)} < 1/4 (so, ̺0 = 1 or 2) and an

addBlkS operation occurs first then, with high probability, the depth of the block split is

Chapter 4. Analysis – Part II: Starting from a balanced partition 50

µ0 or µ0 +1. Similarly, if max{ℓξ0(S0), ℓξ0−2(S0)} < 1/4 a rmBlkS operation merges blocks

of depth ξ0 or ξ0 − 1. So, again, in both cases we result in a safe partition in a single step.

It remains to consider the two cases where either ℓµ0
(S0) < 1/4 = ℓµ0+2(S0) and an

addBlkS operation takes place in the first step, or ℓξ0(S0) < 1/4 = ℓξ0−2(S0) and a rmBlkS

occurs. (Note that in both cases ̺0 = 2.) The two cases are symmetric, so we consider only

the former. An adaptation of a well known bins-and-balls result [8] yields that, with high

probability, the number of addBlkS operations required until all blocks of depth µ0 are

split is O(n), provided that no blocks of depth ≤ µ0 + 1 are merged during that time. In

particular, we can show that, for a large enough λ+, with high probability, all blocks of

depth µ0 are split before ℓµ0
(St) + ℓµ0+1(St) becomes smaller than 1/4, given that no blocks

of depth ≤ µ0 + 1 are merged in the meantime; we will refer to this as Result 2. Note

that, by Result 1, if ℓµ0
(St) + ℓµ0+1(St) ≥ 1/4 then, with high probability, an addBlkS

operation splits a block of depth ≤ µ0 + 1. Combining this and Result 2, yields that, with

high probability, in O(n) steps either (i) all blocks of depth µ0 are split before any block of

depth ξ0 is split or blocks of depth < ξ0 are merged; or (ii) a pair of blocks of depth ≤ µ0 +1

is merged before all blocks of depth µ0 are split or a block of depth ξ0 is split. If case (i)

applies then the desired result holds. For (ii) note that, by Result 1, it must be ℓξ0(St) < 1/4

for some previous step, so, a safe partition was reached then, and the desired result holds,

as well.

The actual proof of Theorem 4.1 proceeds roughly as follows. First we reduce the set of

different initial partitions we need to consider. Specifically, we show that for each n, there

is a single safe partition of size n that is less balanced (with respect to the � relation) than

all other safe partitions of the same size. We call this partition borderline-safe. (The details

are described in Section 4.3.) We show that to prove the theorem it suffices to consider only

initial partitions that are borderline-safe.

We then distinguish two different cases, depending on the (borderline-safe) initial parti-

tion S0. The first case is when ̺0 ∈ {1, 2} and min{ℓµ0
(S0), ℓξ0(S0)} ≥ 1/4. In this setting,

the probability of interest (i.e., that (i)–(iii) hold for some τ ∈ [c12
µ0 ..c22

µ0]) is bounded from

below by the probability that all the blocks that are split in the first ε2µ0 steps have depth

µ0 and all the blocks merged have depth ξ0. We compute this probability using the simple

result we show in Section 4.4, which roughly corresponds to Result 1 we described above.

The complementary case is when ̺0 = 2 and exactly one of ℓµ0
(S0) or ℓξ0(S0) is ≥ 1/4 —

recall that we only consider borderline-safe initial partition. Suppose ℓξ0(S0) ≥ 1/4 (the other

case is symmetric). The probability of interest is bounded from below by the probability

Chapter 4. Analysis – Part II: Starting from a balanced partition 51

that in Θ(|S0|) steps: (a) either all blocks of depth µ0 are split, or ℓξ0(St) ≤ 1/4 + ε; and

(b) during these steps, no blocks of depth ξ0 are split, and all blocks merged have depth ξ0.

We compute the probability of this joint event based on the result of Section 4.4 and a result

we show in Section 4.5, which roughly corresponds to Result 2.

These results are integrated into the proof of Theorem 4.1 in Section 4.6.

4.3 Comparing the balance of safe partitions

Recall from Section 3.4 that relation � on Sn is a partial order. In this section, we prove

that if we restrict the domain to the set of safe partitions of size n then � is a total order.

Let Fn, for n ∈ N
∗, denote the set of all safe partitions of size n. We show that there

is a single most balanced partition in Fn, which we denote by Π̂n; i.e., Π̂n � S, for all

S ∈ Fn. For this partition ̺ ∈ {0, 1}, while all other partitions in Fn have ̺ = 2. Also, all

S ∈ Fn−{Π̂n} have the same µ, which we denote by µ̂n. For each S ∈ Fn, there is a distinct

dS ∈ N such that we can construct S from Π̂n by applying to it dS move-down operations;

specifically, Vµ̂n→µ̂n+1 operations. The total ordering on Fn is based on this quantity: for

every S, S ′ ∈ Fn, if dS ≤ dS′ then S � S ′.

So, first, we establish that there is a single most balanced partition in Fn. For every

S ∈ Sn,
∑

i

si(S) = n and
∑

i

(
si(S)/2i

)
= 1

It is easy to verify that there is a unique S such that ̺(S) ∈ {0, 1} and it satisfies the above

pair of equations. (Specifically, ̺(S) = 0 if n is a power of 2, and ̺(S) = 1 otherwise.) Let

Π̂n denote this partition, and, for every S ∈ Sn of ̺ ≤ 2, let

dS =

{

0, if ̺(S) ∈ {0, 1}

min{sµ(S), sξ(S)/2}, if ̺(S) = 2

It is straightforward to show that V
dS

µ(S)+1→µ(S)(S) is in Sn and it has ̺ ∈ {0, 1}. (We write

V
i
k→k′(S) to denote

i
︷ ︸︸ ︷

Vk→k′ · · ·Vk→k′(S).) Therefore, for all S ∈ Sn of ̺ ≤ 2 (and, thus, for

all S ∈ Fn),

V
dS

µ(S)+1→µ(S)(S) = Π̂n (4.2)

The above implies that Π̂n � S, for all S ∈ Fn; i.e., Π̂n is the most balanced safe partition

of size n.2

2In fact, more is true: Π̂n is more balanced than any other partition in Sn, safe or not.

Chapter 4. Analysis – Part II: Starting from a balanced partition 52

The next lemma says that any partition that is more balanced than a safe partition is

also safe.

Lemma 4.2. If S � S ′ and S ′ is safe then S is safe.

Proof. If ̺(S) < 2 the lemma obviously holds. So, suppose that ̺(S) ≥ 2. By Lemma 3.4

then

̺(S) = ̺(S ′) = 2 µ(S) = µ(S ′) = a ξ(S) = ξ(S ′) = a + 2 (4.3)

for some a ∈ N. So, by (4.2),

V
dS
a+1→a(S) = Π̂|S| = Π̂|S′| = V

dS′

a+1→a(S
′)

Since S � S ′, we have dS ≤ dS′, so, by (3.1), the relation above yields

S = V
dS′−dS

a+1→a(S
′)

(dS ≤ dS′ because if it were dS > dS′ we would have S ′ = V
dS−dS′

a+1→a(S) ≻ S.) Therefore,

ℓa(S) ≤ ℓa(S
′) and ℓa+2(S) ≤ ℓa+2(S

′). Combining this with (4.3) and the assumption that

S ′ is safe, yields S is also safe. �

Since Π̂n is the only partition in Sn that has ̺ < 2, we have that for all other S ∈ Fn,

̺(S) = 2. We now show that all these S have also the same µ (and, thus, the same ξ = µ+2).

By (3.1), relation (4.2) implies that, for all S ∈ Fn − {Π̂n},

S = V
dS

µ(S)→µ(S)+1(Π̂n) (4.4)

So, Vµ(S)→µ(S)+1(Π̂n) � S (since ds > 0), and, by Lemma 4.2,

Vµ(S)→µ(S)+1(Π̂n) ∈ Fn (4.5)

It is straightforward to show that for each n there is at most one k such that Vk→k+1(Π̂n) ∈

Fn, and if such a k exists, µ(Π̂n) ≤ k + 1 ≤ ξ(Π̂n); we denote this k by µ̂n. Combining this

fact with (4.5), we obtain that, for all S ∈ Fn − {Π̂n},

µ(S) = µ̂n (4.6)

and

µ(Π̂n) ≤ µ(S) + 1 ≤ ξ(Π̂n) (4.7)

Chapter 4. Analysis – Part II: Starting from a balanced partition 53

We can now show that relation � on Fn is a total order, as follows. Substituting µ(S)

for µ̂n in (4.4) (because of (4.6)), we have that for all S ∈ Fn − {Π̂n},

S = V
dS
µ̂n→µ̂n+1(Π̂n)

Let T, T ′ ∈ Fn − {Π̂n}, and assume that dT ≤ dT ′. Then, by the relation above,

T ′ = V
dT ′

µ̂n→µ̂n+1(Π̂n) = V
dT ′−dT

µ̂n→µ̂n+1 V
dT

µ̂n→µ̂n+1(Π̂n) = V
dT ′−dT

µ̂n→µ̂n+1(T) � T

Combining this and the fact that Π̂n � S, for all S ∈ Fn, yields that

Lemma 4.3. � on Fn is a total order.

The above result implies that, for each n, there is a single partition in Fn, denote Π̌n,

such that Π̌n � S, for all S ∈ Fn; i.e., Π̌n is the least balanced safe partition of size n. We call

Π̌n borderline-safe. We can compute Π̌n by observing that dΠ̌n
> dS, for all S ∈ Fn − {Π̌n}.

The next lemma states two simple properties of borderline-safe partitions that we will use

in the proof of Theorem 4.1.

Lemma 4.4.

(a) For all S ∈ Fn

µ(Π̌n) ≤ µ(S) ≤ µ(Π̌n) + 1 and ξ(Π̌n)− 1 ≤ ξ(S) ≤ ξ(Π̌n)

(b) For all n ≥ 5, ̺(Π̌n) ∈ {1, 2}. Also, for all sufficiently large n,3

if ̺(Π̌n) = 1 then

min{ℓµ(Π̌n), ℓξ(Π̌n)} ≥ 1/4 + ε

and if ̺(Π̌n) = 2 then

max{ℓµ(Π̌n), ℓξ(Π̌n)} = 1/4 + ε

Proof Sketch. Part (a) follows from (4.7) and Lemma 3.4. Part (b) can be shown by

contradiction: If any of the relations did not hold then we could obtain a safe partition that

is less balanced than Π̌n by applying to it operation Vµ̂n→µ̂n+1. �

3Specifically, for all n such that µ̂n ≥ − log ε = 4.

Chapter 4. Analysis – Part II: Starting from a balanced partition 54

4.4 On the outcome of a single step

We now show a simple lemma we will use to argue about the outcome of a single step of an

S-process. Part (a) of the lemma describes a sufficient condition for an operation addBlkS

to split a block of depth smaller or equal to some given k. Part (b) is an analogous result

for rmBlkS operations.

Lemma 4.5. For all S ∈ Sn, k ∈ N, and Z = 〈z1, . . . , zm〉 ∈ Im, for a large enough m,

(a) if min{zi : i ≤ λ+(k + 1)} < ℓ≤k(S) then addBlkS(S, Z) � Ŝk(S)

(b) if max{zi : i ≤ λ−(µ)} ≥ ℓ<k(S) then rmBlkS(S, Z) � M̂k(S)

Proof. Suppose that min{zi : i ≤ λ+(k + 1)} < ℓ≤k. Then,

min{θ(S, zi) : i ≤ λ+(k + 1)} ≤ k

or, equivalently,

min{θ(S, zi) : i ≤ λ+(k′)} < k′, for all k′ > k

Hence, by the definition of getSmlDpth,

getSmlDpth(S, Z) ≤ k

By the definition of addBlkS, Lemma 3.5(a), and the inequality above, we have

addBlkS(S, Z) = ŜgetSmlDpth(S,Z)(S) � Ŝk(S)

So, part (a) holds. The proof for part (b) is similar and is omitted. �

From the lemma above it is immediate that if Z is a large enough random point-vector

then Pr[addBlkS(S, Z) � Ŝk(S)] ≥ 1− (1− ℓ≤k)
λ+(k+1)

and Pr[rmBlkS(S, Z) � M̂k(S)] ≥ 1− (ℓ<k)
λ−(µ)

(For the definition of a random point-vector and what we mean by a “large enough” random

point-vector see the end of Section 3.5.2, and the remark therein.)

Chapter 4. Analysis – Part II: Starting from a balanced partition 55

4.5 On the outcome of a series of steps: A-times and

R-times

In this section we prove a result that we will use to establish an upper bound on the number

of addBlkS operations that take place in an S-process until all largest blocks of the initial

partition are split (i.e., until µt = µ0 + 1), when no blocks of depth µ0 or µ0 + 1 are merged

during that time. We also provide an analogous result that we use to bound the number of

rmBlkS operations until all smallest blocks are merged (i.e., until ξt = ξ0 − 1), when no

blocks of depth ξ0 or ξ0 − 1 are split. The first result holds for arbitrary initial partitions,

while the second assumes that we start from an initial partition that has ̺ ≤ 2.

Bounding the number of addBlkS operations until µt = µ0 + 1 is complicated by the

fact that the order in which operations take place is not fixed; it is determined by an (online

adaptive) adversary — described by the strategy of the adversary. What is more, we need

to consider all possible such adversaries. Roughly speaking, we tackle this issue as follows.

We consider the stronger adversarial model where the adversary has two additional abilities:

(1) she knows in advance the sequence of random points that will be used in each addBlkS

operation — i.e., she knows the Yt for the step when the first, second, third, etc., addBlkS

operation will take place (it is up to her to decide when these steps will occur in the overall

sequence of addBlkS and rmBlkS operations); and (2) she can choose the sequence of

points that will be used in each rmBlkS operation — so, essentially, she decides the depth

of the blocks that are merged in each rmBlkS operation. The resulting process can be

equivalently described as follows. We initially choose a sequence of independent uniformly-

random vectors in IΛ
g . The i-th vector in this sequence will be the Yt that will be used in the

i-th addBlkS operation, if there is such an operation. The adversary then decides (off-line)

the order in which operations occur and for each rmBlkS operation she also decides the

corresponding Yt vector. For this model, we establish an upper bound on the number of

addBlkS operations required until µt = µ0 +1, for all possible choices of the adversary such

that no blocks of depths µ0 or µ0 +1 are merged. The bound is probabilistic; the uncertainty

results because of the random choice of the sample points used in each addBlkS operation

— not because of the randomness of the adversary. A similar approach is used to obtain an

upper bound on the number of rmBlkS operations required until ξt = ξ0 − 1.

We begin by introducing some terminology. Let W be a fixed sequence of vectors, where

all vectors have the same size and their elements are points in I; we denote the length of

Chapter 4. Analysis – Part II: Starting from a balanced partition 56

this sequence by lw, and the size of each vector by hw. I.e.,

W = 〈W1, . . . , Wlw〉, where Wt = 〈Wt,1, . . . , Wt,hw〉 ∈ Ihw , for each t = 1, . . . , lw (4.8)

We assume that hw is large enough that the operations we describe below are well defined.

Let also S ∈ S. Consider now a (fixed) sequence of partitions 〈T0, . . . , Tlw〉 be such that:

T0 = S, and, for t ≥ 1, Tt results from Tt−1 by first merging zero or more pairs of sibling

blocks of depth ≥ µ(S) + 2, and then applying a single addBlkS operation using Wt as the

sequence of sample points. More formally,

Tt =

{

S, if t = 0

addBlkS(T ′
t−1, Wt), otherwise

(4.9)

where

T ′
t = Mkt

1
· · ·Mkt

mt
(Tt), for some mt ≥ 0, and kt

1, . . . , k
t
mt
≥ µ(S) + 2 (4.10)

The conditions kt
j ≥ µ(S)+2 ensure that no blocks of depth µ(S) are merged or (new) blocks

of depth µ(S) are created, as a result of the M operations applied to Tt; hence, for all t,

µ(Tt) ≥ µ(S) and sµ(S)(Tt+1) ≤ sµ(S)(T
′
t) = sµ(S)(Tt) (4.11)

We denote by AS,W the set of all such sequences 〈T0, . . . , Tlw〉. Given a 〈T0, . . . , Tlw〉 ∈ AS,W ,

let a be the time when the last block of depth µ(S) is split; i.e.,

a = inf{t : µ(Tt) = µ(S) + 1}

(Note that a =∞ if µ(Tt) = µ(S), for all t.) The supremum of a over all sequences in AS,W

is called the A-time of 〈S, W 〉.

Suppose now that instead of the fixed W we have a random point-array Z. (For the

definition of a random point-array see the end of Section 3.5.2, and the remark therein.)

The A-time of 〈S,Z〉 is then a random variable. The next lemma establishes a probabilistic

upper bound on the A-time of 〈S,Z〉; it bounds the probability that the A-time is at most

equal to the number of largest blocks in S plus a term linear in 2µ(S) – the maximum possible

number of such blocks.

Lemma 4.6. Let τ be the A-time of 〈S,Z〉, where S ∈ S and Z = 〈Z1, Z2, . . .〉 is a large

enough random point-array, and let γ be a positive constant. Then,Pr[τ ≤ sκ(S) + γ2κ] = 1−O
(
2κe−γ(1−O(1/ln κ))λ+(κ+1)

)

where κ = µ(S).

Chapter 4. Analysis – Part II: Starting from a balanced partition 57

As we explained in Section 3.5.2, the length of the Z is |Z| ≥ sκ(S)+γ2κ, its height |Z1|

is large enough that the A-time of 〈S,Z〉 is well defined — i.e., the addBlkS operations

involved are well defined, and its precision is greater or equal to the maximum ξ of the

partitions these addBlkS operations are applied to — e.g., ξ(S) + |Z|.

We will use the above result later in our analysis of an S-process to bound from above

the number of steps required until either all largest blocks of S0 have been split or a pair of

blocks of depth ≤ µ0 + 1 is merged. We do so by observing that the number of addBlkS

operation until some of the above two events occurs is at most equal to the A-time of 〈S0,Z〉,

where Z is, roughly speaking, the sequence of the Yi that correspond to the steps where the

addBlkS operations occur.

Proof of Lemma 4.6. We describe a sequence of partitions that is a function of Z, such

that τ is bounded from above by a similar quantity τ ∗ defined for that sequence. We then

prove the desired bound for τ by showing that this bound applies to τ ∗.

Let W be defined as in (4.8), with lw and hw equal to the length |Z| of Z and its height

|Z1|, respectively. Consider the sequence of partitions 〈T ∗
0 (W), . . . , T ∗

lw
(W)〉, where

T ∗
t (W) =







S, if t = 0

Sκ(T
∗
t−1(W)), if t 6= 0 and min{Wt,i : i ≤ λ+(κ + 1)} < ℓκ(T

∗
t−1(W))

T ∗
t−1(W), otherwise

(4.12)

(Recall that κ = µ(S).) The above sequence resembles the sequence in AS,W where no blocks

are ever merged — i.e., the sequence described by (4.9) and (4.10) when mt = 0 for all t.

The only difference is that in the sequence of T ∗
t (W) splits occur only in steps t such that

some of the first λ+(κ + 1) elements of Wt belong to a block of depth κ of T ∗
t−1(W). Note

that when this condition holds then, by Lemma 4.5, T ∗
t (W) = addBlkS(T ∗

t−1(W), Wt).

Let

τ ∗(W) = inf{t : µ(T ∗
t (W)) = κ + 1}

and τ(W) be the A-time of 〈S, W 〉. Then,

Claim 4.7. For all W , τ ∗(W) ≥ τ(W).

Proof. By contradiction. Suppose that τ ∗(W) < τ(W), for some W . Then, for this W ,

there is a sequence 〈T0, . . . , Tlw〉 ∈ AS,W (defined as in (4.9)–(4.10)) such that

τ ∗(W) < a, where a = inf{t : µ(Tt) = κ + 1}

Chapter 4. Analysis – Part II: Starting from a balanced partition 58

In the rest of the proof we write T ∗
t and τ ∗ to denote T ∗

t (W) and τ ∗(W), respectively, for

the above value of W . Let

t0 = inf{t : ℓκ(T
∗
t) < ℓκ(Tt)}

Note that t0 <∞, since, by the assumption that τ ∗ < a, τ ∗ <∞ and ℓκ(T
∗
τ∗) = 0 < ℓκ(Tτ∗).

By the definition of Tt we have that, for t ≥ 1, sκ(Tt−1) − sκ(Tt) ∈ {0, 1}. Similarly,

sκ(T
∗
t−1) − sκ(T

∗
t) ∈ {0, 1}. Combing the last two observations with the definition of t0,

yields the next three relations:

sκ(T
∗
t0−1) = sκ(Tt0−1) (4.13)

sκ(T
∗
t0) = sκ(T

∗
t0−1)− 1 (4.14)

sκ(Tt0) = sκ(Tt0−1) (4.15)

By (4.14) and the definition of T ∗
t (W),

min{Wt0,i : i ≤ λ+(κ + 1)} < ℓκ(T
∗
t0−1)

So, by (4.13),

min{Wt0,i : i ≤ λ+(κ + 1)} < ℓκ(Tt0−1) = ℓκ(T
′
t0−1)

(T ′
t was defined in (4.9).) Since µ(T ′

t0−1) ≥ κ, the above relation yields

min{θ(T ′
t0−1, Wt0,i) : i ≤ λ+(κ + 1)} = κ

which implies that

getSmlDpth(T ′
t0−1, Wt0) = κ

Therefore,

Tt0 = addBlkS(T ′
t0−1, Wt0) = ŜgetSmlDpth(T ′

t0−1
,Wt0) T ′

t0−1 = Sκ T ′
t0−1

and, so, sκ(Tt0) < sκ(Tt0−1), which contradicts (4.15). � {of Claim 4.7}

By Claim 4.7, we have

τ ∗(Z) ≥ τ(Z) ≡ τ

and, thus, Pr[τ ∗(Z) ≤ sκ(S) + γ2κ] ≤ Pr[τ ≤ sκ(S) + γ2κ] (4.16)

We show the following lower bound for Pr[τ ∗(Z) ≤ sκ(S) + γ2κ]. (The proof is described at

the end of the section.)

Chapter 4. Analysis – Part II: Starting from a balanced partition 59

Claim 4.8. Pr[τ ∗(Z) ≤ sκ(S) + γ2κ] = 1−O
(
2κe−γ(1−O(1/ln κ))λ+(κ+1)

)

Combining this result with (4.16), yields the desired bound for Pr[τ ≤ sκ(S) + γ2κ]. �

We now describe the analogous definitions and result for the case where we are interested

in the time until all smallest blocks are merged (rather than the time until all largest blocks

are split). Let S ∈ S be such that ̺(S) ≤ 2, and W be as before. We denote by RS,W the

class of all sequences of partitions 〈T0, . . . , Tlw〉 such that

Tt =







S, if t = 0

rmBlkS(T ′
t−1, Wt), if t 6= 0 and rmBlkS(T ′

t−1, Wt) � M̂ξ(S)−1 T ′
t−1

T ′
t−1, otherwise

where

T ′
t =

0 or more
︷ ︸︸ ︷

Sξ(S)−2 · · ·Sξ(S)−2(Tt)

Note that the definition of a sequence in RS,W is not completely symmetric to that of a

sequence in AS,W . The former requires that ̺(S) ≤ 2, and it only allows rmBlkS operations

that merge blocks of depths ξ(S) or ξ(S) − 1. These restrictions ensure that for all t,

µ(Tt) ≥ ξ(S)−2. The fact that only blocks of depth (at most) ξ(S)−2 may be split, ensures

that

ξ(Tt) ≤ ξ(S) and sξ(S)(Tt+1) ≤ sξ(S)(T
′
t) = sξ(S)(Tt)

which is the analogue of (4.11). Given a 〈T0, . . . , Tlw〉 ∈ RS,W , let r be the time when the

last pair of blocks of depth ξ(S) is merged; i.e.,

r = inf{t : ξ(Tt) = ξ(S)− 1}

The supremum of r taken over all sequences in RS,W is called the R-time of 〈S, W 〉.

The next result is the analogue of Lemma 4.6; the proof is very similar, so, we only sketch

it.

Lemma 4.9. Let τ be the R-time of 〈S,Z〉, where S ∈ S is such that ̺(S) ≤ 2, and

Z = 〈Z1, Z2, . . .〉 is a large enough random point-array, and let γ be a positive constant.

Then, Pr[τ ≤ (1/2)sκ(S) + γ2κ−1] = 1−O
(
2κe−γ(1−O(1/ln κ))λ−(κ)

)

where κ = ξ(S).

Chapter 4. Analysis – Part II: Starting from a balanced partition 60

Proof Sketch. As in the proof of Lemma 4.6, we describe a sequence of partitions such

that τ is bounded from above by a similar quantity τ ∗ defined for that sequence, and then we

prove the probabilistic bound for τ ∗, instead. Let W be as in (4.8), with the same dimensions

as Z. The following is the analogue of definition (4.12):

T ∗
t (W) =







S, if t = 0

Mκ(T
∗
t−1(W)), if t 6= 0 and max{Wt,i : i ≤ λ−(κ− 2)} ≥ 1− ℓκ(T

∗
t−1(W))

T ∗
t−1(W), otherwise

(Here κ = ξ(S).) Also let

τ ∗(W) = inf{t : ξ(T ∗
t (W)) = κ− 1}

and τ(W) be the R-time of 〈S, W 〉. We can then show, as in Claim 4.7, that for all W ,

τ ∗(W) ≥ τ(W). We can also show thatPr[τ ∗(Z) ≤ (1/2)sκ(S) + γ2κ−1] = 1−O
(
2κe−γ(1−O(1/ln κ))λ−(κ)

)

— the proof is symmetric to that of Claim 4.8. Combining these two results yields the

desired bound for τ . �

We will use the above result in Section 4.6 to show an upper bound for the number of

steps required in an S-process starting from a safe S0 until: (1) all smallest blocks of S0

have been merged, or (2) a block of depth ≥ ξ0 − 1 is split, or (3) a pair of blocks of depth

ξ0− 2 is merged. We do so by observing that the number of rmBlkS operation until one of

the above three events occurs is at most equal to the R-time of 〈S0,Z〉, where Z is, roughly

speaking, the sequence of the Yi that correspond to the steps where the rmBlkS operations

occur.

Proof of Claim 4.8

We begin with a Chernoff-type bound for geometric random variables.

Lemma 4.10. Let Q1, . . . , Qn be independent geometric random variables, such that, for all

1 ≤ i ≤ n, E[Qi] ≤ 1/p, where 0 < p < 1. Then, for Q =
∑n

i=1(Qi − 1), and any δ > 0,Pr [Q > (1 + δ)
nq

p

]

<

(
(1 + qδ)1+qδ

(1 + δ)(1+δ)q

)n/p

(4.17)

where q = 1− p. Also, for 0 < δ ≤ p,Pr [Q > (1 + δ)
nq

p

]

< exp

(

−
(p− δ)δ2nq

2p

)

(4.18)

Chapter 4. Analysis – Part II: Starting from a balanced partition 61

Proof. If X and Y are geometric random variables and E[X] ≥ E[Y] then X is stochasti-

cally larger than Y . So, to prove the lemma it suffices to consider only the case whereE[Qi] =
1

p
, for all 1 ≤ i ≤ n

Then, for 0 < t < − ln q, E[exp(t(Qi − 1)] =
∞∑

k=0

pqketk =
p

1− qet
(4.19)

Since

exp(tQ) = exp
(

t

n∑

i=1

(Qi − 1)
)

=

n∏

i=1

exp(t(Qi − 1))

by the independence of the Qi and (4.19) we haveE[exp(tQ)] =

n∏

i=1

E[exp(t(Qi − 1))] =
(p

1− qet

)n

(4.20)

We can now bound Pr[Q > (1 + δ)nq/p] from above as follows. We havePr [Q > (1 + δ)
nq

p

]

= Pr [exp(tQ) > exp
(

t(1 + δ)
nq

p

)]

and by applying Markov’s inequality to the right-hand side, we obtainPr [Q > (1 + δ)
nq

p

]

<
E[exp(tQ)]

exp(t(1 + δ)nq/p)

So, by (4.20), Pr [Q > (1 + δ)
nq

p

]

<
(p

exp(t(1 + δ)q/p) · (1− qet)

)n

(4.21)

Next, we compute the value of t ∈ (0,− ln q) that minimizes the expression on the right-hand

side of (4.21). This is equivalent to computing the t that maximizes exp(t(1+δ)q/p)·(1−qet).

For that, we differentiate the last expression with respect to t and set the result to zero;

solving for et yields

et =
1 + δ

1 + qδ

(Note that t = ln 1+δ
1+qδ

< − ln q.) Substituting this value for et in (4.21), yields (4.17).

The bound (4.18) can be derived from (4.17) as follows. We can rewrite the latter asPr [Q > (1 + δ)
nq

p

]

< exp

(
n

p
(1 + qδ) ln(1 + qδ)−

n

p
(1 + δ)q ln(1 + δ)

)

(4.22)

Chapter 4. Analysis – Part II: Starting from a balanced partition 62

Using the fact that, for all x > 0, x− 1
2
x2 ≤ ln(1 + x) ≤ x− 1

2
x2 + 1

3
x3, we obtain

ln(1 + qδ) ≤ qδ −
1

2
(qδ)2 +

1

3
(qδ)3 and ln(1 + δ) ≥ δ −

1

2
δ2

Applying the above to the right-hand side of (4.22) yieldsPr [Q > (1 + δ)
nq

p

]

< exp

(

−
δ2nq

2p

(

p− δ +
1

3
q2δ(1− 2qδ)

))

This, together with the fact that, for δ ≤ p,

1− 2qδ ≥ 1− 2pq = 1− 2p(1− p) = p2 + (1− p)2 > 0

yields (4.18). �

We now proceed to prove Claim 4.8. We will write τ ∗ and T ∗
t to denote τ ∗(Z) and T ∗

t (Z),

respectively. Recall that Z = 〈Z1, Z2, . . .〉 is a random point-array,

T ∗
t =







S, if t = 0

Sκ(T
∗
t−1), if t 6= 0 and Zmin

t < ℓκ(T
∗
t−1)

T ∗
t−1, otherwise,

where κ = µ(S) and Zmin
t is the minimum of the first λ+(κ + 1) elements of Zt, and

τ ∗ = inf{t : µ(T ∗
t) = κ + 1}

We will also denote by n0 the maximum number of blocks of depth k in any partition, i.e.,

n0 = 2κ

For 1 ≤ i ≤ sκ(S), let χi be the number of partitions in the sequence of T ∗
t that have sκ = i;

i.e.,

χi = |{t : sκ(T
∗
t) = i}|

Note that

τ ∗ =

{ ∑sκ(S)
i=1 χi, if

∑sκ(S)
i=1 χi ≤ |Z|

∞, otherwise

Therefore, since |Z| ≥ sκ(S) + γn0,Pr[τ ∗ ≤ sκ(S) + γn0] = Pr [sκ(S)
∑

i=1

χi ≤ sκ(S) + γn0

]

(4.23)

Chapter 4. Analysis – Part II: Starting from a balanced partition 63

Note also that conditioned on the values of χsκ(S), . . . , χi+1, χi is stochastically smaller than

a geometric random variable with expectation 1/pi, where

pi = Pr[Zmin
t < i/n0] = 1− (1− i/n0)

λ+(κ+1) (4.24)

(χi is not equal in distribution to this random variable, because χi is bounded by |Z|.)

Hence, if τ1, . . . , τn0
are independent geometric random variables, such that, for each i,E[τi] = 1/pi, then

∑sκ(S)
i=1 χi is stochastically smaller than

∑sκ(S)
i=1 τi. From this, the fact that

∑sκ(S)
i=1 (τi − 1) ≤

∑n0

i=1(τi − 1), and (4.23), we obtainPr[τ ∗ ≤ sκ(S) + γn0] ≥ Pr [sκ(S)
∑

i=1

τi ≤ sκ(S) + γn0

]

≥ Pr [n0∑

i=1

(τi − 1) ≤ γn0

]

(4.25)

In the remainder of the proof we compute a lower bound for Pr[∑n0

i=1(τi − 1) ≤ γn0]. For

that, we break
∑n0

i=1(τi−1) into four smaller sums, compute a probabilistic upper bound for

each of them, and then combine the results.

Let

n1 =
⌊ n0 ln κ

λ+(κ + 1)

⌋

, n2 =
⌊ n0

λ+(κ + 1)

⌋

, n3 =
⌊ n0

λ+(κ + 1) lnκ

⌋

, n4 = 0

For each j ∈ [1..4], let

Gj =
∑

nj<i≤nj−1

(τi − 1)

In the next series of claims we derive probabilistic upper bounds for the Gj .

Claim 4.11. Pr [G1 >
κ + 1

κ(κ− 1)
n0

]

≤ exp
(

−(1− o(1))
n0

2κ3

)

Proof. By (4.24), for n1 < i ≤ n0,

pi ≥ 1− (1− (n1 + 1)/n0)
λ+(κ+1) ≥ 1−

(

1−
ln κ

λ+(κ + 1)

)λ+(κ+1)

≥ 1− e− lnκ = 1− 1/κ

So, by Lemma 4.10 (applied for p = 1− 1/κ and δ = 1/κ < p),Pr [G1 >
κ + 1

κ(κ− 1)
(n0 − n1)

]

< exp

(

−
(1− 2/κ)(n0 − n1)/κ

3

2(1− 1/κ)

)

= exp
(

−(1− o(1))
n0

2κ3

)

The desired result is immediate from the above relation. �

The proof of the next result is very similar to that of Claim 4.11 and is omitted.

Chapter 4. Analysis – Part II: Starting from a balanced partition 64

Claim 4.12. Pr [G2 >
e + 1

e(e− 1)
n1

]

≤ exp

(

−(1− o(1))
n1(e− 2)

2e3(e− 1)

)

Claim 4.13. Pr[G3 > 2n2 ln κ] ≤ exp

(

−(1− o(1))
n2

64 ln2 κ

)

Proof. Is also similar to that of Claim 4.11. By (4.24), for n3 < i ≤ n2,

pi ≥ 1− (1− (n3 + 1)/n0)
λ+(κ+1) ≥ 1−

(

1−
1

λ+(κ + 1) lnκ

)λ+(κ+1)

≥
1

ln κ
−

1

2 ln2 κ
≥

1

2 ln κ

where the first relation in the second line was obtained using the fact that (1 − ǫ)k ≤

1−kǫ+(kǫ)2/2, when kǫ ≤ 1. By Lemma 4.10 then (applied for p = 1/(2 lnκ) and δ = p/2),

we obtainPr [G3 >

(
1 + 1

4 ln κ

)(
1− 1

2 ln κ

)
(n2 − n3)

1
2 ln κ

]

< exp

(

−

1
(4 lnκ)3

(n2 − n3)
(
1− 1

2 ln κ

)

2
2 lnκ

)

= exp

(

−(1− o(1))
n2

64 ln2 κ

)

This, together with the fact that
(
1 + 1

4 ln κ

)(
1− 1

2 ln κ

)

1
2 lnκ

≤ 2 lnκ

yields the desired result. �

Claim 4.14. For any δ > 0,Pr[G4 > δn0] ≤ n3 · exp

(

−
(

1−
1

2 ln κ

)

δλ+(κ + 1)

)

Proof. The technique we used to prove Claims 4.11–4.13 does not result in a tight enough

bound in this case; so, we use a different approach. By (4.24), for i ≤ n3,

pi = Pr[Zmin
t < n3/n0] ·Pr[Zmin

t < i/n0 | Z
min
t < n3/n0]

= pn3
Pr[Zmin

t < i/n0 | Z
min
t < n3/n0]

Let Kt be the number elements that are < n3/n0, among the first λ+(κ + 1) elements of Zt.

Then,

pi = pn3

λ+(κ+1)
∑

j=1

(Pr[Zmin
t < i/n0 | Kt = j] ·Pr[Kt = j | Zmin

t < n3/n0]
)

Chapter 4. Analysis – Part II: Starting from a balanced partition 65

Note that, for j ∈ [1..λ+(κ + 1)],Pr[Zmin
t < i/n0 | Kt = j] = 1− (1− i/n3)

j ≥ i/n3

so,

pi ≥ pn3

λ+(κ+1)
∑

j=1

(
(i/n3)Pr[Kt = j | Zmin

t < n3/n0]
)

= pn3
i/n3

Therefore, G4 is stochastically smaller than the sum
∑n3

i=1(τ
′
i − 1) =

∑n3

i=1 τ ′
i − n3, where

τ ′
1, . . . , τ

′
n3

are independent geometric random variables, such that, for each 1 ≤ i ≤ n3,E[τ ′
i] = n3/(pn3

i). So, Pr[G4 > δn0] ≤ Pr [∑
1≤i≤n3

τ ′
i > n3 + δn0

]

(4.26)

We can bound from above the right-hand side of (4.26) as follows. Consider the following

balls-and-bins process (which is a variation of the Coupon Collector’s Problem [60]). We start

with n3 empty bins. In each step, we flip a biased coin that has probability of heads pn3
. If

the outcome is heads we place a ball in one of the bins chosen independently and uniformly at

random among all the bins (empty or not); if the outcome is tails then nothing happens. The

process finishes when each bin contains at least one ball. It is straightforward to verify that

the total number of steps J until the process finished is equal in distribution to
∑

1≤i≤n3
τ ′
i ;

so, Pr [∑
1≤i≤n3

τ ′
i > n3 + δn0

]

= Pr[J > n3 + δn0] (4.27)

Consider now a fixed bin, and let τ ′′ be the earliest step when a ball is placed in that

bin. Since in each step a ball is placed in that bin independently with probability pn3
/n3,

the probability that the bin is still empty after n3 + ⌊δn0⌋ steps isPr[τ ′′ > n3 + δn0] =
(

1−
pn3

n3

)n3+⌊δn0⌋

≤ exp

(

−pn3

(

1 +
⌊δn0⌋

n3

))

≤ exp
(

− pn3

δn0

n3

)

(4.28)

Note that, by (4.24),

pn3
= 1−

(

1−
n3

n0

)λ+(κ+1)

≥ λ+(κ + 1)
n3

n0

(

1− λ+(κ + 1)
n3

2n0

)

≥ λ+(κ + 1)
n3

n0

(

1−
1

2 lnκ

)

where the second relation was obtained using the fact that (1− ǫ)k ≤ 1− kǫ+(kǫ)2/2, when

kǫ ≤ 1. By applying this to (4.28), we obtainPr[τ ′′ > n3 + δn0] ≤ exp

(

−
(

1−
1

2 lnκ

)

δλ+(κ + 1)

)

Chapter 4. Analysis – Part II: Starting from a balanced partition 66

Since the probability that at least one bin (of the n3) is empty after n3 + ⌊δn0⌋ steps is at

most n3 ·Pr[τ ′′ > n3 + δn0],Pr[J > n3 + δn0] ≤ n3 · exp

(

−
(

1−
1

2 lnκ

)

δλ+(κ + 1)

)

Combining this with (4.26) and (4.27) yields the desired result. �

We now combine Claims 4.11–4.14 to derive a lower bound for Pr[∑n0

i=1(τi − 1) ≤ γn0].

Let

δ = γ −
κ + 1

κ(κ− 1)
−

n1(e + 1)

n0e(e− 1)
−

2n2 ln κ

n0
(4.29)

Since λ+(k) = Θ(k), it is easy to see that

δ = γ −O
(ln κ

κ

)

(4.30)

and, thus, δ > 0, for all large enough κ. By (4.29) and the fact that
∑n0

i=1(τi−1) =
∑4

i=1 Gi,Pr [n0∑

i=1

(τi − 1) ≤ γn0

]

≥ Pr [{G1 ≤
κ + 1

κ(κ− 1)
n0

}

∩
{

G2 ≤
e + 1

e(e− 1)
n1

}

∩

{
G3 ≤ 2n2 ln κ

}
∩ {G4 ≤ δn0}

]

≥ 1−Pr [G1 >
κ + 1

κ(κ− 1)
n0

]

−Pr [G2 >
e + 1

e(e− 1)
n1

]

−Pr[G3 > 2n2 ln κ]−Pr[G4 > δn0]

So, by Claims 4.11–4.14 and the fact that n0

2κ3 ,
n1(e−2)
2e3(e−1)

, and n2

64 ln2 κ
are all ω

(
λ+(κ + 1)

)
,Pr [n0∑

i=1

(τi − 1) ≤ γn0

]

= 1−O(n3e
−
(
1− 1

2 lnκ

)
δλ+(κ+1))

and, by (4.30), Pr [n0∑

i=1

(τi − 1) ≤ γn0

]

= 1−O(n3e
−(1−O(1/ln κ))γλ+(κ+1))

This, together with (4.25), yields the desired result.

4.6 Proof of Theorem 4.1

We begin by reducing the set of initial partitions we need to consider. Specifically, we show

that to prove Theorem 4.1 it suffices to show the following variation of it, which considers

Chapter 4. Analysis – Part II: Starting from a balanced partition 67

only S-process that have a borderline-safe initial partition. Recall from Section 4.3 that

the borderline-safe partition of size n, denoted Π̌n, is the (unique) safe partition such that

Π̌n � S, for all S ∈ Fn.

Lemma 4.15. For any long enough S-process such that S0 = Π̌n, with probability

1−O(2µ0e−(1/4−ε)λ(µ0)) (4.31)

there is τ ∈ [ε2µ0..8 · 2µ0] such that:

(i) Sτ is safe

(ii) for all t ≤ τ , µ0 ≤ µt ≤ µ0 + 1 and ξ0 − 1 ≤ ξt ≤ ξ0.

Before we prove this lemma, we show that it implies Theorem 4.1. Consider an arbitrary

(long enough) S-process such that S0 ∈ Fn. We define a second S-process as a function of

the first one, as follows. (We use primed notation to denote the quantities associated with

the second S-process.) We let

S ′
0 = Π̌n N ′ = N λ′

+/− = λ+/− g′ = g

and, for each 1 ≤ t < N ′,

U ′
t = Ut V ′

t = Vt Y ′
t = Yt

Clearly, the above define a valid S-process. By Lemma 3.14 (and induction) we have that,

for all t,

S ′
t � St (4.32)

By Lemma 4.15, we have that, with some probability p = 1 − O(2µ′

0e−(1/4−ε)λ(µ′

0
)), there is

τ ′ ∈ [ε2µ′

0..8 · 2µ′

0] such that:

(i′) S ′
τ ′ is safe, and

(ii′) for all t ≤ τ ′, µ′
0 ≤ µ′

t ≤ µ′
0 + 1 and ξ′0 − 1 ≤ ξ′t ≤ ξ′0.

By Lemma 4.4(a), µ′
0 ≤ µ0 ≤ µ′

0 + 1, so,

p = 1−O(2µ0e−(1/4−ε)λ(µ0))

and the range where τ ′ takes on values is

[ε2µ′

0 ..8 · 2µ′

0] ⊆ [(ε/2) · 2µ0 ..8 · 2µ0]

Chapter 4. Analysis – Part II: Starting from a balanced partition 68

We now show that if (i′) and (ii′) hold (for some τ ′) then (i)–(iii) of Theorem 4.1 hold, for

τ = τ ′. By (4.32) and Lemma 4.2, (i′) implies (i). By (4.32) and Lemma 3.4, we have that,

for all t ≤ τ ′,

µ′
t ≤ µt and ξt ≤ ξ′t

So, if (ii′) holds then (ii) holds, since

̺t = ξt − µt ≤ ξ′t − µ′
t ≤ ξ′0 − µ′

0 ≤ 2

Also, if (ii′) holds then (iii) holds, since

ξt ≤ ξ′t ≤ ξ′0 ≤ ξ0 + 1

where the last relation holds because of Lemma 4.4(a). Combining all the above yields that,

with probability at least p = 1 − O(2µ0e−(1/4−ε)λ(µ0)), there is τ ∈ [(ε/2) · 2µ0 ..8 · 2µ0] such

that (i)–(iii) hold.

Proof of Lemma 4.15

For simplicity of exposition, we will assume (without loss of generality) that the length of

the S-process is larger than 8 · 2µ0 ; in particular, N ≥ 16 · 2µ0 . (If this is not the case, we

can “extend” the process to the desired length.) Let E denote the event whose probability

we want to bound, i.e.,

“(i) and (ii) hold, for some τ ∈ [ε2µ0 ..8 · 2µ0]”

We distinguish three different cases, depending on S0 = Π̌n.

Case 1: min{ℓµ0
(S0), ℓξ0(S0)} ≥ 1/4.

We establish a lower bound for Pr[E] by identifying a collection of “good” events such that,

if all these events occur, then E also occurs. Then we bound from below the probability of

each of these good events, and show that the probability of their intersection is at least as

in (4.31). Roughly speaking, these events say that all the blocks that are split in the first

ε2µ0 steps have depth µ0, and all blocks merged have depth ξ0.

Note that, since the result we want to show is asymptotic, as n → ∞, we can assume

that n is larger than any given constant. So, by Lemma 4.4(b),

̺0 ∈ {1, 2} (4.33)

Chapter 4. Analysis – Part II: Starting from a balanced partition 69

We begin with some definitions we will use to describe the good events. For i ≥ 1, let ηi

be the step when the i-th addBlkS operation occurs; i.e.,

ηi = inf{t : |{j ≤ t : Vj = +}| = i}

Similarly, let η′
i be the step when the i-th rmBlkS operation takes place; i.e.,

η′
i = inf{t : |{j ≤ t : Vj = −}| = i}

We assume, without loss of generality, that ηi, η
′
i <∞, for all i in the range of steps we are

interested in; i.e., for i ≤ 8 · 2µ0 . (We can always achieve that by appropriately modifying

the adversary for t > 8 · 2µ0 — since we assumed N ≥ 16 · 2µ0 .) For those i, we define

Zi = 〈Zi,1, Zi,2, . . .〉 = Yηi
Z ′

i = 〈Z ′
i,1, Z

′
i,2, . . .〉 = Yη′

i

Note that 〈Z1, . . . , Z8·2µ0 〉 is a random point-array, and so is 〈Z ′
1, . . . , Z

′
8·2µ0 〉.

We are now ready to describe the good events. Let E1,i be the event:

“min{Zi,j : j ≤ λ+(µ0 + 1)} < 1/4− ε”

and E2,i be the event:

“max{Z ′
i,j : j ≤ λ−(µ0)} ≥ 3/4 + ε”

Since Zi is a random point-vector,Pr[E1,i] = 1− (1− 1/4 + ε)λ+(µ0+1) ≥ 1− e−(1/4−ε)λ+(µ0+1) (4.34)

Similarly, Pr[E2,i] ≥ 1− e−(1/4−ε)λ−(µ0) (4.35)

Now let,

E ′ =
κ⋂

i=1

(E1,i ∩ E2,i)

where

κ = ε2µ0

(Note that κ is an integer, for large n.) Then, by (4.34) and (4.35),Pr[E ′] = 1−Pr [κ⋃

i=1

(Ē1,i ∪ Ē2,i)
]

≥ 1−
κ∑

i=1

(Pr[E1,i] +Pr[E2,i]
)

≥ 1− κ(e−(1/4−ε)λ+(µ0+1) + e−(1/4−ε)λ−(µ0))

= 1−O(2µ0e−(1/4−ε)λ(µ0)) (4.36)

Chapter 4. Analysis – Part II: Starting from a balanced partition 70

We complete the proof by showing that E ′ implies E . Suppose that E ′ occurs. We show

that, in the fist κ steps, all addBlkS operations split blocks of depth µ0 and all rmBlkS

operations merge blocks of depth ξ0. Assume (for contradiction) that some block of depth

6= µ0 is split, or some pair of blocks of depth 6= ξ0 are merged during the first κ steps. Let t0

be the earliest step when this happens. Then, since all blocks split in the first t0 − 1 steps

have depth µ0, and all blocks merged have depth ξ0, and (by (4.33)) ̺0 > 0 , we have

µt0−1 ≥ µ0 and ξt0−1 ≤ ξ0

Also, since at most t0 − 1 blocks of depth µ0 (and length 2−µ0) are split and no blocks of

depth µ0 are merged,

ℓµ0
(St0−1) ≥ ℓµ0

(S0)− (t0 − 1)2−µ0 ≥ 1/4− (κ− 1)2−µ0 > 1/4− ε (4.37)

(thus, µt0−1 = µ0). Likewise,

ℓξ0(St0−1) ≥ ℓξ0(S0)− (t0 − 1)2−ξ0+1 ≥ 1/4− (κ− 1)2−µ0 > 1/4− ε (4.38)

(and ξt0−1 = ξ0). Now, if an addBlkS operation occurs in step t0 then, by (4.37) and the

event
⋂κ

i=1 E1,i,

min{Yt0,j : j ≤ λ+(µ0 + 1)} < ℓµ0
(St0−1)

Thus, by Lemma 4.5(a), a block of depth µ0 is split in step t0. Similarly, if a rmBlkS

operation occurs in step t0, instead, then by (4.38), event
⋂κ

i=1 E2,i, and Lemma 4.5(b), the

blocks merged have depth ξ0. So, in either case we have a contradiction. Therefore, in the

fist κ steps, all addBlkS operations split blocks of depth µ0 and all rmBlkS operations

merge blocks of depth ξ0. From this, and the fact that S0 is safe with ̺0 > 0, it is immediate

that (i) and (ii) hold for τ = κ. Therefore, if E ′ occurs then E occurs, and, thus,Pr[E] ≥ Pr[E ′]
Combining this and (4.36) yields the desired result.

Case 2: ℓµ0
(S0) < 1/4.

As in Case 1, we identify a number of good events (events E1–E3) such that if they all occur

then E also occurs. Then, we establish a lower bound for the probability of the intersection

of these good events, thus, obtaining a lower bound for the probability of E , as well. Note

that, by Lemma 4.4(b) and the case hypothesis, we have that (for all large enough n)

̺0 = 2 (4.39)

Chapter 4. Analysis – Part II: Starting from a balanced partition 71

and

ℓξ0(S0) = 1/4 + ε (4.40)

Intuitively, the good events we describe say that: each of the first Θ(2µ0) addBlkS

operations splits a block of depth µ0 or µ0 + 1, if the partition it is applied to has ℓ≤µ0+1 ≥

1/4− ε (event E1); each of the first Θ(2µ0) rmBlkS operations merges blocks of depth ≥ ξ0,

if the partition it is applied to has ℓ≥ξ0 ≥ 1/4− ε (event E2); and, in Θ(2µ0) steps, either all

blocks of depth µ0 have been split or some pair of blocks of depth < ξ0 is merged (event E3).

More precisely, for i ≥ 1, we define ηi, η′
i, Zi, Z ′

i, and events E1,i and E2,i as in Case 1.

We define events E1 and E2 as

E1 =
κ⋂

i=1

E1,i E2 =
κ′

⋂

i=1

E2,i

where

κ = sµ0
(S0) + 2µ0 κ′ = 2µ0+1

We let E3 be the event:

“a ≤ κ”

where a is the A-time of
〈
S0, 〈Z1, . . . , Zκ〉

〉
. We now compute lower bounds for the proba-

bilities of these events and their intersection. By (4.34) and (4.35), we havePr[E1] ≥ 1− κe−(1/4−ε)λ+(µ0+1)

and Pr[E2] ≥ 1− κ′e−(1/4−ε)λ−(µ0)

Since 〈Z1, . . . , Zκ〉 is a random point-array, by applying Lemma 4.6 (for γ = 1), we obtainPr[E3] = 1−O
(
2µ0e−(1−O(1/ln µ0))λ+(µ0+1)

)

Combining the above bounds, we getPr[E1 ∩ E2 ∩ E3] = 1−O
(
2µ0e−(1/4−ε)λ(µ0)

)
(4.41)

In Claim 4.16, below, we show that if all of E1, E2 and E3 occur then so does E ; thus,Pr[E] ≥ Pr[E1 ∩ E2 ∩ E3]
This, together with (4.41), yields the desired lower bound for Pr[E].

Chapter 4. Analysis – Part II: Starting from a balanced partition 72

Claim 4.16. If E1 ∩ E2 ∩ E3 occurs then E occurs.

Proof. Suppose that E1 ∩ E2 ∩ E3 occurs. We define the following quantities:

− J is the earliest step when blocks of depth < ξ0 are merged. (J = ∞ if no such step

exists.)

− K = min{ηκ, J − 1}.

− M is the number of addBlkS operations performed in the first K steps.

− M ′ is the number of addBlkS operations in the first K steps that split blocks of depth

6= µ0.

Note that K < ∞, because ηκ < ∞. Indeed, since fewer than κ + |S0| rmBlkS operations

take place before κ addBlkS operations occur,

ηκ < 2κ + |S0| ≤ 8 · 2ξ0 < N (4.42)

Since K < J ,

all the blocks merged in the first K steps have depth ≥ ξ0 (4.43)

So, since, by (4.39),

ξ0 = µ0 + 2

〈S0, Sη1
, . . . , SηM

〉 is a prefix of some sequence in AS0,〈Z1,...,Zκ〉. But, by event E3, in each of

these sequences, all (the sµ0
(S0)) blocks of depth µ0 are split during the first κ addBlkS

operations. So, the number of addBlkS operations, among the first M ≤ κ such operations,

that split blocks of depth 6= µ0 is

M ′ ≤ κ− sµ0
(S0) = 2µ0 (4.44)

For all t ≤ K, then, we have

ℓ≤µ0+1(St) ≥ ℓ≤µ0+1(S0)−M ′2−(µ0+1) ≥
(
1− ℓξ0(S0)

)
− 1/2 = 1/4− ε (4.45)

by (4.40). Combining this and event E1, we obtain that for all i ≤ M ,

min{Zi,j : j ≤ λ+(µ0 + 1)} < ℓ≤µ0+1(Sηi
)

which, by Lemma 4.5(a), yields

all the blocks split in the first K steps have depth ≤ µ0 + 1 (4.46)

Chapter 4. Analysis – Part II: Starting from a balanced partition 73

Also, by (4.45), for all t ≤ K, ℓ≤µ0+1(St) > 0, so,

µt ≤ µ0 + 1 (4.47)

At this point we distinguish two cases, depending on which of ηκ or J − 1 is smaller.

Case A: K = ηκ.

Then, M = κ. So, by (4.44), M −M ′ ≥ sµ0
(S0), which, together with (4.43), yields

µ(SK) ≥ µ0 + 1 (4.48)

Combining this with (4.43), (4.46), and (4.47), yields that (i) and (ii) hold for τ = ηκ. Also,

ηκ ≥ κ > ε2ξ0 and, by (4.42), ηκ < 8 · 2ξ0 . Therefore, E occurs.

Case B: K = J − 1 < ηκ.

We show that

ℓξ0(SK) < 1/4− ε (4.49)

Suppose (for contradiction) that ℓξ0(SK) ≥ 1/4− ε. Then, by (4.43) and (4.46), the number

of rmBlkS operations performed in the first K steps is (at most)

1

2

(
sξ0(S0)− sξ0(SK)) + M ′ ≤

((1

4
+ ε
)

−
(1

4
− ε
))

2ξ0−1 + 2µ0 = (1 + 4ε)2µ0 < κ′

where the second relation holds because of (4.40) and (4.44). Combining that, event E2, the

assumption that ℓξ0(SK) ≥ 1/4 − ε, and Lemma 4.5(b), we obtain that the pair of blocks

merged in step J have depth ξ0, which contradicts the definition of J . So, (4.49) holds.

Combining (4.49), (4.43), (4.46), and (4.47), yields that (i) and (ii) hold, for τ = J−1. Also,

by (4.40) and (4.49),

J − 1 > ε2ξ0

since ε2ξ0 is the minimum number of rmBlkS operations required to reduce ℓξ0 by 2ε, and

J − 1 < ηκ ≤ 8 · 2ξ0

by (4.42). Hence, E occurs. �

Case 3: ℓξ0(S0) < 1/4.

The proof in this case is similar to that of Case 2 and is omitted.

Chapter 5

Analysis – Part III: Starting from an

unbalanced partition

In this chapter we continue the study of S-processes, which we started in Chapter 4.

So far, we have looked at the case where the S-process begins from a safe initial partition.

Here we consider the complementary case, where the initial partition is not safe, and we

provide an upper bound on the number of steps required to reach a safe partition with high

probability.1

In Section 5.1, we describe the main result of this chapter. An outline of its proof is given

in Section 5.2. In Section 5.3, we introduce some definitions. Sections 5.4–5.7 contain the

various steps of the proof. We combine all these steps in Section 5.8.

5.1 Statement of the main result: from a non-safe to a

safe partition

In this chapter we consider S-processes that start from an arbitrary non-safe initial partition

S0; specifically, we do not impose any restrictions on how “unbalanced” S0 may be. As in

Chapter 4, we assume that the sampling-size functions are λ+(d), λ−(d) = Θ(d), with the

constants involved being sufficiently large; the processes’ length N is large enough; and the

strategy of the adversary and the precision g can be arbitrary. For any such S-process, we

show that, with probability 1− (1/2ξ0)Θ(1), a safe partition is reached within O(ξ02
ξ0) steps.

1Throughout this chapter whenever we say “partition” we mean “sorted binary partition.”

74

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 75

The formal statement of this result is as follows.

Theorem 5.1. Consider an S-process such that, for all k ≥ 0,

λ+(k) ≥ max{8(ln 2)k, β} and λ−(k) ≥ max{8k, β} (5.1)

where β is a sufficiently large constant. If the S-process is long enough then, with probability

1−O(ξ
O(1)
0 2ξ0e−(1/4−2ε)λ(ξ0)) (5.2)

there is τ ≤ cξ02
ξ0, where c is a positive constant, such that

(i) Sτ is safe

(ii) for all t ≤ τ , ξτ ≤ ξ0 + 2.

By long enough S-process we mean that it has length N ≥ cξ02
ξ0 . (See the remark at

the end of Section 3.5.2.) ε is the constant 1/16 from the definition of a safe partition.

Recall that in the statement of Theorem 4.1, in Section 4.1, both the probability (4.1)

and the range for τ are expressed in terms of µ0, which is roughly the same as log |S0| and ξ0,

since S0 is safe. In Theorem 5.1, the corresponding quantities (i.e., the probability (5.2) and

the bound for τ) are expressed in terms of ξ0. In this case, however, ξ0 may be much larger

than log |S0|, depending on how unbalanced S0 is; in the extreme, ξ0 = |S0| − 1. Similarly

to Theorem 4.1, the big-oh term in (5.2) can be made smaller than any given polynomial of

2−ξ0, by using sufficiently large λ+, λ−.

5.2 Outline of the proof

Recall that the proof of Theorem 4.1 depends critically on the fact that, for any partition S

with µ, ξ = Θ(log |S|), an addBlkS or rmBlkS operation applied to S involves Θ(log |S|)

random probes. More precisely, the theorem is based on the fact that each addBlkS oper-

ation splits a block of depth d only if d is smaller or equal to the depths of Θ(d) randomly

probed blocks; and each rmBlkS operation merges a pair of sibling blocks that are smaller or

equal to Θ(µ) = Θ(ξ) randomly probed blocks. Theorem 5.1, however, considers partitions

S for which it may not be true that µ, ξ = Θ(log |S|). For such a partition, an addBlkS

operation that splits a block of depth d also involves Θ(d) random probes; so, as before it

has a strong tendency to split larger blocks and, thus, “improve” the balance of S. How-

ever, the number of random probes executed in an rmBlkS operation, that is Θ(µ), may

be significantly smaller than ξ — in the worst case, ξ = Θ(|S|) and µ = O(1). As a result,

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 76

rmBlkS operations may tend to improve balance “at a slower rate” than if Θ(ξ) random

probes were used, or even to “deteriorate” it.

The basic intuition behind Theorem 5.1 is that addBlkS operations tend to improve

balance faster than rmBlkS operations tend to deteriorate it. Roughly speaking, addBlkS

operations almost always split larger blocks, while rmBlkS operations merge smallest blocks

at a rate that is O(ξ) lower than if Θ(ξ) random probes were used. If Θ(ξ) probes were used

for each rmBlkS operation then it would take O(2ξ0) steps to reach a safe partition starting

from an arbitrary S0. So, in an S-process a safe partition is reached within at most O(ξ02
ξ0)

steps.

Informally, the proof proceeds as follows. We identify a number of classes of progressively

“more balanced” partitions, where the last class is that of safe partitions. (We describe these

classes and some of their properties in Section 5.3.) For each of these classes we establish a

probabilistic upper bound on the number of steps required to reach a partition from this class

starting form a partition in the previous class. Combining these results yields the bound of

Theorem 5.1. Below we give a more detailed exposition. For simplicity we assume that the

size of the current partition |St| remains roughly the same.

First we compute and upper bound for the number of steps required to get from an arbi-

trary S0, to a partition S ′
0 where almost all blocks have depths ξ(S ′

0) or ξ(S ′
0)−1. Combining

the facts that: (1) while ℓ≤ξt−2(St) is not very small, almost all addBlkS operations split

blocks of depth ≤ ξt − 2; and (2) with high probability, the number of rmBlkS operation

required to merge all smallest blocks of a partition S, if no blocks of depth > ξ− 2 are split,

is O(ξ2ξ) (by the Coupon Collector’s Problem [60]), we obtain a bound of O(ξ02
ξ0) steps

for the number of steps to get from S0 to S ′
0. S ′

0 differs from a safe partition in that the

distribution of depths may have a long thin “tail” to the left; i.e., ℓ≤ξ−2(S
′
0)

2 is small but it

may be µ(S ′
0)≪ ξ(S ′

0). Next we compute and upper bound for the number of steps required

until this tail becomes short, specifically, until we reach a partition S ′′
0 that has µ = ξ− o(ξ)

and still ℓ≤ξ−2 is small. The intuition is that most rmBlkS operations will merge some of

the numerous small blocks, so addBlkS operations will quickly shorten the tail (in at most

a linear number of steps). To get to a safe partition we still have to eliminate the short thin

tail of S ′′
0 . Note that this tail does not essentially affect the outcome of rmBlkS operations,

since now Θ(µt) = Θ(ξt). Hence, a safe partition is reached in at most a linear number of

additional steps.

2Recall that ℓ≤ξ−2(S
′
0) ≡ ℓ≤ξ(S′

0
)−2(S

′
0), by the convention we introduced at the end of Section 3.2.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 77

We describe the above three steps in Sections 5.4, 5.5, and 5.7 respectively. We combine

the first two in Section 5.6, and we put all the pieces together in Section 5.8.

5.3 Tailed, left-heavy, and almost-safe partitions

In this section, we define various classes of partitions, and describe some properties of them.

Each partition, depending on the value of ℓ≤ξ−2, is classified as:

thick-tailed if

ℓ≤ξ−2 > 1/4 + ε

thin-tailed if

ℓ≤ξ−2 < 1/4− ε

normal-tailed if

|ℓ≤ξ−2 − 1/4| ≤ ε

where ε = 1/16 (as in the definition of a safe partition). A partition S is left-heavy if S � S ′

for some S ′ such that:

ξ(S ′) = ξ(S) and S ′ is either thick-tailed or normal-tailed

Obviously, a partition that is thick-tailed or normal-tailed is also left-heavy. The converse,

however, is not always true; there are thin-tailed partitions that are left-heavy. For example,

the thin-tailed partition S with

µ = 4 ξ = 6 ℓ4 = 1/4− 2ε ℓ5 = 3ε/2

is left-heavy, because the partition S ′ = V4→5(S) = S5 M5(S) is normal-tailed, ξ(S ′) = ξ(S),

and S � S ′. The next lemma states two useful results about left-heavy partitions. Part (a)

states a sufficient condition for S to be left-heavy; and part (b) says that if S is not left

heavy then it is more balanced than some left-heavy partition of ξ = ξ(S) + 1.

Lemma 5.2. For all S ∈ S such that ξ(S) ≥ 6,3

(a) if ℓ≤ξ−1(S) > 1/4 + ε then S is left-heavy.

(b) if S is not left-heavy then S � S ′ for some S ′ such that ξ(S ′) = ξ(S) + 1 and S ′ is

either thick-tailed or normal-tailed.

3In fact, part (a) holds even when ξ(S) = 4 or 5, and part (b) holds even when ξ(S) = 3, 4 or 5.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 78

Proof.

(a) Let S ′ be the partition obtained from S by splitting 1/3 of the blocks of depth ξ(S)− 1

(into blocks of depth ξ(S)) and merging the other 2/3 (into blocks of depth ξ(S)− 2). More

precisely,

S ′ = V
k
d−2→d−1(S)

where

d = ξ(S) k = ⌊sd−1(S)/3⌋

Recall that operation Vd−2→d−1 splits a block of depth d− 1, and merges two sibling blocks

of depth d− 1. So, it reduces sd−1 by 3, and increases sd−2 and sd by 1 and 2, respectively.

Therefore,

ℓ≤d−2(S
′) = ℓ≤d−2(S) + k2−(d−2)

≥ ℓ≤d−2(S) + (sd−1(S)/3− 2/3) · 2−(d−2)

= ℓ≤d−2(S) + (2/3) · ℓd−1(S)− (2/3) · 2−(d−2)

≥ (2/3) · ℓ≤d−1(S)− (2/3) · 2−(d−2)

Since d > 4, the assumption that ℓ≤d−1(S) > 1/4 + ε is equivalent to

ℓ≤d−1(S) ≥ 1/4 + ε + 2−(d−1)

so,

ℓ≤d−2(S
′) ≥ (2/3) · (1/4 + ε− 2−(d−1)) = 1/4− ε + (1/3) · (1/16− 2−(d−2)) ≥ 1/4− ε

where the last inequality holds because d ≥ 6. This, together with the facts that ξ(S ′) = ξ(S)

and S � S ′, yields that S is left-heavy.

(b) Since S is not left-heavy, part (a) yields ℓ≤ξ−1(S) ≤ 1/4 + ε; so (since ξ(S) > 1),

sξ(S) ≥ 3. Let T be the partition obtained from S by splitting one block of depth ξ(S) and

merging two blocks of depth ξ(S); i.e.,

T = Vξ(S)−1→ξ(S)(S)

Note that ξ(T) = ξ(S) + 1, and

ℓ≤ξ−1(T) = 1− 2 · 2−ξ(T) > 1/4 + ε

so, by part (a), T is left-heavy. Hence, there is a partition S ′ such that S ′ � T � S, and S ′

is either thick-tailed or normal-tailed, and ξ(S ′) = ξ(T) = ξ(S) + 1. �

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 79

{thick-tailed} {normal-tailed} {thin-tailed}

{fat-tailed}

{short-tailed}

{safe}

{almost-safe} {left-heavy}

S

decreasing !"-2

d
e
cre

asing ("-#)/log
"

Figure 5.1: Relationship between the various classes of partitions.

We say that a partition is fat-tailed if

ℓ≤ξ−2 > 1/4 + 2ε

So, every fat-tailed partition is also thick-tailed. A partition is called short-tailed if it is not

fat-tailed (i.e., ℓ≤ξ−2 ≤ 1/4 + 2ε) and

µ ≥ ξ − 2 log ξ

A partition S is almost-safe if S � S ′ for some short-tailed S ′. Note that we do not explicitly

require that ξ(S ′) = ξ(S), as in the definition of a left-heavy partition. However, the next

lemma shows that this condition is implicit in the definition of an almost-safe partition.

Lemma 5.3. If S ∈ S is almost-safe then S � S ′ for some short-tailed S ′ such that ξ(S ′) =

ξ(S).

Proof Sketch. We show that for any short-tailed T ∈ S such that T � S and ξ(T) > ξ(S),

T ′ = Ŝξ−2 Mξ(T) is also short-tailed and T ′ � S. Then, we construct S ′ starting from any

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 80

short-tailed partition � S and iteratively applying to it the pair of operations Ŝξ−2 Mξ, until

the resulting partition has ξ = ξ(S). �

5.4 From a thick-tailed to a normal-tailed partition

In this section and the next, we prove two results that we use in Section 5.6 to establish a

probabilistic upper bound on the number of steps required in an S-process until we reach

an almost-safe partition, starting from an arbitrary initial partition. Informally, here we

show that if we start from a thick-tailed initial partition and λ+ is sufficiently large then,

with high probability, it takes at most O(ξ02
ξ0) steps until either we reach a normal-tailed

partition, or all smallest blocks of S0 have been merged. The formal statement of this result

is as follows.

Lemma 5.4. For any long enough S-process such that S0 is thick-tailed, with probability

1−O(ξ02
ξ0e−(1/4+ε)λ+(ξ0))

there is τ ≤ cξ02
ξ0, where c is a positive constant, such that

(i) all the blocks that are split in the first τ steps have depths ≤ ξ0 − 2, and

(ii) Sτ is normal-tailed, or Sτ is left-heavy and ξτ < ξ0.

The proof of this lemma is quite straightforward. Roughly speaking, by the Coupon

Collector’s Problem [60] it takes O(ξ02
ξ0) steps until all smallest blocks of S0 are merged,

provided that no blocks of depth ξ0 or ξ0−1 are split during that time. But, by the result in

Section 4.4, (for large λ+) with high probability no blocks of depth > ξ0 − 2 are split when

ℓ≤ξ0−2(St) > 1/4 + ε. Therefore, in O(ξ02
ξ0) steps, either all blocks of depth ξ0 have been

merged, or ℓ≤ξ0−2(St) is decreased to 1/4+ ε, and, thus, a normal-tailed partition is reached.

The actual proof is similar in structure to that of Theorem 4.1. We begin by introducing

a variation of the concept of R-times.

5.4.1 R̃-times

Recall from Section 4.5 that the R-time of 〈S, W 〉, where ̺(S) ≤ 2, is, roughly speaking, the

maximum number of rmBlkS operations required to merge all smallest blocks of S, when

the sample points used are those in W . A rmBlkS operation takes effect only if it merges

blocks of depth ξ(S) or ξ(S) − 1, and any number of blocks of depth ≤ ξ(S) − 2 may be

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 81

split between two rmBlkS operations. Here we consider the variation where all rmBlkS

operations take effect, regardless of the depth of the blocks they merge. Also, we allow S to

be an arbitrary partition; i.e, we drop the requirement that ̺(S) ≤ 2.

More formally, let S ∈ S and W be as in (4.8), i.e.,

W = 〈W1, . . . , Wlw〉, where Wt = 〈Wt,1, . . . , Wt,hw〉 ∈ Ihw , for each t = 1, . . . , lw (5.3)

and hw is large enough that the operations we describe below are well defined. We denote

by R̃S,W the class of all sequences of partitions 〈T0, . . . , Tlw〉 such that

Tt =

{

S, if t = 0

rmBlkS(T ′
t−1, Wt), otherwise

where

T ′
t = Skt

1
· · ·Skt

mt
(Tt), for some mt ≥ 0, and kt

1, . . . , k
t
mt
≤ ξ(S)− 2

The R̃-time of 〈S, W 〉 is the supremum of

inf{t : ξ(Tt) = ξ(S)− 1}

taken over all 〈T0, . . . , Tlw〉 ∈ R̃S,W .

Note that the definitions of R̃S,W and the R̃-time of 〈S, W 〉 are completely symmetric to

that of AS,W and the A-time of 〈S, W 〉, respectively.

The next result is the analogue of Lemmata 4.6 and 4.9.

Lemma 5.5. Let τ be the R̃-time of 〈S,Z〉, where S ∈ S and Z = 〈Z1, Z2, . . .〉 is a large

enough random point-array, and let γ > 0. (γ may be a function of S.) Then,Pr[τ ≤ γ2ξ(S)] = 1−O(|S|e−2γ)

Proof. The proof is similar to the proofs of Lemmata 4.6 and 4.9. Let

κ = ξ(S)

For each W as in (5.3), where lw = |Z| and hw = |Z1|, we define the sequence of partitions

〈T ∗
0 (W), . . . , T ∗

lw
(W)〉 by

T ∗
t (W) =







S, if t = 0

Mκ(T
∗
t−1(W)), if t 6= 0 and Wt,1 ≥ 1− ℓκ(T

∗
t−1(W))

T ∗
t−1(W), otherwise

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 82

We also let

τ ∗(W) = inf{t : ξ(T ∗
t (W)) = κ− 1}

and τ(W) be the R̃-time of 〈S, W 〉.

The next two results are the analogues of Claims 4.7 and 4.8, respectively. The proof for

the first is very similar to that of Claim 4.7 and it is omitted.

Claim 5.6. For all W , τ ∗(W) ≥ τ(W).

Claim 5.7. Pr[τ ∗(Z) ≤ γ2κ] = 1−O(|S|e−2γ)

Proof. Consider the following coupon collection process. There are 2κ−1 types of coupons.

Initially, coupons of all but sκ(S)/2 types have already been collected, and in each step a

new coupon is chosen at random. Each random coupon is equally likely to be of any of the

2κ−1 types, and the random choices are independent. We are interested in the number of

steps J required until coupons of all types have been collected.

Clearly, for all i ≤ |Z|, Pr[J = i] = Pr[τ ∗(Z) = i]; so, since |Z| ≥ γ2κ,Pr[τ ∗(Z) ≤ γ2κ] = Pr[J ≤ γ2κ] (5.4)

In each step of the above process, a coupon of a fixed type is collected with probability

1/2κ−1. Thus, the probability that a coupon of this type is not selected in the first ⌊γ2κ⌋

steps is

(1− 1/2κ−1)⌊γ2κ⌋ ≤ e · e−2γ

Therefore, the probability that coupons of all types have been collected in the first ⌊γ2κ⌋

steps is Pr[J ≤ γ2κ] ≥ 1− (sκ(S)/2) · e · e−2γ = 1−O(|S|e−2γ)

This and (5.4) yields the desired result. � {of Claim 5.7}

Combining Claims 5.6 and 5.7, we can obtain the desired lower bound for Pr[τ ≤ γ2κ].

�

5.4.2 Proof of Lemma 5.4

As in the proof of Lemma 4.15, we identify two events, E1 and E2, such that if both these

events occur then the event we are interested in (i.e., that (i) and (ii) hold for some τ ≤ cξ02
ξ0)

also occurs; then, we compute a lower bound for the probability of E1∩E2, instead. Roughly

speaking, E1 says that each of the first Θ(ξ02
ξ0) addBlkS operations splits a block of depth

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 83

≤ ξ0 − 2, if the partition it is applied to has ℓ≤ξ0−2 > 1/4 + ε; and E2 says that, in O(ξ02
ξ0)

steps, either all blocks of depth ξ0 have been merged or some block of depth > ξ0−2 is split.

As in the proof of Lemma 4.15, we will assume (without loss of generality) that N is

larger than the upper bound for τ — large enough that the definitions we describe later

on in the proof are valid. (We will implicitly make this assumption in the proofs of many

subsequent results in this chapter, as well.)

We define ηi, η′
i, Zi, and Z ′

i as in the proof of Lemma 4.15; i.e., ηi is the step when the

i-th addBlkS operation occurs, η′
i is the step when the i-th rmBlkS operation occurs, and

Zi = 〈Zi,1, Zi,2, . . .〉 = Yηi
Z ′

i = 〈Z ′
i,1, Z

′
i,2, . . .〉 = Yη′

i

Let

κ′ = λ+(ξ0 − 1) · 2ξ0−1 κ = κ′ + 2ξ0−1

Let E1 be the event:

“for all i ≤ κ, min{Zi,j : j ≤ λ+(ξ0 − 1)} ≤ 1/4 + ε”

and E2 be the event:

“r ≤ κ′”

where r is the R̃-time of 〈S0, 〈Z
′
1, . . . , Z

′
κ′〉〉. (Again, without loss of generality, we assume

that ηi < ∞ for all i ≤ κ, and η′
i < ∞ for all i ≤ κ′; we can always achieve that by

appropriately modifying the adversary for t > κ + κ′.) Since the Zi are random point-

vectors, Pr[E1] ≥ 1− κ · (1− 1
4
− ε)λ+(ξ0−1) ≥ 1− κe−(1/4+ε)λ+(ξ0−1)

Also, since 〈Z ′
1, . . . , Z

′
κ′〉 is a random point-array, applying Lemma 5.5 (for γ = κ′2−ξ0) yieldsPr[E2] = 1−O(|S0|e

−λ+(ξ0−1))

Therefore, Pr[E1 ∩ E2] = 1−O(κe−(1/4+ε)λ+(ξ0−1)) = 1−O(ξ02
ξ0e−(1/4+ε)λ+(ξ0−1))

Combining this with Claim 5.8 that we show below, yields the desired result.

Claim 5.8. If E1 ∩ E2 occurs then (i) and (ii) hold for some τ < κ + κ′.

Proof. The proof is similar to that of Claim 4.16. Let

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 84

− J be the earliest step when a block of depth > ξ0 − 2 is split,

− K = min{η′
κ′, J − 1}, and

− M be the total number of addBlkS operations performed in the first K steps.

Since the number of S operations required to split all blocks in S0 of depth ≤ ξ0 − 2 into

blocks of depth > ξ0− 2 is smaller than 2ξ0−1, and the number of rmBlkS operations in the

first K ≤ η′
κ′ steps is at most κ′,

M < 2ξ0−1 + κ′ = κ (5.5)

Suppose that E1 ∩E2 occurs. We distinguish two cases depending on which of η′
κ′ or J − 1 is

smaller.

If K = η′
κ′ then 〈S0, Sη′

1
, . . . , Sη′

κ′
〉 ∈ R̃S,〈Z′

1
,...,Z′

η′
κ′

〉; so, by E2,

ξη′

κ′
≤ ξ0 − 1

If K = J − 1 < η′
κ′ , instead, then J = ηM+1 ≤ ηκ, by (5.5). So, E1 yields min{YJ,j : j ≤

λ+(ξ0 − 1)} ≤ 1/4 + ε, and, by Lemma 4.5(a),

ℓ≤ξ0−2(SJ−1) ≤ 1/4 + ε

(since otherwise the block split in step J would have depth ≤ ξ0 − 2).

Combining the above two cases, we have that

ξK ≤ ξ0 − 1 or ℓ≤ξ0−2(SK) ≤ 1/4 + ε

Let

τ = min{t : ξt ≤ ξ0 − 1 or ℓ≤ξ0−2(St) ≤ 1/4 + ε}

Since ℓ≤ξ0−2(S0) > 1/4− ε and τ ≤ K < J , we have that either

ξ(Sτ) = ξ0 and ℓ≤ξ0−2(Sτ) = 1/4 + ε

or

ξ(Sτ) = ξ0 − 1 and ℓ≤ξ0−2(Sτ) > 1/4 + ε

So, if ξ(Sτ) = ξ0 then Sτ is normal-tailed, while if ξ(Sτ) = ξ0− 1 then, by Lemma 5.2(a), Sτ

is left-heavy; thus, condition (ii) holds. Since τ ≤ K, condition (i) is also true. Finally,

τ ≤ K ≤M + κ′ < κ + κ′

by (5.5). �

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 85

5.5 From a normal-tailed to a short-tailed partition

Roughly speaking, we show that in an S-process that starts from a normal-tailed partition

and has sufficiently large sampling-size functions, with high probability, it takes at most

O(|S0|) steps until one of the following three events happens: we reach a short-tailed parti-

tion, or we reach a fat-tailed partition, or all smallest blocks of S0 have been merged. The

formal statement of this result is as follows.

Lemma 5.9. Consider an S-process such that S0 is normal-tailed and, for all k ≥ 2,

λ+(k) ≥ 8(ln 2)k and λ−(k) ≥ 8k (5.6)

If the S-process is long enough then, with probability

1−O(2ξ0e−(1/4−2ε)λ+(ξ0)) (5.7)

there is τ ≤ c2ξ0, where c is a positive constant, such that

(i) all the blocks that are split in the first τ steps have depths ≤ ξ0 − 2, and

(ii) Sτ is short-tailed, or Sτ is fat-tailed, or Sτ is left-heavy and ξτ < ξ0.

The proof of this result is based on the observation that for a normal-tailed partition

with µ≪ ξ, (1) the number of addBlkS operations required to increase µ by one is smaller

than the number of rmBlkS operations required to merge a single pair of blocks of depth

≤ ξ − 2 (since ℓ≤ξ−2 ≤ 1/4 + ε); and, (2) the addBlkS operations split blocks of depth

≤ ξ − 2, with high probability (since ℓ≤ξ−2 ≥ 1/4 − ε). So, starting from a normal-tailed

S0, if addBlkS operations occur “sufficiently often” then a short-tailed partition is reached,

while if mostly rmBlkS operations take place then either a fat-tailed partition is reached

or all smallest blocks are merged.

We begin by revisiting the notion of A-times and showing a related result.

5.5.1 More on A-times

Let S ∈ S and W be as in (4.8), i.e.,

W = 〈W1, . . . , Wlw〉, where Wt = 〈Wt,1, . . . , Wt,hw〉 ∈ Ihw , for each t = 1, . . . , lw (5.8)

Recall from Section 4.5 that the A-time of 〈S, W 〉 is, roughly speaking, the maximum number

of addBlkS operations required to split all largest blocks of S, when the sample points used

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 86

are those in W , and any number of pairs of sibling blocks of depth ≥ µ(S)+2 may be merged

between two addBlkS operations. We define the A-time of 〈κ, κ′, W 〉, where κ, κ′ ∈ N, as

the supremum of the A-time of 〈S, W 〉 taken over all S such that

µ(S) = κ and ξ(S) = κ′

The next lemma provides an upper bounds on the A-time of 〈κ, κ′,Z〉, where Z is a

random point-array, that holds with probability ≥ 1/2.

Lemma 5.10. Let τ be the A-time of 〈κ, κ′,Z〉, where κ, κ′ ∈ N and Z = 〈Z1, Z2, . . .〉 is a

large enough random point-array. Then,Pr [τ ≤ 2κ+1 +
2

σ

(

2 + ln
2

σ

)]

≥
1

2
, where σ =

λ+(κ + 1)

2κ

Proof. The proof is similar to that of Lemma 4.6. For each W as in (5.8), where lw = |Z|

and hw = |Z1|, we define the sequence 〈T ∗
0 (W), . . . , T ∗

lw
(W)〉 as in (4.12), letting S be the

partition that has

µ(S) = ξ(S) = κ

We also let

τ ∗(W) = inf{t : µ(T ∗
t (W)) = κ + 1}

and τ(W) be the A-time of 〈κ, κ′, W 〉. Then,

Claim 5.11. For all W , τ ∗(W) ≥ τ(W).

The proof of Claim 5.11 is similar to that of Claim 4.7 and is omitted. The next result is

the analogue of Claim 4.8. Notice, however, that the bound we show below holds even for

small values of κ, while the bound in Claim 4.8 is asymptotic, as κ→∞.

Claim 5.12. Pr [τ ∗(Z) ≤ 2κ+1 + 2
σ

(
2 + ln 2

σ

)]
≥ 1

2

Proof. Let

b = 2κ+1 +
2

σ

(

2 + ln
2

σ

)

Similarly to (4.25), we have thatPr[τ ∗(Z) ≤ b] ≥ Pr [2κ
∑

i=1

τi ≤ b
]

(5.9)

for τ1, . . . , τ2κ independent geometric random variables such that, for each i, E[τi] = 1/pi,

where

pi = 1− (1− i/2κ)λ+(κ+1) ≥ 1− e−iσ

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 87

By applying Markov’s inequality to the right-hand side of (5.9) we obtainPr[τ ∗(Z) ≤ b] ≥ 1−
1

b
E [2κ
∑

i=1

τi

]

(5.10)

We now bound from above the expected value of
∑2κ

i=1 τi.E [2κ
∑

i=1

τi

]

=
2κ
∑

i=1

1

pi
≤

2κ
∑

i=1

1

1− e−iσ
= 2κ +

2κ
∑

i=1

e−iσ

1− e−iσ

Since

2κ
∑

i=2

e−iσ

1− e−iσ
≤

∫ ∞

1

e−xσ

1− e−xσ
dx =

[
1

σ
ln(1− e−xσ)

]∞

1

=
1

σ
ln

1

1− e−σ

we have E [2κ
∑

i=1

τi

]

≤ 2κ +
e−σ

1− e−σ
+

1

σ
ln

1

1− e−σ
(5.11)

We distinguish two cases depending on the value of σ.

If σ ≥ 1 then

ln
1

1− e−σ
= ln

(

1 +
e−σ

1− e−σ

)

≤
e−σ

1− e−σ

and
e−σ

1− e−σ
≤

e−1

1− e−1
≤

2

e
≤

2

1 + σ

Therefore, (5.11) yieldsE [2κ
∑

i=1

τi

]

≤ 2κ +
e−σ

1− e−σ

(

1 +
1

σ

)

≤ 2κ +
2

1 + σ

(

1 +
1

σ

)

= 2κ +
2

σ
<

b

2

If σ < 1, instead, then

e−σ ≤ 1− σ +
σ2

2
≤ 1−

σ

2

so, (5.11) yieldsE [2κ
∑

i=1

τi

]

≤ 2κ +
1− σ/2

σ/2
+

1

σ
ln

2

σ
= 2κ +

1

σ
(2 + ln

2

σ
)− 1 <

b

2

Therefore, in both cases E[
∑2κ

i=1 τi] < b/2. Combining this and (5.10) yields the desired

bound for Pr[τ ∗(Z) ≤ b]. � {of Claim 5.12}

The lemma now follows by combining Claims 5.11 and 5.12. �

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 88

5.5.2 Proof of Lemma 5.9

We describe three events, E1, E2, and E3, such that if they all occur then (i) and (ii) hold for

some τ ≤ c2ξ0 , and we show that E1 ∩ E2 ∩ E3 occurs with the probability in (5.7). Roughly

speaking, E1 says that each of the first Θ(2ξ0) addBlkS operations splits a block of depth

≤ ξ0−2, if the partition it is applied to has ℓ≤ξ0−2 ≥ 1/4−2ε; for each depth d ≤ ξ0−2ξ0, E2

states a threshold for the maximum number of rmBlkS operations, among the first Θ(2ξ0)

such operations, that are applied to partitions of µ ≥ d and ℓ≤ξ0−2 ≤ 1/4 + 2ε, and merge

blocks of depth ≤ ξ0 − 2; and, for each d, E3 states a threshold for the maximum number of

addBlkS operations that are applied to partitions of µ = d, provided that the thresholds

specified by E2 are not exceeded.

For i ≥ 1, we define ηi, η′
i, Zi, and Z ′

i as in the proof of Lemma 5.4. Also, for d ≥ 1,

we let ηd
i be the i-th step when an addBlkS operation is applied to a partition of µ = d.

Formally,

ηd
i = inf{t : |{j ≤ t : Vj = + and µj−1 = d}| = i}

If ηd
i <∞, we denote by Zd

i the corresponding sequence of sample points, i.e.,

Zd
i = Yηd

i

(Without loss of generality, we assume that the adversary is such that ηd
i < ∞ for all d, i

such that the definition of the events E1, E2, and E3 below are valid.)

We now define the events E1 E2, and E3. Let

κ = ε2ξ0−2 κ′ = κ + 2ξ0

E1 is the event:

“for all i ≤ κ, min{Zi,j : j ≤ λ+(ξ0 − 1)} < 1/4− 2ε”

Define

Q′d
i =

{

1, if max{Z ′
i,j : j ≤ λ−(d)} < 1/4 + 2ε

0, otherwise

and let E2,d be the event:

“
κ′

∑

i=1

Q′d
i ≤ κ′

d”

The values of the κ′
d will be specified later. Define also

Qd
i =

{

1, if ad,i ≤ ζd

0, otherwise

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 89

where ad,i is the A-time of

〈
d, ξ0, 〈Z

d
(i−1)ζd+1, Z

d
(i−1)ζd+2, . . . , Z

d
iζd
〉
〉

and let E3,d be the event:

“

κd∑

i=1

Qd
i ≥ κ′

d + 1”

The values of the κd and ζd will also be determined later. We define the events E2 and E3 as

E2 =
ν−1⋂

d=2

E2,d and E3 =
ν−1⋂

d=2

E3,d

where

ν = ξ0 − ⌊2 log ξ0⌋

Next, we compute the probability of the above events. For E1, since the Zi are random

point-vectors, we havePr[E1] ≥ 1− κ(1− 1/4 + 2ε)λ+(ξ0−1) ≥ 1− κe−(1/4−2ε)λ+(ξ0−1) (5.12)

To establish lower bounds for Pr[E2] and Pr[E3] we will use the following version of the

Chernoff’s bounds. By Bi(n, p) we denote a binomial random variable with parameters n

and p.

Lemma 5.13.

(a) Pr[Bi(n, p) > enp] < e−np

(b) Pr[Bi(n, p) < np/2] < e−np/8

Part (a) of the lemma follows from Theorem 4.1 in [60], and part (b) from Theorem 4.2

in [60].

First we bound Pr[E2,d]. Note that, for each d, the Q′d
1 , . . . , Q′d

κ′

d
are independent, since

the Z ′
i are independent random point-vectors. Also, for each i,Pr[Q′d

i = 1] = (1/4 + 2ε)λ−(d) ≤ e−(3/4−2ε)λ−(d)

Thus, Pr[E2,d] = Pr [Bi(κ′, Pr[Q′d
i = 1]) ≤ κ′

d

]
≥ Pr[Bi(κ′, p′d) ≤ κ′

d] (5.13)

where

p′d = e−(3/4−2ε)λ−(d)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 90

(The second relation in (5.13) holds because Bi(n, p) is stochastically smaller than Bi(n, p′),

if p′ ≥ p). We set

κ′
d = ⌊max{eκ′p′d, ξ0 log ξ0}⌋

If eκ′p′d ≥ ξ0 log ξ0 then Pr[Bi(κ′, p′d) ≤ κ′
d] = Pr[Bi(κ′, p′d) ≤ eκ′p′d]

so, by Lemma 5.13(a),Pr[Bi(κ′, p′d) ≤ κ′
d] > 1− e−κ′p′d ≥ 1− e−ξ0 log ξ0/e

If eκ′p′d < ξ0 log ξ0, instead, thenPr[Bi(κ′, p′d) ≤ κ′
d] = Pr[Bi(κ′, p′d) ≤ ξ0 log ξ0] ≥ Pr[Bi(κ′, ξ0 log ξ0/(eκ′)) ≤ ξ0 log ξ0]

so, again, by Lemma 5.13(a),Pr[Bi(κ′, p′d) ≤ κ′
d] > 1− e−ξ0 log ξ0/e

Applying the above results to (5.13), we obtainPr[E2,d] ≥ 1− e−ξ0 log ξ0/e

thus, Pr[E2] ≥ 1− νe−ξ0 log ξ0/e (5.14)

Next, we bound Pr[E3,d]. We set

ζd =

⌈

2d+1 +
2d+1

λ+(d + 1)

(

2 + ln
2d+1

λ+(d + 1)

)⌉

Then, by Lemma 5.10, Pr[Qd
i = 1] = Pr[ad,i ≤ ζd] ≥ 1/2

Note that, for each d, Qd
1, . . . , Q

d
κd

are independent because their values are determined based

on non-overlapping parts of 〈Zd
1 , Zd

2 , . . .〉. So,Pr[E3,d] = Pr [Bi(κd, Pr[Qd
i = 1]) ≥ κ′

d + 1
]
≥ Pr[Bi(κd, 1/2) ≥ κ′

d + 1] (5.15)

We now set

κd = 4(κ′
d + 1)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 91

Then, by Lemma 5.13(b),Pr[Bi(κd, 1/2) ≥ κ′
d + 1] > 1− e−(κ′

d+1)/4 = 1−O(e−ξ0 log ξ0/4)

From this and (5.15), Pr[E3,d] = 1−O(e−ξ0 log ξ0/4)

thus, Pr[E3] = 1−O(νe−ξ0 log ξ0/4) (5.16)

Combining (5.12), (5.14), and (5.16), we obtainPr[E1 ∩ E2 ∩ E3] = 1−O(2ξ0e−(1/4−2ε)λ+(ξ0−1))

To establish Lemma 5.9, it remains to show the following result.

Claim 5.14. If event E1 ∩ E2 ∩ E3 occurs then (i) and (ii) hold, for some τ ≤ κ + κ′.

Proof. Suppose that E1 ∩ E2 ∩ E3 occurs. Since S0 is normal-tailed, ℓ≤ξ0−2(S0) ≥ 1/4− ε,

and, so, for all t ≤ ηκ,

ℓ≤ξ0−2(St) ≥ ℓ≤ξ0−2(S0)− κ2ξ0−2 = 1/4− 2ε

From that, E1, and Lemma 4.5(a), we obtain that the first κ addBlkS operations split blocks

of depth ≤ ξ0 − 2. Therefore, (i) holds for τ = ηκ, and, thus, for any τ ≤ ηκ. Note that the

number of rmBlkS operations during the first ηκ steps is at most |S0| + κ ≤ 2ξ0 + κ = κ′;

thus,

ηκ ≤ κ + κ′

Therefore, to complete the proof of the claim it suffices to show that (ii) holds for some

τ ≤ ηκ. We distinguish two cases.

Case A: ℓ≤ξ0−2(St) > 1/4 + 2ε, for some t ≤ ηκ.

Let τ be the smallest such t. Clearly, ξτ ∈ {ξ0, ξ0 − 1}. If ξτ = ξ0 then Sτ is fat-tailed; if

ξτ = ξ0 − 1 then, by Lemma 5.2(a), Sτ is left-heavy. Therefore, (ii) holds.

Case B: ℓ≤ξ0−2(St) ≤ 1/4 + 2ε, for all t ≤ ηκ.

We show that the number of addBlkS operations that are applied to partitions of µ < ν

in the first ηκ steps is strictly smaller than κ. So, since (by definition) exactly κ addBlkS

operations take place during the first ηκ steps, there is some τ < ηκ such that µτ ≥ ν and,

thus, Sτ is short-tailed. Let K ′
d, for d ≥ 1, be the number of rmBlkS operations that are

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 92

applied to partitions of µ ≥ d and merge blocks of depth ≤ ξ0 − 2, during the first ηκ steps.

By the case hypothesis, E2, and Lemma 4.5(b), we have that for each d ∈ [2..ν − 1],

K ′
d ≤ κ′

d (5.17)

Let Kd be the number of addBlkS operations that are applied to partitions of µ = d in the

first ηκ steps. Let also, for i ≥ 1,

∆i = [ηd
(i−1)ζd

+ 1..ηd
iζd

]

(We define ηd
0 = 0.) Note that exactly ζd addBlkS operations are applied to partitions of

µ = d during the steps in ∆i. If no blocks of depth d or d+1 are merged during these steps,

and Qd
i = 1 then all blocks of depth ≤ d have been split by the last step in ∆i; i.e., µt > d,

for t = ηd
iζd

. Also if µt1 > d and µt2 = d, for some t1 < t2, then, between steps t1 + 1 and

t2, at least one rmBlkS operation is applied to a partition of µ = d + 1 and merges a pair

of blocks of depth d + 1. By these observations, for each d ∈ [2..ν − 1], there are at most

K ′
d + 1 distinct i such that ∆i ∩ [1..ηκ] 6= ∅ and Qd

i = 1. However, by E3,d and (5.17), Qd
i = 1

for at least κ′
d + 1 ≥ K ′

d + 1 among the i = 1, . . . , κd. Therefore,

Kd ≤ κdζd

The total number of addBlkS operations that are applied to partitions of µ < ν during the

first ηκ steps is then
ν−1∑

d=2

Kd ≤
ν−1∑

d=2

(κdζd) =
ν−1∑

d=2

(4(κ′
d + 1)ζd) (5.18)

By the definition of κ′
d and the assumption that, for all k ≥ 2, λ−(k) ≥ 8k, we have

κ′
d ≤ ξ0 log ξ0 + eκ′p′d = ξ0 log ξ0 + e(1 + 4/ε)κe−5λ−(d)/8 ≤ ξ0 log ξ0 + 65eκe−5d

Also, by the definition of ζd and the assumption that, for all k ≥ 2, λ+(k) ≥ 8(ln 2)k,

ζd ≤ 2d+1(1 + 1/4)

Applying the above two results to (5.18), yields

ν−1∑

d=2

Kd ≤
ν−1∑

d=2

(
4(ξ0 log ξ0 + 65eκe−5d + 1) · 2d+1(1 + 1/4)

)

= 10(ξ0 log ξ0 + 1)
ν−1∑

d=2

2d + 10 · 65eκ
ν−1∑

d=2

(2de−5d)

≤ 10(ξ0 log ξ0 + 1)2ξ0+1/ξ2
0 + 650eκ(2e−5)2/(1− 2e−5)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 93

In the last line, the first term is in Θ(2ξ0 log ξ0/ξ0), and the second is < κ/2. So, for all

sufficiently large ξ0,
ν−1∑

d=2

Kd < κ

Since the number of addBlkS operations applied to partitions of µ < ν in the first ηκ steps

is smaller that the total number κ of addBlkS operations during these steps, there is some

τ < ηκ such that µτ ≥ ν. This, together with the case hypothesis and the fact that ξτ ≤ ξ0,

yields that Sτ is short-tailed; thus, condition (ii) holds. �

5.6 From an arbitrary to an almost-safe partition

Here we combine the results of the previous two sections to show that, roughly speaking,

in an S-process that starts from any initial partition and has sufficiently large sampling-

size functions, it takes at most O(ξ02
ξ0) steps, with high probability, until an almost-safe

partition is reached. The formal statement of this result is as follows.

Lemma 5.15. Consider an S-process such that, for all k ≥ 0,

λ+(k) ≥ max{8(ln 2)k, β} and λ−(k) ≥ max{8k, β} (5.19)

where β is a sufficiently large constant. If the S-process is long enough then, with probability

1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0−2 log ξ0)) (5.20)

there is τ ≤ cξ02
ξ0, where c is a positive constant, such that

(i) Sτ is almost-safe, and

(ii) for all t ≤ τ ,

ξt ≤

{

ξ0, if S0 is left-heavy

ξ0 + 1, otherwise

We prove this result in two steps. First, using Lemmata 5.4 and 5.9, we show that if we

start from a partition that is not thin-tailed then, with high probability, it takes at most

O(ξ02
ξ0) steps until we reach either a short-tailed partition or a partition that has ξ < ξ0.

This result is formally stated as follows.

Lemma 5.16. For any long enough S-process such that S0 is either thick-tailed or normal-

tailed, and (5.6) holds for all k ≥ 2, with probability

1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0))

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 94

there is τ ≤ cξ02
ξ0, where c is a positive constant, such that

(i) all the blocks that are split in the first τ steps have depths ≤ ξ0 − 2, and

(ii) Sτ is short-tailed, or Sτ is left-heavy and ξτ < ξ0.

We then use this result to establish Lemma 5.15. The main machinery that we use in the

proofs of both lemmata (and that we have not used in any of the proofs we have described

so far) is that, roughly speaking, we formulate the transitions between partitions of different

types in the S-process as a Markov-chain, and use this Markov-chain to establish bounds on

the number of steps required until some partition of a desired type is reached.

Proof of Lemma 5.16

We assume that S0 is not short-tailed — otherwise, the lemma holds trivially (for τ = 0).

Informally, the proof proceeds as follows. We consider the sequence of times 〈τ0 =

0, τ1, τ2, . . .〉, where τi+1 is the earliest step after step τi when a normal-tailed partition is

reached, if Sτi
is thick-tailed; or a thick-tailed partition is reached,4 if Sτi

is normal-tailed. We

focus on the prefix of this sequence until one of following two conditions is met: (a) we reach

a short-tailed partition or a partition with ξ = ξ0−1; or (b) a block of depth > ξ0−2 is split.

(Intuitively, (a) is the “good” outcome, and (b) the “bad.”) Using Lemma 5.4 (Lemma 5.9)

we bound from below the probability that from a normal-tailed (thick tailed) partition

in step τi, we reach a thick-tailed (normal-tailed) partition in step τi+1, or condition (a)

is met. Based on that, we compute a lower bound on the probability of the event that

either condition (a) is met in O(ξ02
ξ0) steps, or a larger number of steps take place without

condition (b) being met (event E1). We also compute a lower bound on the probability of

the event that a partition of ξ = ξ0 − 1 is reached before that large number of steps takes

place (event E2). Combining these two bounds we obtain the desired result.

We begin by introducing some useful notation. Let

Snor = {S ∈ S : S is normal-tailed but not short-tailed, and ξ(S) = ξ0}

Sthk = {S ∈ S : S is thick-tailed but not short-tailed, and ξ(S) = ξ0}

Sfat = {S ∈ S : S is fat-tailed and ξ(S) = ξ0}

T = {S ∈ S : S is short-tailed and ξ(S) ≤ ξ0, or S is left-heavy and ξ(S) < ξ0}

Note that S0 ∈ Sthk ∪ Snor. Note also that if (i) holds then (ii) is equivalent to Sτ ∈ T.

4More precisely, a fat-tailed one.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 95

We define the following infinite sequence of times 〈τ0, τ1, . . .〉. We let τ0 = 0, and for each

i ≥ 1, we let τi be as follows, where c0 is a positive constant we will determine later; c1 is

equal to the constant c of Lemma 5.4; and c2 is equal to the constant c of Lemma 5.9.

◦ If τi−1 =∞ or Sτi−1
∈ T or i > c0ξ0 then τi =∞.

◦ Else if Sτi−1
∈ Sthk then τi is the infimum of all t ∈ [τi−1 + 1..τi−1 + c1ξ02

ξ0] such that:

− St ∈ Snor ∪T, and

− all the blocks that are split in steps τi−1 + 1 to t have depths ≤ ξ0 − 2.

◦ Else if Sτi−1
∈ Snor then τi is the infimum of all t ∈ [τi−1 + 1..τi−1 + c22

ξ0] such that:

− St ∈ Sfat ∪T, and

− all the blocks that are split in steps τi−1 + 1 to t have depths ≤ ξ0 − 2.

Clearly, for the above sequence of τi, there is some index

K ≤ c0ξ0

such that:

∗ for all 1 ≤ i ≤ K, Sτi
∈ Snor ∪ Sfat,

∗ for all i ≥ K + 2, τi =∞, and

∗ either τK+1 =∞, or τK+1 <∞ and SτK+1
∈ T.

Specifically, for all i ∈ [1..K], if S0 ∈ Sthk then for all even such i, Sτi
∈ Sfat, and for all odd

i, Sτi
∈ Snor; if S0 ∈ Snor the reverse is true — i.e., for all odd i, Sτi

∈ Sfat, and for all even

i, Sτi
∈ Snor. (Recall that we assumed S0 ∈ Sthk ∪ Snor.) To distinguish between the two

possible cases for i = K + 1, we define

Q =

{

1, if τK+1 <∞ (and, thus, SτK+1
∈ T)

0, if τK+1 =∞

Note that all the blocks that are split in the first τK+Q steps have depths ≤ ξ0 − 2, and for

all i ∈ [1..K + Q],

τi − τi−1 ≤

{

c1ξ02
ξ0, if Sτi−1

∈ Sthk

c22
ξ0, if Sτi−1

∈ Snor

(5.21)

Next, we describe two events, E1 and E2, which imply the event that we are interested in

(i.e., that (i) and (ii) hold for some τ ≤ cξ02
ξ0). E1 is the event:

“Q = 1 or K = ⌊c0ξ0⌋”

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 96

We can compute an upper bound for the probability that the complementary event: “Q = 0

and K < ⌊c0ξ0⌋” occurs, as follows.Pr[Ē1] = Pr[{Q = 0} ∩ {K < ⌊c0ξ0⌋}] =
∑

0≤i<⌊c0ξ0⌋

Pr[{Q = 0} ∩ {K = i}]

≤
∑

0≤i<⌊c0ξ0⌋

Pr[{Q = 0} ∩ {K = i} | K ≥ i] (5.22)

Let A be the event:

{τi = t} ∩ {St = T} ∩ {K ≥ i}

where i, t ∈ N and T ∈ S are such that Pr[A] > 0. Conditioned on A, 〈Sτi
, Sτi+1, . . .〉

is the partition-sequence of an S-process (of initial partition T , the same sampling-size

functions and precision as the original S-process, and length N − t). Also, since Pr[A] > 0,

T ∈ Sthk ∪ Snor. So, if T ∈ Sthk then, by Lemma 5.4,Pr[{Q = 0} ∩ {K = i} | A] = O(ξ02
ξ0e−(1/4+ε)λ+(ξ0))

while if T ∈ Snor then, by Lemma 5.9,Pr[{Q = 0} ∩ {K = i} | A] = O(2ξ0e−(1/4−2ε)λ+(ξ0))

Applying the above two results to (5.22), we obtainPr[Ē1] = O(c0ξ
2
02

ξ0e−(1/4+ε)λ+(ξ0) + c0ξ02
ξ0e−(1/4−2ε)λ+(ξ0)) = O(ξ02

ξ0e−(1/4−2ε)λ+(ξ0))

thus, Pr[E1] = 1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0)) (5.23)

We now describe E2. For i ≥ 1, we define η′
i and Z ′

i as in the proof of Lemma 5.4. E2 is

the event:

“r ≤ κ′”

where r is the R̃-time of 〈S, 〈Z ′
1, . . . , Z

′
κ′〉〉, and

κ′ = λ+(ξ0 − 1) · 2ξ0−1

Since the Z ′
i are independent random point-vectors, we can bound from below the probability

that E2 occurs by applying Lemma 5.5 (for γ = κ′2−ξ0):Pr[E2] = 1−O(|S0|e
−λ+(ξ0−1)) (5.24)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 97

By (5.23) and (5.24), Pr[E1 ∩ E2] = 1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0))

Combining this with Claim 5.17 that we show next, yields the desired result.

Claim 5.17. If E1 ∩ E2 occurs then (i) and (ii) hold for some τ ≤ cξ02
ξ0, where c is a

constant > 0.

Proof. Suppose that E1 ∩ E2 occurs. We will show that

Q = 1 and τK+1 < cξ02
ξ0

for some constant c > 0. From this, it is then immediate that (i) and (ii) hold for τ =

τK+1 < cξ02
ξ0 .

By E2, there is some step

τ ′ ≤ 2κ′ + 2ξ0−1 = 2ξ0−1
(
2λ+(ξ0 − 1) + 1

)

such that

ξτ ′ < ξ0 or a block of depth ≥ ξ0 − 1 is split in step τ ′

(Because if all the blocks that are split in the first 2κ′+2ξ0−1 steps have depths ≤ ξ0−2 then

at least κ′
rmBlkS operations are performed in these steps, and, thus, 〈S0, Sη′

1
, . . . , Sη′

κ′
〉 ∈

R̃S, 〈Z′

1
,...,Z′

κ′
〉. So, by E2, ξτ ′ < ξ0, for τ = η′

κ′ ≤ 2κ′ + 2ξ0−1.) Clearly, τK < τ ′, therefore,

τK < 2ξ0−1
(
2λ+(ξ0 − 1) + 1

)
(5.25)

We can now show that Q = 1 as follows. For all i ∈ [2..K],

τi − τi−1 ≥ ε2ξ0−2

since ε2ξ0−2 is the minimum number of S operations required to get from a fat-tailed partition

of ξ = ξ0 to a normal-tailed partition of the same ξ (and, thus, it is also the minimum number

of M operations to achieve the reverse result). Therefore,

τK ≥ (K − 1)ε2ξ0−2

Combining this and (5.25) yields

K < (2/ε) ·
(
2λ+(ξ0 − 1) + 1

)
+ 1

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 98

Therefore,

K < ⌊c0ξ0⌋

if c0 is a sufficiently large constant (since λ+(k) = Θ(k)). From this and E1, we have that

Q = 1. It remains to show that τK+1 < cξ02
ξ0 . Since Q = 1, by (5.21),

τK+1 ≤ τκ + max{c1ξ02
ξ0, c22

ξ0}

so, by (5.25),

τK+1 < 2ξ0−1
(
2λ+(ξ0 − 1) + 1

)
+ max{c1ξ02

ξ0, c22
ξ0} ≤ cξ02

ξ0

for a sufficiently large constant c. �

Proof of Lemma 5.15

Informally, the proof proceeds as follows. As in the proof of Lemma 5.16, we define a

sequence of times 〈τ0 = 0, τ1, τ2, . . .〉, such that we can apply Lemma 5.16 to each of the

sequences of partitions 〈Sτi
, Sτi+1, . . . , Sτi+1

〉. (In the proof of Lemma 5.16, the corresponding

sequence of times was such that Lemma 5.4 or 5.9 could be applied to each such sequence

of partitions.) Here, however, there is the complication that Lemma 5.16 can only be used

when the starting partition Sτi
is thick-tailed or normal-tailed (like Lemmata 5.4 and 5.9)

but (unlike them) it does not ensure, with high probability, that the resulting Sτi+1
will be

thick-tailed or normal-tailed (or short-tailed). We overcome this problem as follows. If Sτi
is

thin-tailed then, instead of 〈Sτi
, Sτi+1, . . .〉, we consider a (less balanced) partition sequence

(denoted 〈T i+1
0 , T i+1

1 , . . .〉), that is obtained if we replace Sτi
by a thick-tailed or normal-tailed

partition, denoted h(Sτi
), and then apply to it the same sequence of operations as in the

original S-process. h(Sτi
) is such that h(Sτi

) � Sτi
and ξ(h(Sτi

)) = ξτi
or ξτi

+ 1. Roughly

speaking, τi+1 is the earliest step after step τi when (a) an almost-safe partition is reached,

or (b) all blocks of depth d = ξτi
(or d = ξ(h(Sτi

)), if Sτi
is thin-tailed) have been merged,

or (c) a block of depth d or d−1 is split. Outcomes (a) and (b) are the “good” ones, while (c)

is the “bad” one. (We denote by Gi the indicator random variable of the good outcomes.)

Next we express the event whose probability we want to bound in Lemma 5.15, in terms of

an event (denoted E) on the sequence of τi. Then we show that this new event is implied

by two simpler events, E1 and E2. Intuitively, E1 says that all partition sequences that start

from a sufficiently large partition have a good outcome (Gi = 1); and E2 says that most of

the partition sequences that start from a smaller partition also have a good outcome. We

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 99

then show that the probability that E1 ∩ E2 occurs is as in (5.20), which implies the desired

result.

We begin with some definitions. We let h be a function that maps each partition S to

a partition h(S) � S that is thick-tailed or normal-tailed, and has the smallest possible ξ.

Formally, let h : S→ S such that, for each S ∈ S,

◦ if ξ(S) < 6 then h(S) = S,

◦ if ξ(S) ≥ 6 then h(S) is thick-tailed or normal-tailed, h(S) � S, and

ξ(h(S)) =

{

ξ(S), if S is left-heavy

ξ(S) + 1, otherwise

Note that, for the case where ξ(S) ≥ 6, if S is left-heavy then, by the definition of a left-

heavy partition, there is h(S) with the required properties; if S is not left-heavy then h(S)

exists because of Lemma 5.2(b). If ξ(S) very small, it is possible that there is no partition

� S that is thick-tailed or normal-tailed; this is the reason why we treat partitions of ξ < 6

as a special case in the definition of h. An important observation for our analysis is that if

ξ(S) < 6 and S is thin-tailed, then S is almost-safe.

We denote by T (S, t), for t ∈ [0..N] and S ∈ S, the sequence of partitions we obtain if we

start from S and apply to it the same sequence of operations that are applied to partitions

St, St+1, . . . in the S-process. Formally, T (S, t) = 〈T0, . . . , TN−t〉, where

Tj =







S, if j = 0

addBlkS(Tj−1, Yt+j), if j 6= 1 and Vt+j = +

rmBlkS(Tj−1, Yt+j), if j 6= 1 and Vt+j = − and |Tj−1| > 1

Tj−1, if j 6= 1 and Vt+j = − and |Tj−1| = 1

The last case in the above definition ensures that we never attempt to apply a rmBlkS

operation to a partition of size 1; it is used only when |S| < |St|. A useful property of

T (S, t), which follows from Lemma 3.14, is that if S � St then, for all j,

Tj � St+j

Consider now the following finite sequence of times 〈τ0, . . . , τκ〉, for some sufficiently large

κ (such that the arguments we make later on apply.) We let τ0 = 0, and, for i ≥ 1, we define

τi = τi−1 + δi,

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 100

where δi is the smallest positive integer such that at least one of the conditions (a)–(d) below

apply. For j ≥ 1, let

〈T j
0 , T j

1 , . . .〉 = T (h(Sτj−1
), τj−1)

(a) T i
δi

is almost-safe.

(b) T i
δi

is left-heavy and ξ(T i
δi
) < ξ(T i

0).

(c) A block of depth ≥ ξ(T i
0)− 1 is split in step δi of 〈T i

0, T
i
1, . . .〉.

(d) δi = φ(ξ(T i
0)), for some function φ : N→ N that will be specified later.

Note that the sequence of the τi is determined from the sequence of partitions 〈S0, T
1
1 , . . . , T 1

δ1
,

T 2
1 , . . . , T 2

δ2
, T 3

1 , . . .〉, instead of directly from the partition-sequence of the S-process — as in

the proof of Lemma 5.16.

It is straightforward to show that the following facts hold, for all 1 ≤ i ≤ κ:

(1) For all j ≤ δi, T i
j � Sτi−1+j

(2) 1 ≤ δi ≤ φ(ξ(T i
0))

(3) For all j < δi, ξ(T i
j) ≤ ξ(T i

0)

(4) ξ(h(T i
δi
)) ≤

{

ξ(T i
0)− 1, if condition (b) holds

ξ(T i
0) + 1, otherwise

(5) ξ(T i
δi
) ≤ ξ(T i

0), if condition (a) holds

(6) ξ(T i+1
0) ≤ ξ(h(T i

δi
))

We denote by E the event that an almost-safe partition is reached (in the modified

sequence of partitions) in O(ξ02
ξ0) steps, and all intermediate partitions have ξ ≤ ξ0 (more

correctly, ξ ≤ ξ(h(S0))). More formally, let

K = inf{i : condition (a) holds}

E is the event:

{
K <∞

}
∩
{
τK ≤ cξ02

ξ0
}
∩
{
ξ(TK

δK
) ≤ ξ(h(S0))

}
∩

K−1⋂

i=1

{
ξ(h(T i

δi
)) ≤ ξ(h(S0))

}

where c is a constant we will specify later.

We now argue that if E occurs then conditions (i) and (ii) of Lemma 5.15 hold, for some

τ ≤ cξ02
ξ0 . Suppose that E occurs. Then, by (3) and (6), for all i ≤ K and j ≤ δi,

ξ(T i
j) ≤ ξ(h(S0))

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 101

(The case (i, j) = (K, δK) is explicit in the definition of E .) So, by (1) and Lemma 3.4, (ii)

holds, for τ = τK . Also, by (1) and the fact that if S � S ′ and S ′ is almost-safe then so is

S, we have that (i) holds for τ = τK , as well. Finally, by the definition of E , τK ≤ cξ02
ξ0 .

Consequently, to prove the lemma it suffices to show that Pr[E] is equal to the probability

in (5.20); we show this in the rest of the proof.

We describe two events, E1 and E2, such that their intersection implies E . For 1 ≤ i ≤ κ,

let

Gi =

{

1, if (a) or (b) holds

0, otherwise

Let also

A1 be the set of the ξ2
0 smallest i such that ξ(T i

0) ≥ ξ0 − 2 log ξ0

and

A2 be the set of the ξ2
0 smallest i such that ξ(T i

0) < ξ0 − 2 log ξ0

(Without loss of generality, we assume that there are always enough i of each type to populate

both A1 and A2.) E1 is the event:

“for all i ∈ A1, Gi = 1

and E2 is the event:

“
∑

i∈A2

Gi ≥
3

4
ξ2
0”

We now compute the probability of the above two events. Let A be the event:

{τi−1 = t} ∩ {St = S} ∩ H

where i, t ∈ N, S ∈ S, and H is an event on the first t steps of the S-process such thatPr[A] > 0. Then, conditioned on A, the sequence 〈T i
0, T

i
1, . . .〉 is the partition-sequence of

some S-process (of the same sampling-size functions as the original S-process). So, if we set

φ(j) = ⌈c′j2j⌉ (5.26)

where c′ is the constant c of Lemma 5.16, then, by Lemma 5.16,Pr[Gi = 1 | A] = 1−O(d2de−(1/4−2ε)λ+(d)) (5.27)

where d = ξ(S). From this and the fact that, if d ≥ ξ0 − 2 log ξ0 then

O(d2de−(1/4−2ε)λ+(d)) = O
(
(2ξ0/ξ0) · e

−(1/4−2ε)λ+(ξ0−2 log ξ0)
)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 102

we obtain that Pr[E1] = 1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0−2 log ξ0)) (5.28)

By (5.27), we also have that, for all A as above such that d = ξ(S) ≥ d0, for a large enough

constant d0, Pr[Gi = 1 | A] ≥ 7/8

We can make the above relation hold for d < d0, as well, by choosing the constant β in (5.19)

to be sufficiently large. From that, using Chernoff’s bound (Theorem 4.2 in [60]), we can

show that Pr[E2] ≥ 1− e−ξ2
0/(2·7·8)

Combining this and (5.28), yieldsPr[E1 ∩ E2] = 1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0−2 log ξ0))

To establish Lemma 5.15, it remains to show the following result.

Claim 5.18. If E1 ∩ E2 occurs then E occurs.

Proof. Suppose that E1 ∩ E2 occurs. Let

J = min{ξ2
0 , K}

For each j ∈ {0, 1}, we define

aj = |{i ≤ J : ξ(T i
0) ≥ ξ0 − 2 log ξ0 and Gi = j}|

bj = |{i ≤ J : ξ(T i
0) < ξ0 − 2 log ξ0 and Gi = j}|

Clearly,

a0 + a1 + b0 + b1 = J (5.29)

By (4) and (6), we have that for all 1 ≤ i < K,

ξ(T i+1
0) ≤

{

ξ(T i
0)− 1, if Gi = 1

ξ(T i
0) + 1, otherwise

(5.30)

From this it follows that

a1 + b1 ≤ ξ(h(S0)) + (a0 + b0) (5.31)

Since J ≤ ξ2
0 , we have, by E1, that a0 = 0, and, by E2, that b0 ≤ (1/4)ξ2

0. Combining these

two results with (5.29) and (5.31), yields

J ≤ ξ(h(S0)) + 2(a0 + b0) ≤ ξ(h(S0)) + (1/2)ξ2
0 < ξ2

0

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 103

and, thus,

K < ξ2
0 <∞

Since a0 = 0, we have, by (5.30), that for each d such that ξ0 − 2 log ξ0 + 2 ≤ d ≤ ξ(h(S0)),

there is at most one i ≤ K such that ξ(T i
0) = d; so, by (2) and (5.26),

τK ≤

ξ0+1
∑

j=ξ0−⌊2 log ξ0⌋+2

φ(d) + ξ2
0 · φ(ξ0 − 2 log ξ0 + 1) ≤ cξ02

ξ0

for c sufficiently large. Since a0 = 0, by applying (4) and (6) inductively, we obtain that, for

all i < K,

ξ(h(T i
δi
)) ≤ ξ(h(S0))

Finally, by (5), (6), and the above inequality, we have

ξ(TK
δK

) ≤ ξ(h(S0))

Therefore, E occurs. �

5.7 From an almost-safe to a safe partition

Informally, in this section we show that in an S-process that starts from an almost-safe

partition and has sufficiently large sampling-size functions, it takes at most O(|S0|) steps,

with high probability, until a safe partition is reached. The formal statement of this result

is as follows.

Lemma 5.19. For any long enough S-process such that S0 is almost-safe, with probability

1−O(log ξ0 · 2
ξ0e−(1/4−ε)λ(ξ0−2 log ξ0))

there is τ ≤ c2ξ0, where c is a positive constant, such that

(i) Sτ is safe

(ii) for all t ≤ τ , ξt ≤ ξ0 + 1.

The proof is similar to that of Lemma 5.16, and it is based on two results we describe in

Sections 5.7.1 and 5.7.2. The first result is analogous to Theorem 4.1, but it concerns short-

tailed partitions instead of safe ones. The second is a generalization of the upper bound for

A-times we showed in Section 4.5.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 104

5.7.1 From a short-tailed to a short-tailed partition

In this section, we consider a generalization of the class of short-tailed partitions, that consists

of all S ∈ S such that

S is not fat-tailed and µ ≥ ξ − ǫ(ξ)

where ǫ(k) = o(k). (Recall that the original definition of an almost-safe partition requires

that µ ≥ ξ − 2 log ξ instead of µ ≥ ξ − ǫ(ξ).) We show that if an S-process starts from

such a partition and has large enough sampling-size functions then, with high probability, in

Θ(|S0|) steps, it reaches another non fat-tailed partition that has ξ ≤ ξ0 + 1, and no blocks

of depth ≤ ξ0− 2 are merged during these steps — so, the “tail” of the initial partition does

not get bigger. The formal statement of this result is as follows.

Lemma 5.20. For any long enough S-process such that S0 is not fat-tailed and µ0 ≥ ξ0 −

o(ξ0), with probability

1−O(2ξ0e−(1/4−ε)λ(µ0))

there is τ ∈ [c12
ξ0 ..c22

ξ0], where c1, c2 are positive constants, such that

(i) Sτ is not fat-tailed

(ii) for all t ≤ τ ,

− if 1
4
≤ ℓξ0(S0) ≤

3
4

then ξt = ξ0 and 1
4
− ε ≤ ℓξ(St) ≤

3
4

+ ε

− if ℓξ0(S0) > 3
4

then ξt ∈ {ξ0, ξ0 + 1} and ℓξ0+1(St) ≤
1
4

+ ε and ℓξ0(St) ≥
3
4
− ε

− if ℓξ0(S0) < 1
4

then ξt ∈ {ξ0 − 1, ξ0} and ℓξ0(St) ≤
1
4

+ ε and ℓξ0−1(St) ≥
1
4
− ε;

in particular, if no blocks of depth ≥ ξ0 − 1 are split in the first τ steps then

ξτ = ξ0 − 1.

(iii) for all t ≤ τ and d ∈ N,

− if Vt = + and ℓ≤d(St−1) ≥
1
4
− ε then the block split in step t has depth ≤ d

− if Vt = − and ℓ≥d(St−1) ≥
1
4
− ε then the blocks merged in step t have depth ≥ d.

The above result can be viewed as the analogue of Theorem 4.1 for the generalized class

of short-tailed partitions. Note that Lemma 5.20 seems to provide more guarantees than

Theorem 4.1 does. Even though it is not explicitly stated in the statement of Theorem 4.1,

in its proof we show that similar guarantees apply. In fact, it is immediate from the proof

of Theorem 4.1 that Lemma 5.20 holds when S0 is safe. The proof of Lemma 5.20 is very

similar to that of Theorem 4.1 (see Section 4.6). Intuitively, the tail of S0 does not essentially

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 105

affect the analysis because: (1) since the tail is not fat, S0 is similar to a safe partition; and

(2) since the tail is short, the number of random probes executed for each addBlkS or

rmBlkS operation may be smaller that λ+/−(log |St|), respectively, by only a negligible

factor — of order o(1). The details of the proof are omitted.

5.7.2 Ak-times

Let S ∈ S and W be as in (4.8), i.e.,

W = 〈W1, . . . , Wlw〉, where Wt = 〈Wt,1, . . . , Wt,hw〉 ∈ Ihw , for each t = 1, . . . , lw (5.32)

Recall that the A-time of 〈S, W 〉 is, roughly speaking, the maximum number of addBlkS

operations required to split all blocks of S of depth (at most) k = µ(S), when the sample

points used are those in W , and any number of sibling blocks of depth ≥ k + 2 may be

merged between addBlkS operations. In this section, we consider a generalization of the

above definition, where k is a parameter, and we prove a result analogous to that we showed

in Section 4.5 for A-times.

We denote by Ak,S,W , for k ≥ µ(S), the set of all sequences in AS,W such that no blocks

of depth ≤ k + 1 are merged between addBlkS operations. The Ak-time of 〈S, W 〉 is the

supremum of

inf{t : µ(Tt) > k}

taken over all 〈T0, . . . , Tlw〉 ∈ Ak,S,W .

The next result is the analogue of Lemma 4.6. By spk(S) we denote the number of S

operations we must apply to partition S to achieve µ > k. It is straightforward to verify

that

spk(S) =
∑

j≤k

(
sj(S) · (2k+1−j − 1)

)
(5.33)

Lemma 5.21. Let τ be the Ak-time of 〈S,Z〉, where S ∈ S, k ≥ µ(S), and Z = 〈Z1, Z2, . . .〉

is a large enough random point-array, and let γ be a positive constant. Then,Pr[τ ≤ spk(S) + γ2k+1] = 1−O
(
2ke−γ(1−O(1/ln k))λ+(k+1)

)

Proof. (Similar to the proof of Lemma 4.6.) Let T be the partition such that

µ(T) = k + 1, ξ(T) = k + 2, and sk+1(T) = spk(S)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 106

(By (5.33), spk(S) < 2k+1, so, T is well defined.) For each W as in (5.32), where lw = |Z|

and hw = |Z1|, we define the sequence of partitions 〈T ∗
0 (W), . . . , T ∗

lw
(W)〉 as

T ∗
t (W) =







T, if t = 0

Sµ(T)(T
∗
t−1(W)), if t 6= 0 and min{Wt,i : i ≤ λ+(µ(T))} < ℓµ(T)(T

∗
t−1(W))

T ∗
t−1(W), otherwise

(5.34)

Note that the above definition is almost identical to (4.12); it differs from that only in the

starting partition, and in the condition of the middle case, where “λ+(µ(T))” is used instead

of “λ+(µ(T) + 1).” We let

τ ∗(W) = inf{t : µ(T ∗
t (W)) = µ(T) + 1}

and τ(W) be the Ak-time of 〈S, W 〉. Then,

Claim 5.22. For all W , τ ∗(W) ≥ τ(W).

Proof. (Similar to the proof of Claim 4.7.) Suppose for contradiction that τ ∗(W) < τ(W),

for some W . Then, for this W , there is a sequence 〈T0, . . . , Tlw〉 ∈ Ak,S,W such that

τ ∗(W) < inf{t : µ(Tt) > k}

Below we write T ∗
t to denote T ∗

t (W), for the above value of W . Let

t0 = min{t : sk+1(T
∗
t0
) < spk(Tt0)}

(Clearly, there is such a t0.) Then,

sk+1(T
∗
t0−1) = spk(Tt0−1) (5.35)

sk+1(T
∗
t0
) = sk+1(T

∗
t0−1)− 1 (5.36)

spk(Tt0) = spk(Tt0−1) (5.37)

By (5.35) and (5.33),

ℓk+1(T
∗
t0−1) =

∑

j≤k

(
sj(Tt0−1) · (2

k+1−j − 1)
)
/2k+1 <

∑

j≤k

(
sj(Tt0−1)/2j

)
= ℓ≤k(Tt0−1) (5.38)

The rest of the proof is analogous to the corresponding part of the proof of Claim 4.7, using

relations (5.38), (5.36), and (5.37) in place of (4.13), (4.14) and (4.15), respectively.

� {of Claim 5.22}

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 107

We remarked earlier that definition (5.34) is almost identical to (4.12). In fact, the two

definitions become exactly the same if we make the following two changes to (4.12): we set

S = T , and we let the underlying sampling-size function be λ′
+(d) = λ+(d − 1) (instead of

λ+(d)). Claim 4.8 then yieldsPr[τ ∗(Z) ≤ spk(S) + γ2k+1] ≥ 1−O
(
2ke−γ(1−O(1/ln k))λ+(k+1)

)

Combining this with Claim 5.22, yields the desired result. �

5.7.3 Proof of Lemma 5.19

In the proof we describe below we assume that S0 is short-tailed and that it is not safe. If S0

is safe then the lemma holds trivially (for τ = 0). If S0 is not short-tailed then we consider the

partition-sequence 〈S ′
0, . . . , S

′
N〉, instead of 〈S0, . . . , SN〉, where S ′

0 is a short-tailed partition

such that

S ′
0 � S0 and ξ(S ′

0) = ξ0

and, for t ≥ 1,

S ′
t =

{

addBlkS(S ′
t−1, Yt), if Vt = +

rmBlkS(S ′
t−1, Yt), if Vt = −

(By Lemma 5.3, S ′
0 exists.)5 The corresponding result for the original partition-sequence

can then be obtained by observing that (by Lemma 3.14) S ′
t � St, for all t, and applying

Lemmata 4.2 and 3.4.

The proof has a similar structure as the proof of Lemma 5.16; here we use Lemma 5.20 in

place of Lemmata 5.4 and 5.9, and Lemma 5.21 in place of Lemma 5.5. Roughly speaking,

we consider a sequence of times 〈τ0 = 0, τ1, τ2, . . .〉, such that we can apply Lemma 5.20

to each of the sequences 〈Sτi
, Sτi+1, . . . , Sτi+1

〉. Intuitively, τi+1 is the earliest step τi + τ

such that τ ∈ Θ(|Sτi
|) and τ satisfies conditions (i)–(iii) of Lemma 5.20; if no such a step

exists then the sequence of τi stops (more correctly, τj = ∞ for all j > i). Based on the

sequence of τi, we describe two events, E1 and E2, such that if they both occur then the

event we are interested in also occurs; so, we compute a lower bound for the probability of

E1 ∩ E2, instead. Roughly, E1 says that unless a safe partition is reached, the length of the

sequence of τi exceeds some Θ(ξ0) threshold. E2 describes, for each depth k, a threshold on

the maximum number of rmBlkS operations required until all blocks of depth < k have been

split, provided that no blocks of depth ≤ k are merged during those steps; the thresholds are

5Note that 〈S′
0, . . . , S

′
N 〉 is in fact the sequence T (0, S′

0), where T was defined in the proof of Lemma 5.15.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 108

chosen based on Lemma 5.21. The intersection of E1 and E2 yields that addBlkS operations

increase µt much faster than they increase ξt, while rmBlkS operations may only decrease

ξt, and they do not affect smaller blocks. Therefore, a safe partition is finally reached.

More precisely, let

T =
{
S ∈ S : S is safe or ξ(S) ≥ ξ0 + 2 or µ(S) < µ0

}

We define the following infinite sequence of times 〈τ0, τ1, . . .〉. We let τ0 = 0, and for each

i ≥ 1, we let τi be as follows, where c0 is a positive constant we will determine later; and

c1, c2 are the constants of Lemma 5.20.

◦ If τi−1 =∞ or Sτi−1
∈ T or i > c0 log ξ0 then τi =∞.

◦ Otherwise, τi is the infimum of all t ∈ [τi−1 + c12
ξτi−1 ..τi−1 + c22

ξτi−1] such that (recall

conditions (i)–(iii) of Lemma 5.20):

(a) St is not fat-tailed.

(b) For all j ∈ [τi−1..t],

− if 1
4
≤ ℓξ(Sτi−1

) ≤ 3
4

then ξj = ξτi−1
and 1

4
− ε ≤ ℓξ(Sj) ≤

3
4

+ ε

− if ℓξ(Sτi−1
) > 3

4
then ξj ∈ {ξτi−1

, ξτi−1
+ 1} and ℓξτi−1

+1(Sj) ≤
1
4

+ ε and

ℓξτi−1
(Sj) ≥

3
4
− ε

− if ℓξ(Sτi−1
) < 1

4
then ξj ∈ {ξτi−1

− 1, ξτi−1
} and ℓξτi−1

(Sj) ≤
1
4

+ ε and

ℓξτi−1
−1(Sj) ≥

1
4
− ε; also, if no blocks of depth ≥ ξ0 − 1 are split in steps

τi−1 + 1..t then ξτ = ξ0 − 1.

(c) For all j ∈ [τi−1 + 1..t] and d ∈ N,

− if Vj = + and ℓ≤d(Sj−1) > 1
4
− ε then the block split in step j has depth ≤ d

− if Vj = − and ℓ≥d(Sj−1) ≥
1
4
− ε then the blocks merged in step j have depth

≥ d.

Similarly to the sequence of τi we described in the proof of Lemma 5.16, there is some

K ≤ c0 log ξ0

such that: for all 0 ≤ i ≤ K, Sτi
is a non fat-tailed partition and Sτi

/∈ T; for all i ≥ K + 2,

τi =∞; and either τK+1 =∞, or τK+1 <∞ and SτK+1
∈ T. Again we define

Q =

{

1, if τK+1 <∞ (and, thus, SτK+1
∈ T)

0, if τK+1 =∞

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 109

Next we describe two events, E1 and E2, (similar to those described in the proof of

Lemma 5.16) and compute the probability that they occur. We then show that their inter-

section implies the event we are interested in. E1 is the event:

“Q = 1 or K = ⌊c0 log ξ0⌋”

Similarly to (5.22), Pr[Ē1] ≤ ∑

0≤i<⌊c0 log ξ0⌋

Pr[{Q = 0} ∩ {K = i} | K ≥ i] (5.39)

Let A be the event:

{τi = t} ∩ {St = T} ∩ {K ≥ i}

where i, t ∈ N and T ∈ S are such that Pr[A] > 0. Conditioned on A, 〈Sτi
, Sτi+1, . . .〉 is

the partition-sequence of an S-process (of the same sampling-size functions as the original

S-process). Also, since Pr[A] > 0, T is not fat-tailed, µ(T) ≥ µ0, and ξ(T) ≤ ξ0 + 1. So, by

Lemma 5.20,Pr[{Q = 0} ∩ {K = i} | A] = O(2ξ(T)e−(1/4−ε)λ(µ(T))) = O(2ξ0e−(1/4−ε)λ(µ0))

Applying the above to (5.39), we getPr[Ē1] = O(log ξ0 · 2
ξ0e−(1/4−ε)λ(µ0))

so, Pr[E1] = 1−O(log ξ0 · 2
ξ0e−(1/4−ε)λ(µ0)) (5.40)

We now describe E2. For i ≥ 1, we define ηi and Zi as in the proof of Lemma 5.4. For

k ≥ µ0, we let E2,k be the event:

“ak ≤ κk”

where ak is the Ak-time of 〈S0, 〈Z1, . . . , Zκk
〉〉 and

κk = spk(S0) + 2k−1

We let

E2 =

ξ0−2
⋂

k=µ0

E2,k

By Lemma 5.21 (applied for γ = 1/4), we obtainPr[E2,k] = 1−O
(
2ke−(1−O(1/ln k))λ+(k+1)/4

)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 110

so, Pr[E2] = 1−O
(
(ξ0 − µ0) · 2

µ0e−(1−O(1/ln µ0))λ+(µ0+1)/4
)

(5.41)

By (5.40) and (5.41), we havePr[E1 ∩ E2] = 1−O(log ξ0 · 2
ξ0e−(1/4−ε)λ(µ0))

Combining this with Claim 5.23 that we show next, yields the desired result.

Claim 5.23. If E1∩E2 occurs then (i) and (ii) hold for some τ ≤ c2ξ0, where c is a constant

> 0.

Proof Sketch. Informally, we proceed as follows. For j ≥ µ0, let Cj be the step when the

κj-th addBlkS operation occurs, and, for j ≤ ξ0, Dj be the earliest step when ξt = j and

ℓj(St) < 1/4− ε. By E2, ξCj
> j if no blocks of depth < j + 2 have been merged until step

Cj; and, by E1, no blocks of depth < j have been merged until step Dj . We let L be the

largest depth j such that Cj ≤ Dj+2, and we consider the latest step G among CL and DL+3.

Then, µG > L and ξG ≤ L + 3. We argue that a safe partition is reached either before step

G, or soon afterwards.

For j ≥ 1, let

Cj =

{

ηκj
, if j ≥ µ0

0, otherwise

and

Dj = inf{t : ξt ≤ j and ℓj(St) < 1/4− ε}

Note that

C1 = · · · = Cµ0−1 = 0 < Cµ0
≤ Cµ0+1 ≤ · · ·

D1 ≥ · · · ≥ Dξ0 ≥ 0 = Dξ0+1 = Dξ0+2 = · · ·

(Cj = Cj+1, for some j ≥ µ0, iff Cj =∞; and Dj = Dj−1, for some 1 < j ≤ ξ0, iff Dj =∞.)

Let

L = max{j : Cj ≤ Dj+2}

Note that µ0 − 1 ≤ L ≤ ξ0 − 2. Let

G = max{CL, DL+3}

Then,

G < CL+1 and G ≤ DL+2 (5.42)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 111

Let also

F = inf{t : St is safe}

and J be such that

τJ−1 < min{G, F} ≤ τJ , if G > 0

and J = 0, if G = 0.

Suppose that E1 ∩ E2 occurs. Based on (5.42) and the fact that, for 1 ≤ i ≤ K + Q,

τi − τi−1 ≥ c12
ξτi−1 , we can show (inductively) that

J − 1 ≤
2

c1

(ξ0 − L) ≤ c0 log ξ0 − 2

for a large enough c0. Combining this, event E1, and (5.42), we can show that

J ≤ K + Q

and that, for all t ≤ min{G, F},

ξt ≤ ξ0 + 1 and µt ≥ µ0

So, if F ≤ G the lemma holds. Suppose now that G < F . Since G ≤ DL+2, no blocks of

depth < L + 2 are split up to step G; hence, by E2, µG > L. Also, since DL+3 ≤ G < CL+1,

we can show that, by E1, ξG ≤ L + 2. By considering each of the two cases: CL ≥ DL+3 and

CL < DL+3, we can show that in both cases either a safe partition is reached between steps

G + 1 and τJ , or

J < K + Q

and

µτJ
= L + 1 ξτJ

= L + 3
1

4
+ ε < ℓL+1(SτJ

) ≤
1

4
+ 2ε ℓL+3(SτJ

) <
1

4
− ε

In the latter case, a safe partition is reached by step τJ+1. �

5.8 Proof of Theorem 5.1

The proof of Theorem 5.1 is based on Lemmata 5.15 and 5.19, and it is similar to the proof

of Lemma 5.15. Informally, we consider the sequence of times 〈τ0 = 0, τ1, τ2, . . .〉, where τi+1

is the earliest step after τi such that an almost-safe partition is reach, if Sτi
is not almost-

safe; or a safe partition is reach, if Sτi
is almost-safe; or a maximum number of steps has

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 112

occurred. The first two represent the “good” outcomes for τi+1, and the third represents

the “bad” outcome. Lemmata 5.15 and 5.19 provide bounds for the probability of these

outcomes (lower bounds for the probability of the good outcomes, and upper bound for the

probability of the bad outcomes). We express the event whose probability we want to bound

in Theorem 5.1, as the intersection of four events on the sequence of τi, denoted E1, E2,

E ′1, and E ′2, and we establish lower bounds for their probability, instead. Roughly speaking,

these events describe thresholds for the ratio of good over bad outcomes for the τi; each

event concerns one of the four subsets of the τi such that Sτi
is or is not almost-safe, and ξτi

is or is not close to ξ0.

More formally, consider the following finite sequence of times 〈τ0, . . . , τκ〉, for some suf-

ficiently large κ (such that the arguments we make later on hold.) We let τ0 = 0, and, for

each i ≥ 1, we define τi as follows, where c1 is equal to the constant c of Lemma 5.15, and

c2 is equal to the constant c of Lemma 5.19:

◦ if Sτi−1
is not almost-safe then

τi = min{ti, τi−1 + c1ξτi−1
2ξτi−1}

where

ti = inf{t > τi−1 : Sτi
is almost-safe or ξτi

= ξτi−1
+ 2}

◦ if Sτi−1
is almost-safe then

τi = min{ti, τi−1 + c22
ξτi−1}

where

ti = inf{t > τi−1 : Sτi
is safe or ξτi

= ξτi−1
+ 2}

Let

A = {S ∈ S : S is almost-safe}

L = {S ∈ S : ξ(S) ≥ ξ0 − log ξ0}

Let also

A′ = S−A L′ = S− L

For each 0 ≤ i < κ, we define the indicator random variables

Gi =

{

1, if ξτi+1
≤ ξτi

+ 1 and Sτi+1
∈ A

0, otherwise

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 113

and

Hi =

{

1, if ξτi+1
≤ ξτi

+ 1 and Sτi+1
is safe

0, otherwise

Consider now the following four events. E1 is the event:

“for all i ∈ A1, Gi = 1”

where

A1 is the set of the 3λ+(ξ0) smallest i such that Sτi
∈ A′ ∩ L,

E2 is the event:

“for the smallest i such that Sτi
∈ A ∩ L, Hi = 1”

E ′1 is the event:

“
∑

i∈A′

1

Gi ≥ |A
′
1| − 3λ+(ξ0)”

where

A′
1 is the set of the 6λ+(ξ0) smallest i such that Sτi

∈ A′ ∩ L′

Finally, E ′2 is the event:

“
∑

i∈A′

2
Hi > 0”

where

A′
2 is the set of the 3λ+(ξ0) smallest i such that Sτi

∈ A ∩ L′

(Without loss of generality, we assume that there are enough i of each type to populate

the sets A ∩ L and A′
2 — we can always achieve that by manipulating the strategy of the

adversary for large t. However, we cannot make the same assumption for A1 and A′
1. Indeed,

for any given starting partition, we can devise a strategy of the adversary that guarantees

that an almost-safe partition (of a given ξ) is reached in a bounded number of steps; but

there is no strategy of the adversary such that a non almost-safe partition is always reached.

So, instead, we let A1 be the set of all the i such that Sτi
∈ A′ ∩ L, if there are fewer than

3λ+(ξ0) such i; and similarly for A′
1.)

Next we compute the probability of the above events. Let A be the event:

{τi = t} ∩ {St = S} ∩ H

where i, t ∈ N, S ∈ S, and H is an event on the first t steps of the S-process such thatPr[A] > 0. Conditioned on A, the sequence 〈Sτi
, Sτi+1, . . .〉 is the partition-sequence of some

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 114

S-process (of the same sampling-size functions as the original S-process). So, by Lemma 5.15,Pr[Gi = 1 | A] = 1−O(ξ(S)2ξ(S)e−(1/4−2ε)λ+(ξ(S)−2 log ξ(S))) (5.43)

If S ∈ L, the above givesPr[Gi = 1 | A] = 1−O(2ξ0e−(1/4−2ε)λ+(ξ0−3 log ξ0))

and, thus, Pr[E1] = 1−O(ξ02
ξ0e−(1/4−2ε)λ+(ξ0−3 log ξ0)) (5.44)

Similarly, for S ∈ A, Lemma 5.19 yieldsPr[Hi = 1 | A] = 1−O(log ξ(S) · 2ξ(S)e−(1/4−ε)λ(ξ(S)−2 log ξ(S))) (5.45)

So, for S ∈ A ∩ L, the above givesPr[E2] = 1−O(log ξ0 · (2
ξ0/ξ0)e

−(1/4−ε)λ(ξ0−3 log ξ0)) (5.46)

To compute a lower bound forPr[E ′1] we observe that, by (5.43), for allA such that ξ(S) ≥ d0,

for a large enough constant d0, Pr[Gi = 1 | A] ≥ 3/4

We can make the above relation hold for ξ(S) < d0, as well, by choosing the constant β

in (5.1) to be sufficiently large. From that we can show, using Chernoff’s bound (Theorem

4.2 in [60]), that Pr[E ′1] ≥ 1− e−(3/4)6λ+(ξ0)·(1/3)2 ·(1/2) = 1− e−λ+(ξ0)/4 (5.47)

Similarly, by (5.45), we have that (for a large enough β)Pr[Hi = 1 | A] ≥ 1/3

and, thus, Pr[E ′2] = 1− (1− 1/3)3λ+(ξ0) ≥ 1− e−λ+(ξ0) (5.48)

By (5.44), (5.46), (5.47), and (5.48), we havePr[E1 ∩ E2 ∩ E ′1 ∩ E ′2] = 1−O(ξ02
ξ0e−(1/4−2ε)λ(ξ0−3 log ξ0))

Combining this with Claim 5.24 that we show next, yields the desired result.

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 115

Claim 5.24. If E1 ∩ E2 ∩ E
′
1 ∩ E

′
2 occurs then (i) and (ii) hold for some τ ≤ cξ02

ξ0, where c

is a constant > 0.

Proof. (Similar to the proof of Claim 5.18.) Suppose that E1 ∩ E2 ∩ E
′
1 ∩ E

′
2 occurs. Let

K = inf{i : Sτi
is safe} and J = min{K, κ}

Define

D1 = {i < J : Sτi
∈ A′ ∩ L} D2 = {i < J : Sτi

∈ A ∩ L}

D′
1 = {i < J : Sτi

∈ A′ ∩ L′} D′
2 = {i < J : Sτi

∈ A ∩ L′}

Note that {D1, D2, D
′
1, D

′
2} is a partition of {0, . . . , J − 1}, so,

|D1|+ |D2|+ |D
′
1|+ |D

′
2| = J (5.49)

From E2 and E ′2 it is immediate that

|D2| ≤ 1 (5.50)

|D2|+ |D
′
2| ≤ 3λ+(ξ0) (5.51)

Also, if any of the above relations holds as equality then maxD2 ∪ D′
2 + 1 = K = J . The

next two relations follow, respectively, from E1 and (5.51), and from E ′1, (5.51), and the note

after (5.51):

|D1| ≤ 3λ+(ξ0) and |D′
1| ≤ 6λ+(ξ0) (5.52)

By the definition of the τi, for all i ∈ D′
1 ∪D′

2 and t ∈ [τi..τi+1], since ξτi
< ξ0 − log ξ0

τi+1 − τi ≤ max{c1ξτi
2ξτi , c22

ξτi} ≤ c32
ξ0 and ξt ≤ ξτi

+ 2 < ξ0 − log ξ0 + 2 (5.53)

Also, for all i ∈ D1 − {0}, ξτi
< ξ0 − log ξ0 + 2, since i− 1 ∈ D′

1 ∪D′
2; so,

τi+1 − τi ≤ c1ξτi
2ξτi ≤ c42

ξ0 and ξt ≤ ξτi
+ 1 < ξ0 − log ξ0 + 3 (5.54)

for all t ∈ [τi..τi+1]. If 0 ∈ D1,

τ1 − τ0 ≤ c1ξ02
ξ0 and ξt ≤ ξ0 + 1 (5.55)

for all t ≤ τ1. Finally, if i ∈ D2 then ξτi
≤ ξ0 + 1, so,

τi+1 − τi ≤ c22
ξτi ≤ 2c22

ξ0 and ξt ≤ ξτi
+ 1 ≤ ξ0 + 2 (5.56)

Chapter 5. Analysis – Part III: Starting from an unbalanced partition 116

for all t ∈ [τi..τi+1]. By (5.49), (5.51), and (5.52),

J ≤ 12λ+(ξ0) < κ

for a large enough κ. So,

K = J < 12λ+(ξ0)

Combining (5.50), (5.51) and (5.52) with the bounds for τi+1 − τi from (5.53)–(5.56), yields

τK ≤ 9λ+(ξ0) · c32
ξ0 + 3λ+(ξ0) · c42

ξ0 + c1ξ02
ξ0 + 2c22

ξ0 ≤ cξ02
ξ0

for a sufficiently large c. Finally, combining the bounds for the ξt from (5.53)–(5.56), yields

ξt ≤ ξ0 + 2

for all t ≤ τK . Therefore, (i) and (ii) hold for τ = τK ≤ cξ02
ξ0 . �

Chapter 6

Analysis – Part IV: Putting the pieces

together

In this chapter we complete the analysis of our key-space partitioning scheme by com-

bining the results of the previous three chapters. Specifically, using Theorem 3.10, which

establishes a coupling of B-processes and S-processes, we show that Theorems 4.1 and 5.1,

which we showed for S-processes, readily apply to B-processes, as well. Also, combining these

two results we establish a lower bound on the expected fraction of the binary partitions in

a B-process that have ̺ ≤ 2.

We derive the versions of Theorems 4.1 and 5.1 for B-processes in Section 6.1, and the

bound on the fraction of balanced binary partitions in a B-process in Section 6.2.

6.1 From a safe/non-safe to a safe binary partition

Theorems 4.1 and 5.1, which we showed for S-processes, carry over directly to B-processes.

So, starting from a safe B0 (i.e., one such that srt(B0) is safe), if λ+ and λ− are sufficiently

large then, with high probability, all binary partitions reached in a number of Θ(|B0|) steps

have ̺ ≤ 2, and the last of them is safe. If, instead, B0 is not safe then a safe binary partition

is reached in O(ξ(B0)2
ξ(B0)) steps, with high probability. The proofs are straightforward

applications of Theorem 3.10.

More formally, we extend the definition of “safe” to (non-sorted) binary partitions in the

117

Chapter 6. Analysis – Part IV: Putting the pieces together 118

natural way. B ∈ B is safe if

̺(B) < 2, or ̺(B) = 2 and max{ℓµ(B), ℓξ(B)} ≤ 1/4 + ε

where ε = 1/16. So, B is safe iff srt(B) is safe. By analogy to the previous two chapters, for

a given a B-process, we let

µt = µ(Bt), ξt = ξ(Bt), and ̺t = ̺(Bt)

for each t ≥ 0. Also, for k ≥ 0, we let

λ(k) = min{λ+(k), λ−(k)}

The analogue of Theorem 4.1 for B-processes is as follows.

Theorem 6.1. For any B-process such that B0 is safe, with probability

1−O(2µ0e−(1/4−ε)λ(µ0))

there is τ ∈ [c12
µ0 ..c22

µ0], where c1, c2 are positive constants, such that

(i) Bτ is safe, and

(ii) for all t ≤ τ , ̺t ≤ 2 and ξt ≤ ξ0 + 1.

Proof. Let PB be a B-process such that B0 is safe. By Theorem 3.10, there is an S-process

PS such that:

− PS has the same λ+ and λ− as PB, S0 = srt(B0), and

N > c22
µ(S0)

where c2 is the constant of Theorem 4.1; and

− we can construct a coupling 〈P̂B, P̂S〉 of PB,PS such that, for all t ∈ [0..N], Ŝt �

srt(B̂t).

By applying Theorem 4.1 to P̂S , we obtain that: with probability

1−O(2µ(Ŝ0)e−(1/4−ε)λ(µ(Ŝ0)))

there is τ ∈ [c12
µ(Ŝ0)..c22

µ(Ŝ0)] such that

(i′) Ŝτ is safe, and

(ii′) for all t ≤ τ , ̺(Ŝt) ≤ 2 and ξ(Ŝt) ≤ ξ(Ŝ0) + 1.

Chapter 6. Analysis – Part IV: Putting the pieces together 119

Combining the above result and the three simple facts

1. µ(Ŝ0) = µ(B̂0) and ξ(Ŝ0) = ξ(B̂0) — since Ŝ0 = srt(B̂0).

2. for all t ∈ [1..N], ξ(Ŝt) ≥ ξ(B̂t) and ̺(Ŝt) ≥ ̺(B̂t) — by Lemma 3.4, since Ŝt � srt(B̂t).

3. for all t ∈ [1..N], if Ŝt is safe then B̂t is safe — by Lemma 4.2, since Ŝt � srt(B̂t).

yields: with probability

1−O(2µ(B̂0)e−(1/4−ε)λ(µ(B̂0)))

there is τ ∈ [c12
µ(B̂0)..c22

µ(B̂0)] such that

(i′) B̂τ is safe, and

(ii′) for all t ≤ τ , ̺(B̂t) ≤ 2 and ξ(B̂t) ≤ ξ(B̂0) + 1.

This and the fact that P̂B has the same distribution as PB yields the desired result. �

The version of Theorem 5.1 for B-processes is also almost identical to the original. The

proof is similar to that of Theorem 6.1 and is omitted.

Theorem 6.2. Consider any B-process such that, for all k ≥ 0,

λ+(k) ≥ max{8(ln 2)k, β} and λ−(k) ≥ max{8k, β}

where β is a sufficiently large constant. Then, with probability

1−O(ξ
O(1)
0 2ξ0e−(1/4−2ε)λ(ξ0))

there is τ ≤ cξ02
ξ0, where c is a positive constant, such that

(i) Bτ is safe, and

(ii) for all t ≤ τ , ξτ ≤ ξ0 + 2.

6.2 From a safe to an unbalanced to a safe binary par-

tition

In this section, we combine Theorems 6.1 and 6.2 to show that all but a negligible fraction

of the binary partitions in a B-process have ̺ ≤ 2 (provided that the sampling-size functions

used are large enough). More specifically, we typically have long intervals during which

all binary partitions have ̺ ≤ 2, interrupted by much smaller intervals where ̺ > 2 for

some binary partitions. We quantify that by establishing a lower bound on the expected

Chapter 6. Analysis – Part IV: Putting the pieces together 120

value of the ratio τ/r, where τ is the number of steps required to get from a safe initial

partition to a binary partition B with ̺ > 2, and r is the number of subsequent steps to

get from B back to a safe binary partition. We show that E[τ/r] = Ω(|B0|
1−1/γ/ log |B0|),

where γ is a constant that can be made arbitrarily large by choosing large enough λ+, λ−.

This result holds regardless of the strategy of the adversary. In the special case where the

adversary is not allowed to reduce the system size below some threshold m ≥ |B0|
1/γ , we

have E[τ/r] = Ω(mγ−1/ log m); so, if m = Θ(|B0|) then E[τ/r] = Ω(|B0|
γ−1/ log |B0|). The

formal statement of this result is as follows.

Theorem 6.3. Consider any B-process such that:

(1) B0 is safe,

(2) for all k ≥ 0,

λ(k) ≥ max{8k, β}

where β is a sufficiently large constant, and

(3) for all t ≥ 0, Pr[|Bt| ≥ m] = 1

for some m ∈ [1..|B0|].

Let

τ = inf{t : ̺t > 2} and r =

{

inf{j ≥ 1 : Bτ+j is safe}, if τ <∞

1, otherwise

Then, E[τ/r] = Ω
(n

n1/γ log n
+

mγ

m log m

)

where n = |B0| and γ = (1/4− ε) · (log e) · infk{λ(k)/k}.

A “malicious” strategy of the adversary, i.e., one that results in asymptotically small-

est E[τ/r], is, roughly speaking, to quickly reduce the system size to |B0|
1/γ (or to m, if

m > |B0|
1/γ), and then keep the size roughly the same. On the opposite side, there are

“helpful” strategies of the adversary, for which E[τ/r] is unbounded. We can show that,

when addBlk operations occur sufficiently more often than rmBlk operations then, with

positive probability, all binary partitions have ̺ ≤ 2.

We describe the proof of Theorem 6.3 in Section 6.2.2. Before that, in Section 6.2.1,

we derive an upper bound on the average number of steps to reach a safe binary partition

from a non-safe binary partition; i.e., an “expected-value” version of the “high-probability”

bound of Theorem 6.2.

Chapter 6. Analysis – Part IV: Putting the pieces together 121

6.2.1 Expected time to reach a safe binary partition

Based on Theorem 6.2, we show an upper bound on the expected number of steps required in

a B-process until we reach a safe binary partition, starting from a non-safe initial partition.

Specifically,

Lemma 6.4. For any B-process such that B0 is not safe and condition (2) of Theorem 6.3

holds, if r = inf{t : Bt is safe} then E[r] = O(ξ02
ξ0)

Proof. Consider the following infinite sequence of times 〈τ0, τ1, . . .〉. Let τ0 = 0, and, for

i ≥ 1,

τi = min{ti, τi−1 + c1ξτi−1
2ξτi−1}

where

ti = inf{t ≥ τi−1 : Bt is safe or ξt = ξτi−1
+ 3}

and c1 is the constant c of Theorem 6.2. Note that if Bτi
is safe then τj = τi, for all j > i.

We can write r in terms of the τi as

r =
∑

i≥0

(τi+1 − τi) (6.1)

We will compute an upper bound on the expected value of
∑

i≥0(τi+1 − τi). Let

J = inf{i : Bτi
is safe}

For every k ≥ 0,

∑

0≤i<k

E[τi+1 − τi] =
∑

0≤i<k

(E[τi+1 − τi | J > i] ·Pr[J > i]
)

(6.2)

since τi+1 − τi = 0 if J ≤ i. We now establish upper bounds for E[τi+1 − τi | J > i] andPr[J > i]. From the definition of τi it follows (by induction) that ξτi
≤ ξ0 + 3i, and

τi+1 − τi ≤ c1ξτi
2ξτi ≤ c1(ξ0 + 3i)2ξ0+3i

So, E[τi+1 − τi | J > i] ≤ c1(ξ0 + 3i)2ξ0+3i (6.3)

The probability that J > i can be expressed asPr[J > i] =

i∏

j=1

Pr[J > j | J > j − 1] (6.4)

Chapter 6. Analysis – Part IV: Putting the pieces together 122

For j ≥ 1, conditioned on any fixed value B for Bτj−1
and any event on the first τj−1 steps

of the B-process, 〈Bτj−1
, Bτj−1+1, . . .〉 is the partition-sequence of some B-process (of initial

partition B and the same sampling-size functions as the original B-process). Also if J > j−1,

Bτj−1
is not safe. So, by Theorem 6.2,Pr[J > j | J > j − 1, Bτj−1

= B] = O
(
ξ(B)O(1)2ξ(B)e−(1/4−2ε)λ(ξ(B))

)

Since, for all d, λ(d) ≥ 8d, the right-hand side of the above relation is o(1). Thus, for large

|B|, Pr[J > j | J > j − 1, Bτi−1
= B] ≤ 1/25

We can make the above relation hold for small |B|, as well, by choosing the constant β (in

the condition on λ) to be sufficiently large. Therefore,Pr[J > j | J > j − 1] ≤ 1/25

By applying the above to the right-hand side of (6.4), we obtainPr[J > i] ≤ 1/25i (6.5)

Applying now (6.3) and (6.5) to (6.2), yields

∑

0≤i<k

E[τi+1 − τi] ≤
∑

0≤i<k

(
c1(ξ0 + 3i)2ξ0+3i/25i

)
= c1ξ02

ξ0
∑

0≤i<k

(
1/22i + 3i/(ξ02

2i)
)

≤ 4c1ξ02
ξ0

Letting k →∞ we obtain
∑

i≥0

E[τi+1 − τi] ≤ 4c1ξ02
ξ0

Therefore, (6.1) yieldsE[r] = E [∑
i≥0

(τi+1 − τi)
]

=
∑

i≥0

E[τi+1 − τi] ≤ 4c1ξ02
ξ0 �

6.2.2 Proof of Theorem 6.3

If E[τ/r] = ∞ then the theorem obviously holds; so, we assume that E[τ/r] < ∞. Note

then that, by Markov’s inequality, Pr[τ/r =∞] = 0 and, thus,Pr[τ =∞] = 0

Chapter 6. Analysis – Part IV: Putting the pieces together 123

We begin by using Lemma 6.4 to bound E[τ/r] from below by the expectation of a quantity

that depends only on τ and ξτ (and not on r). Conditioned on any fixed value for Bτ and

any event H on the first τ steps of the B-process, 〈Bτ , Bτ+1, . . .〉 is the partition-sequence of

some B-process. So, by Lemma 6.4, for any k such that Pr[{ξτ = k} ∩ H] > 0,E[r | ξτ = k, H] ≤ c′k2k

for some constant c′. By the convexity of function 1/x then and Jensen’s inequality,E[1/r | ξτ = k, H] ≥ 1/E[r | ξτ = k, H] ≥
1

c′k2k

Therefore, E[τ/r] = E [E[τ/r | ξτ , τ]
]

= E [τ ·E[1/r | ξτ , τ]
]
≥ E [τ

c′ξτ2ξτ

]

(6.6)

Next we derive a lower bound for τ , by partitioning [0..τ] into a number of smaller intervals,

and applying Theorem 6.1 to each of these smaller intervals. More precisely, consider the

following infinite sequence of times 〈τ0, τ1, . . .〉. Let τ0 = 0, and, for each i ≥ 1, let

τi = min
{
τ, τi−1 + c22

ξτi−1 , ti
}

where

ti =

{

inf{t ≥ τi−1 + c12
ξτi−1

−2 : Bt is safe}, if Bτi−1
is safe

inf{t > τi−1 : Bt is safe}, otherwise

and c1, c2 are the constants of Theorem 6.1. It is easy to see that there is an index J < ∞

such that the sequence of τi is strictly increasing for i ≤ J , and for all i ≥ J , τi = τ . (J <∞

because we assumed that τ <∞ with probability 1.) We can show that for every i < J , and

all t such that τi ≤ t < τi+1,

̺t ≤ 2 and ξt ≤

{

ξτi
+ 2, if Bτi

is safe

ξτi
, otherwise

(6.7)

Also, if Bτi
is safe then

̺τi+1
≤ 2 and ξτi+1

≤ ξτi
+ 2, or ̺τi+1

= 3 and ξτi+1
≤ ξτi

+ 3 (6.8)

If Bτi
is not safe (and i < J) then

̺τi+1
≤ 2 and ξτi+1

≤ ξτi
, or ̺τi+1

= 3 and ξτi+1
≤ ξτi

+ 1 (6.9)

Chapter 6. Analysis – Part IV: Putting the pieces together 124

We can express τ in terms of the τi as

τ =
∑

i≥0

(τi+1 − τi)

So, if

D = {i : Sτi
is safe and i 6= J − 1}

then

τ ≥
∑

i∈D

(τi+1 − τi)

and, since τi+1 − τi ≥ c12
ξτi−2 for all i ∈ D,

τ ≥
∑

i∈D

c12
ξτi−2

Applying this to (6.6), yieldsE[τ/r] ≥ E[R], where R =
c1

c′ξτ2ξτ

∑

i∈D

2ξτi−2 (6.10)

Next we compute a lower bound for E[R]. We distinguish two cases, depending on whether

m ≤ n1/γ or m > n1/γ .

Case A: m ≤ n1/γ .

Roughly speaking, we consider the event (denoted E) that, for every (not very small) depth

k, if ξτ = k then the minimum number of elements i ∈ D such that ξτi
≥ k exceeds some

threshold νk. We show that this event implies R = Ω
(
n/(n1/γ log n)

)
, and that it occurs

with a constant probability.

Let

k0 = log n1/γ =
1

γ
log n

For each k ≥ k0 and j ≥ 1, let πk,j be the index of the j-th smallest among the τi for which

Bτi
is safe and ξτi

≥ k; if no such τi exists then πk,j =∞. We denote by Ek the event:

“for all i ∈ {πk,1, . . . , πk,νk
} such that i 6=∞, Bτi+1

is safe”

where

νk =
n

n1/γk0

·
k

4c3

(6.11)

and c3 is a positive constant we will determine later — see (6.13). Let

E =
⋂

k≥k0

Ek

Chapter 6. Analysis – Part IV: Putting the pieces together 125

Let also

K = ξτ − 3

If K ≥ k0 and E occurs then, using (6.7)–(6.9), it is easy to show that

|{i ∈ D : ξτi
≥ K}| ≥ νK

So,

R ≥
νKc12

K−2

c′(K + 3) · 2K+3
≥

n

n1/γk0
·

c1

29c3c′

If K < k0 and Eξ0 occurs then

R ≥
c12

ξ0−2

c′(K + 3) · 2K+3
≥

n

n1/γk0

·
c1

27c′

for large n. Therefore, if E occurs then (for any value of K)

R ≥ c4
n

n1/γk0

where c4 is a positive constant. So,E[R] ≥ E[R | E] ·Pr[E] ≥ c4
n

n1/γk0
Pr[E] (6.12)

We now compute a lower bound for Pr[E]. For each i ≥ 0, conditioned on any fixed value for

Bτi
and any event Hi on the first τi steps of the B-process, 〈Bτi

, Bτi+1, . . .〉 is the partition-

sequence of some B-process. So, by Theorem 6.1, for any k such that Pr[{Bτi
is safe} ∩

{xiτi
= k} ∩ Hi] > 0,Pr[Bτi+1

is safe | Bτi
is safe, ξτi

= k, Hi] ≥ 1− c32
ke−(1/4−ε)λ(k)

≥ 1− c32
k(1−γ) (6.13)

where c3 is a sufficiently large constant. (To obtain the second inequality we used the

assumption that λ(k) ≥ 8k.) Note that γ > 1, so, the above probability goes to 1, as

k →∞. By (6.13), for all k ≥ k0,Pr[Ek] ≥ (1− c32
k(1−γ))νk (6.14)

We can obtain a lower bound for the right-hand side of the above relation as follows. Note

that

νkc32
k(1−γ) =

1

4
·

k

k0
· 2(k−k0)·(1−γ) =

1

4
·
(k

k0
· 2−(k−k0)·(γ−2)

)

2−k+k0

Chapter 6. Analysis – Part IV: Putting the pieces together 126

Since γ ≥ 8(1/4− ε) log e > 2, if k0 is large enough then (k/k0) · 2
−(k−k0)·(γ−2) is a decreasing

function of k, for k ≥ k0. So, for all k ≥ k0,

νkc32
k(1−γ) ≤

1

4
·
(k0

k0

· 2−(k0−k0)·(γ−2)
)

2−k+k0 =
1

4
2−k+k0

So,

(1− c32
k(1−γ))νk ≥ 1− νkc32

k(1−γ) ≥ 1−
1

4
2−k+k0

Combining this and (6.14) yields Pr[Ek] ≥ 1−
1

4
2−k+k0

Therefore, Pr[E] ≥ 1−
1

4

∑

k≥k0

2−k+k0 =
1

2

By applying the above to (6.12), we obtainE[R] ≥ c4
n

2n1/γk0

hence, by (6.10), E[τ/r] ≥ c4
n

2n1/γk0

Since m ≤ n1/γ , n
n1/γk0

≥ mγ

m log m
, so, the above relation yieldsE[τ/r] = Ω

(n

n1/γ log n
+

mγ

m log m

)

Case B: m > n1/γ .

This is very similar to Case A: In (6.11) we substitute n1/γ for m, thus,

νk =
mγ

m log m
·

k

4c3

and then we proceed in the same way. The details are omitted.

Chapter 7

Greedy routing in

uniformly-augmented rings

In this chapter and the next, we study the complexity of a natural decentralized routing

protocol, in a broad family of random networks. Specifically, the network model we consider

is the directed ring that is augmented by adding links from each node to a number of

randomly selected “long-range contacts” of the node, such that, for each node, the set of

ring distances to its long-range contacts is chosen independently from the same distribution.

(The distribution is a parameter of the model.) The routing protocol we consider is the greedy

protocol with respect to the ring distance. This combination of network topology and routing

scheme captures many designs proposed for P2P networks, and models for social networks.

We show that for any network in this family with n nodes and on average ℓ long-range

contacts per node, the expected number of steps for greedy routing is Ω((log2 n)/ℓalog∗ n), for

some constant a > 1. This result improves an earlier lower bound of Ω((log2 n)/ℓ log log n) by

Aspnes et al. [6] and is very close to the upper bound of O((log2 n)/ℓ) achieved in Kleinberg’s

(one-dimensional) “small-world” model [39], a particular instance of the model we study.

7.1 Introduction

Consider the following model of random graphs on the set of nodes [0..n − 1]. We start

with the nodes forming a directed ring, where each node u is connected to its successor node

(u + 1) mod n. We define the ring distance from node u to node v as the number of edges

along the ring from u to v, i.e., (v−u +n) mod n. Then, from each node u, we add directed

127

Chapter 7. Greedy routing in uniformly-augmented rings 128

links to the nodes in a random set of nodes, called the long-range contacts of u, that are

chosen as follows. Independently for each u, we choose ∆u according to some probability

distribution ϕ (the same for all u) on the powerset of [2..n− 1]. (Note that [2..n− 1] is the

set of all possible ring distances from a node to the remaining nodes, excluding the node’s

successor.) The long-range contacts of u are the nodes whose ring distance from u is in ∆u,

i.e., the nodes (u + d) mod n, for all d ∈ ∆u. We denote this model by G(ϕ), and we call the

random graphs generated according to this model uniformly-augmented rings, or augmented

rings, for short.

The above model captures a wide range of different graph topologies. Depending on

the distribution ϕ used, the resulting construction may be deterministic (when one subset

of [2..n − 1] has probability one, and all others have probability zero), or randomized. In

the latter case, the number of long-range contacts per node may vary between nodes. Also,

in general, the long-range contacts of the same node are not chosen independently of each

other. An example of a deterministic augmented ring is the Chord ring [77], where

ϕ(∆) = 1, for ∆ =
{
⌊n/2i⌋ : 1 ≤ i ≤ log n− 1

}

An example of a randomized augmented ring is Kleinberg’s one-dimensional model for “small-

worlds” [39], where each node u has ℓ long-range contacts and the ring distance from u to

each of them is chosen independently at random such that it is equal to j with probability

∝ 1/jα, for a constant α ≥ 0.1 E.g., for ℓ = 1,

ϕ(∆) =

{

1/(jαf), if ∆ = {j}, for j = 2, . . . , n− 1

0, otherwise

where f is the normalizing constant
∑n−1

j=2 (1/jα). A simple example where the out-degree of

nodes vary and the long-range contacts of the same node are not chosen independently of each

other is as follows. Each node u with probability p ∈ (0, 1) has no long-range contacts, and

with probability 1−p it has two: node (u+Ru) mod n and node (u+Ru +Qu) mod n, where

Ru and Qu are chosen independently and uniformly at random from the set [2..⌊n/2⌋ − 1].

A natural decentralized routing scheme for augmented rings is the following greedy pro-

tocol: A node forwards a message for destination t to its neighbor v (successor or long-range

contact) that minimizes the remaining ring distance to t. As we discuss in Section 7.2, the

combination of augmented rings and greedy routing provides an attractive model for the de-

sign of P2P networks, and it also captures models used for social networks. We investigate

1Strictly speaking, if ℓ > 1 a node may have fewer than ℓ long-range contacts, since the ℓ distances to its
long-range contacts are chosen independently with replacement from [2..n− 1].

Chapter 7. Greedy routing in uniformly-augmented rings 129

the complexity of routing in this model. More precisely, we focus on the expected delivery

time, that is the expected value of the average number of steps required to route a message

between nodes, where the average is taken over all possible source–destination pairs, and the

expectation is over the random construction of the graph. We establish a lower bound on

the expected delivery time, as a function of the number of nodes n and the expected number

ℓ of long-range contacts per node. This bound holds for all possible distributions ϕ.

In his seminal work on routing in social networks [39], Kleinberg described a simple

instance of G(ϕ), where the expected delivery time for greedy routing is O((log2 n)/ℓ). In

this model, each node u has the same number ℓ ≤ log n of long-range contacts, and the

ring distance from u to each of them is chosen independently according to the harmonic

distribution. No augmented rings that achieve better than Θ((log2 n)/ℓ) have been described

yet. On the other hand, Aspnes et al. [6] proved that, for any distribution ϕ, the expected

delivery time for greedy routing in G(ϕ) is Ω((log2 n)/ℓ log log n).

We reduce the gap between the two results above by improving the lower bound to

Ω((log2 n)/ℓalog∗ n), for some constant a > 1. Note that the quantity alog∗ n grows slower than

any constant number of iterative applications of log to n — it is “practically” a constant.

The proof of this result proceeds by deriving a recursive formula that bounds the expected

delivery time for greedy routing in any augmented ring of a given size in terms of that in an

exponentially smaller augmented ring. Our analysis suggests general structural properties of

an asymptotically optimal augmented ring that are similar to those observed by Kleinberg for

the class of graphs he studied. We conjecture that the lower bound can be further improved

to Ω((log2 n)/ℓ) — i.e., that Kleinberg’s model is in fact asymptotically optimal for greedy

routing in G(ϕ).

In the rest of this chapter, we discuss the advantages of the model we study and survey

related work in Section 7.2, and we state our result formally in Section 7.3. The proof of

this result is described in Chapter 8.

7.2 Discussion and related work

Our results are limited by two assumptions: First, we focus on uniformly-augmented rings;

second, we focus on greedy routing. We now explain the benefits of these assumptions.

Despite its simplicity, G(ϕ) can describe a wide range of graphs, by suitable choice of the

probability distribution ϕ used to determine the long-range contacts. For example, we can

describe deterministic constructions (where one subset of [2..n− 1] has probability one, and

Chapter 7. Greedy routing in uniformly-augmented rings 130

all others have probability zero), as well as probabilistic ones. Moreover, we can describe

both homogeneous probabilistic networks, where all nodes have the same number of long-

range contacts, and heterogeneous ones where the number of long-range contacts can vary

(a little or a lot) from node to node. The “uniformity” property, i.e., that each node uses

the same distribution to determine its long-range contacts, is also beneficial. It implies that

a node’s position in the ring doesn’t influence its choice of long-range contacts (i.e., their

number, and their ring distances from the node.) Since nodes are effectively equivalent, it is

harder for an adversary to disrupt the system by attacking critical nodes.

The advantages of greedy routing are well-known, and reflected by its popularity: Rout-

ing decisions are made locally and independently in each node. These decisions are also

independent of the routing path up to the current node, so, messages need not store routing

information other than the destination node. As a result of these two properties, greedy

routing is easy to implement. Also, it is inherently fault-tolerant since as long as each node

has some edge towards the destination, the message will reach it. Bidirectional greedy rout-

ing is a variation of the (unidirectional) version that we consider in this paper, where a node

forwards a message for node t to its neighbor v that minimizes the “absolute ring distance”

to t: min
{
(t− v + n) mod n, (v − t + n) mod n

}
.2

In view of the advantages of the two assumptions underlying our analysis, it is not sur-

prising that the designs of many P2P systems fall within the purview of these assumptions.

There have been proposed deterministic designs with ℓ = Θ(log n) employing both unidirec-

tional and bidirectional greedy routing (Chord [77, 26]); there are also probabilistic designs

with ℓ ranging from 1 to Θ(log n) using either version of greedy routing (Kleinberg’s small-

world networks [39], Symphony [52], Randomized-Chord [29, 84]). In all of these systems the

expected delivery time is Θ((log2 n)/ℓ). (For the tightness of this bound for the probabilistic

designs above see [11, 53].)

On the lower bound side, the following facts are known about the number of steps re-

quired for unidirectional greedy routing in augmented rings. Xu [83] has shown that for

any deterministic construction with ℓ = Θ(log n), the number of steps required is Ω(log n)

in the worst-case — i.e., for some source–destination pair routing takes Ω(log n) steps.

Aspnes et al. [6] have shown that, for any distribution ϕ, the expected delivery time is

Ω((log2 n)/ℓ log log n). We improve this bound to Ω((log2 n)/ℓalog∗ n), for some constant

2To ensure that in augmented rings bidirectional greedy routing can always reach the destination, we
slightly modify our model by requiring that, in addition to its successor, each node u is also connected to its
predecessor (u− 1 + n) mod n in the ring.

Chapter 7. Greedy routing in uniformly-augmented rings 131

a > 1. For bidirectional greedy routing in augmented rings, Aspnes et al. [6] showed that

under some assumptions on ϕ, the expected delivery time is Ω((log2 n)/ℓ2 log log n). Also,

Flammini et al. [19] have shown that in the special case where each node has exactly one

long-range contact and certain assumptions on its distribution apply, the maximum expected

number of steps over all source–destination pairs is Ω(log2 n).

In a balanced tree of degree ℓ spanning n nodes, the average distance of a node from the

root is Θ(log n/ log ℓ). Thus, this bound represents the optimal expected delivery time in an

n-node network of degree ℓ. Note that this bound is (asymptotically) better than the lower

bound for greedy routing in augmented rings. In particular, the lower bound of Aspnes et al.

implies that, for ℓ = o(log n), the combination of augmented rings and greedy routing cannot

achieve an optimal tradeoff between node degree and routing paths length. Our improved

lower bound establishes that this is also true when ℓ = Θ(log n), a case of practical interest

since many P2P designs have degree Θ(log n).

In view of the lower bound showing that the combination of augmented rings and greedy

routing cannot achieve an optimal degree–routing paths length tradeoff, designs that achieve

such an optimal tradeoff must abandon at least one of the assumptions underlying that

bound: Either they must be based on constructions that are not augmented rings, or they

must use non-greedy routing — or both. As we argued earlier, these assumptions have

considerable advantages, and so the gain of more efficient routing has to be weighed against

the loss of these advantages.

We now give some examples of proposed designs that achieve more efficient decentral-

ized routing than is possible with greedy routing in augmented rings. Papillon [3] is an

example of a network that achieves optimal routing by abandoning only the first assump-

tion. It uses greedy routing but the underlying graph is a non-uniformly augmented ring (a

ring-embedded butterfly-like network). A similar construction is also described in [19]. The

so-called “neighbor-of-neighbor” approach of [15, 53] is an example where better routing per-

formance is achieved by abandoning only the second assumption. Using a non-greedy algo-

rithm (where the routing decision at each node is based not only on the node’s neighbors, but

also on their neighbors) it improves routing performance in Kleinberg’s small-world model.

Finally, several deterministic and randomized designs have been proposed that achieve opti-

mal routing by abandoning both assumptions: They use non-greedy routing in constructions

that are not augmented rings, such as the de Bruijn graph, randomized versions of it, or

randomized versions of the butterfly; e.g., [48, 34, 49, 62].

We conclude this section with a brief survey of results in two related research areas:

Chapter 7. Greedy routing in uniformly-augmented rings 132

routing in small worlds, and networks for DHTs.

7.2.1 Decentralized routing in small worlds

The small-world phenomenon — the premise that almost all pairs of people in a society are

connected by short chains of acquaintances, was first verified experimentally by Milgram [57].

Milgram’s experiments also revealed that individuals are able to find such short paths effi-

ciently using only local information. Kleinberg [39] proposed a simple framework to model

this routing aspect of the small-world phenomenon. He modeled the graph of acquaintances

as a d-dimensional n-node grid augmented by adding links from each node to a small number

ℓ of long-range contacts selected independently at random; each long-range contact of a node

u is chosen to be node v with probability ∝ 1/dist(u, v)α, for a constant α, where dist(u, v)

is the grid distance between u and v. Kleinberg showed that for α = d greedy routing, with

respect to dist , achieves expected delivery time O((log2 n)/ℓ), while for α 6= d the expected

delivery time for any decentralized routing algorithm is polynomial in n.

Kleinberg’s work inspired a large body of subsequent research. Variations and extensions

of his model were proposed where different base structures than the grid were used: trees [40,

80], sets of groups [40], or the grid with non-uniformly populated lattice points [46]. Also

variations of the greedy routing strategy were studied [24, 54, 42, 53]; in all these variations

improved routing performance is achieved by allowing each node to “consult” a small number

of nearly nodes for free. For the diameter of Kleinberg’s grid-based family of networks

see [54, 55]. Finally, lower bounds for the complexity of greedy routing were derived for

variations of Kleinberg’s model where more general distributions for choosing the long-range

contacts of each node are used [6, 19, 28]; these results suggest that the distribution Kleinberg

proposed is possibly (asymptotically) optimal. Our work can be viewed as part of this last

volume of work.

A number of recent papers study the problem, proposed by Fraigniaud in [20], of whether

it is possible to construct random graphs that support efficient greedy routing (i.e., that re-

quires at most a poly-logarithmic number of steps) by augmenting an arbitrary base graph.

In particular, each node of the base graph is augmented by a long-range contact selected

independently from some distribution over the remaining nodes (possibly, a different distri-

bution for each node). In the greedy routing scheme considered, a node forwards a message

to its neighbor that has the shortest path to the destination in the base graph (not in

the augmented one). This question was answered in the affirmative for certain classes of

Chapter 7. Greedy routing in uniformly-augmented rings 133

graphs [20, 18, 75, 23], and in the negative for the general case [23].

For a more detailed survey of work in decentralized routing in small worlds see [41]

and [21].

7.2.2 Routing networks for DHTs

Recall from Chapter 1 that a main component of a DHT is an overlay routing network,

which facilitates efficient decentralized routing from any node to the node responsible for

any given key in the key-space. The connections in this network are determined by the

position of nodes (i.e., of their blocks) in the key-space. The standard approach used in

designing networks for DHTs is to, first, find a static family of graphs that support efficient

decentralized routing, and then show how to construct in a distributed manner a network

with a topology that “approximates” the topology of this static family of graphs.

Routing networks for DHTs can be broadly classified into two categories: deterministic

and randomized. The topology of a deterministic routing network is a function of the current

partition of the key-space into blocks, while the topology of a randomized routing network

depends also on additional random choices — other than those made to determine the

partition of the key-space.

Deterministic routing networks for DHTs are typically based upon classical parallel inter-

connection networks, such as the hypercube, the butterfly, and the de Bruijn graph [43].

Examples of early such designs include CAN [68], whose routing network is an adaptation

of the d-dimensional torus, and Chord [77], Pastry [72], Tapestry [31], and Kademlia [56],

all of which are variations of the hypercube. (Pastry, Tapestry, and Kademlia were inspired

by a prefix-based routing scheme proposed in [64].) In all these DHTs the routing schemes

used are greedy with respect to some distance function in the key-space. CAN achieves

routing paths of length O(n1/d)3 with Θ(d) links per node, in an n-node system; and the

other four DHTs achieve routing paths of length O(log n) using Θ(log n) links per node.

More recently, a number of designs that are based on high-degree de Bruijn graphs were

proposed [62, 2, 34, 22]. The routing schemes they employ are non-greedy, and they achieve

an optimal tradeoff between node degree and path length: for Θ(k) links per node the

routes are of length O(log n/ log k). Two deterministic variations of the butterfly, proposed

in [19, 3], also achieve optimal routing performance, using greedy routing.

A variety of randomized routing networks have been designed for DHTs. These in-

3For all source–destination pairs.

Chapter 7. Greedy routing in uniformly-augmented rings 134

clude Viceroy [48] and Mariposa [49, 51] (two randomized butterfly networks), Randomized-

Chord [29, 84], Randomized-Hypercube [29], Skip-Graphs [7, 30] (an adaptation of skip-

lists [65]), and Symphony [52, 6] (an adaptation of Kleinberg’s small-world construction [39]).

Viceroy achieves routes of length O(log n)4 with only O(1) links per node, which is optimal.

Mariposa also achieves optimal degree–routing paths length tradeoff using k links per node,

where k is a parameter of the model. Randomized-Chord, Randomized-Hypercube and

Skip-Graphs have a node degree of Θ(log n) and achieve routing paths of length Θ(log n),

when greedy routing is used. By employing the neighbor-of-neighbor approach the length of

the routing paths becomes optimal, i.e., O(log n/ log log n) [53]. Symphony achieves greedy

routing paths of length O(log2 n/k) using k links per node; using the neighbor-of-neighbor

approach routing paths of length O(log2 n/(k log k)) are achieved, which is optimal when

k = log n.

For a more detailed survey of work on routing networks for DHTs see [47].

7.3 Rigorous statement of our result

Let G be an instance of an n-node augmented ring. For every u, v ∈ [0..n− 1], the delivery

time from node u to node v in G, denoted L(G, u, v), is the length of the greedy routing

path in G from source u to destination v. Recall that the greedy routing path in G from u

to v is the path 〈u0 = u, u1, . . . , uk = v〉, such that, for each i < k, ui 6= v and ui+1 is the

neighbor of ui that is of minimum ring distance (v − ui+1 + n) mod n to the destination v.

For every n ≥ 2 and ℓ ∈ [0, n−2], we denote by Φn,ℓ the set of all probability distributions

ϕ on the powerset of [2..n − 1] such that the expected number of long-range contacts per

node in G(ϕ) is ℓ; i.e.,
∑

∆⊆[2..n−1]

(
|∆| · ϕ(∆)

)
= ℓ

The expected delivery time in G(ϕ), denoted T (ϕ), is the expected value of the average

delivery time in G(ϕ), where the average is taken over all source–destination pairs; i.e.,

T (ϕ) = E [1

n2

∑

0≤u,v<n

L(G, u, v)

]

where G is randomly generated in G(ϕ). Finally, by T (n, ℓ) we denote the optimal expected

delivery time in G(ϕ), over all ϕ for n nodes such that the expected number of long-range

4For all source–destination pairs, with high probability.

Chapter 7. Greedy routing in uniformly-augmented rings 135

contacts per node is ℓ; i.e.,

T (n, ℓ) = inf{T (ϕ) : ϕ ∈ Φn,ℓ}

We can now state our main result. Below we assume that ℓ is a non-decreasing function

of n, perhaps a constant.5 The asymptotic notation we use is for n→∞.

Theorem 7.1. If ℓ = Ω(1) then T (n, ℓ) = Ω((log2 n)/ℓalog∗ n), where a is a constant > 1.

The corresponding upper bound, which follows mostly from previously known results, is

Theorem 7.2. If ℓ = O(log n) then T (n, ℓ) = O((log2 n)/ℓ).

We describe the proofs of these results in Chapter 8.

5Technically, the following weaker condition on ℓ suffices: ℓ = Θ(g), where g is a non-decreasing function
of n.

Chapter 8

Proof of the lower bound

In this chapter we describe the proofs of Theorems 7.1 and 7.2, stated in Section 7.3. In

Section 8.1, we state four auxiliary result and use them to derive Theorems 7.1 and 7.2. We

prove these results in Sections 8.3, 8.5, and 8.7. In Section 8.2 we introduce some terminology.

In Sections 8.4 and 8.6 we define the routing tree of an augmented ring — a structure we

use in our analysis, and discuss some of its properties.

8.1 Statement of auxiliary results and derivation of

Theorems 7.1 and 7.2

We begin with three lemmata that allow us to bound T (n, ℓ) in terms of T (n′, ℓ′), for n′ 6= n

or ℓ′ 6= ℓ. The first lemma states the intuitive result that T (n, ℓ) is a non-increasing function

of ℓ.

Lemma 8.1. If ℓ < ℓ′ then T (n, ℓ) ≥ T (n, ℓ′).

The next lemma says what happens to T (n, ℓ) for fixed ℓ, as n increases. One might

expect T (n, ℓ) to be a non-decreasing function of n. This is not necessarily the case, since

some “convenient” values of n (say, powers of 2) may result in smaller T than smaller values

of n. We show the following weaker result, which, however, suffices for our analysis.

Lemma 8.2. If n > n′ then T (n, ℓ) ≥ (n′/n) · T (n′, ℓ).

The third lemma is more interesting than the previous two. Lemma 8.1 shows that, for

fixed n, as ℓ increases T (n, ℓ) decreases; Lemma 8.3 says it does not decrease too much.

136

Chapter 8. Proof of the lower bound 137

Lemma 8.3. If ℓ > ℓ′ then T (n, ℓ) ≥ (ℓ′/ℓ) · T (n, ℓ′).

The main part of our analysis is the proof of the following result, which gives a lower

bound for T when ℓ = 1. We use T (n) as a shorthand for T (n, 1).

Theorem 8.4. T (n) = Ω((log2 n)/alog∗ n), for some constant a > 1.

Before we proceed to prove the above results, we show how we can use them to derive

Theorems 7.1 and 7.2.

Proof of Theorem 7.1. Since ℓ is a non-decreasing function of n, we have that, for all

sufficiently large values of n, it is ℓ < 1, or ℓ > 1, or ℓ = 1. If ℓ < 1 then, by Lemma 8.1

(applied for ℓ′ = 1) and Theorem 8.4, we have

T (n, ℓ) = Ω((log2 n)/alog∗ n)

Combining this with the fact that ℓ is larger than some positive constant (since ℓ = Ω(1)),

yields the desired bound for T (n, ℓ), when ℓ < 1. If ℓ > 1 the desired bound follows from

Lemma 8.3 (applied for ℓ′ = 1) and Theorem 8.4. Finally, the case where ℓ = 1 is handled

in Theorem 8.4. �

Proof of Theorem 7.2. Kleinberg [39] showed that in the n-node augmented ring where

each node u has a single long-range contact, and this long-range contact is selected to be

node v with probability inversely proportional to the ring distance from u to v, the expected

delivery time is O(log2 n). Using a similar technique, Aspnes et al. [5] showed that if each

node chooses k long-range contacts, each selected independently with replacement from the

same distribution as in Kleinberg’s model, then the expected delivery time is O((log2 n)/k),

for all integers k such that 1 ≤ k ≤ log n.1 Note that in the family of augmented rings that

Aspnes et al. analyzed the expected number k′ of long-range contacts per node is k′ ≤ k,

since for each node the same long-range contact may be selected more than once. Therefore,

T (n, k) ≤ T (n, k′) = O((log2 n)/k) (8.1)

where the first relation holds because of Lemma 8.1. Also, by Lemma 8.1, for all real ℓ ≥ 1,

T (n, ℓ) ≤ T (n, ⌊min{ℓ, log n}⌋)

1These results were shown for a slightly different model than ours. Specifically, the links to successors
are bidirectional; the absolute ring distance is considered when choosing the long-range contacts of a node;
and bidirectional greedy routing is used. Also the long-range contacts of a node form a multi-set, and a
long-range contact may be at ring distance 1 from the node. Despite these differences, essentially the same
proofs can be used for our model.

Chapter 8. Proof of the lower bound 138

Combining the above two results, yields the desired bound for T (n, ℓ), for all ℓ that take

real values such that 1 ≤ ℓ = O(log n). For ℓ < 1, the bound follows by combining (8.1) (for

k = 1), and the fact that T (n, ℓ) ≤ T (n)/ℓ, which follows from Lemma 8.3. �

8.2 Definitions

We now describe some definitions we will use in the rest of this chapter. For n ≥ 2, we

denote by Gn the set of all directed graphs on the set of nodes [0..n− 1] that contain as a

subgraph the directed ring 0 → 1 → 2 → · · · → (n − 1) → 0. Thus, Gn consists of all the

graphs that are instances of some n-node augmented ring. For every G ∈ Gn and node u of

G, we call the set of ring distances from u to its long-range contacts the delta-set of u in G.

E.g., for the graph in Figure 8.1(a) on page 141, the delta-sets of nodes 1 and 2 are ∅ and

{3, 4}, respectively.

Recall from Section 7.3 that the expected delivery time in G(ϕ) is the expected value of

the average delivery time, where the average is taken over all the n2 source–destination pairs

of nodes (n is the number of nodes in G(ϕ)). Because of the way the long-range contacts

of nodes are selected, it is equivalent to consider, instead, the average of the delivery times

from a fixed source, say node 0, to all (the n) possible destinations. Furthermore, instead of

the average over the n possible destinations, we could take the expectation for a destination

selected uniformly at random. Formally, for any G ∈ Gn, let

L(G) =
1

n

∑

0≤v<n

L(G, 0, v)

Then,

T (ϕ) = E[L(G)] (8.2)

where G is randomly generated in G(ϕ). Also, if X is a uniform random variable over

[0..n− 1] that is independent of the construction of G then

T (ϕ) = E[L(G, 0, X)] (8.3)

where the expectation is over the random construction of G and the random selection of X.

8.3 Proofs of Lemmata 8.1 and 8.2

We now describe the proofs of the first two of the auxiliary lemmata in Section 8.1. Both

proofs employ the same technique, which is based on the coupling method [79]: For an

Chapter 8. Proof of the lower bound 139

arbitrary ϕ ∈ Φn,ℓ, we construct a coupling 〈G, G′〉 of G(ϕ) and G(ϕ′), for some ϕ′ ∈

Φn′,ℓ′ (for suitable n′, ℓ′, depending on the lemma) — i.e., we describe a joint construction

of random graphs G and G′ such that their marginal distributions are the same as the

distributions of G(ϕ) and G(ϕ′), respectively. For this pair of graphs, we show that

L(G) ≥ αL(G′) (8.4)

(for a suitable α, depending on the lemma). So, by (8.2),

T (ϕ) ≥ αT (ϕ′)

and since we assumed an arbitrary ϕ ∈ Φn,ℓ,

T (n, ℓ) ≥ αT (n′, ℓ′) (8.5)

Specifically, in the coupling construction we generate G first, according to the G(ϕ) model,

and then we construct G′ based on the G constructed and, possibly, on some additional

random choices. Below we denote by ∆u, for 0 ≤ u < n, the delta-set of node u in G, and

by ∆′
v, for 0 ≤ v < n′, the delta-set of node v in G′.

Proof of Lemma 8.1. For this lemma n′ = n and α = 1. We let ϕ′ be a distribution

obtained from ϕ by reducing the probability associated with (some of) the proper subsets

of [2..n− 1], and correspondingly increasing the probability of the entire set [2..n− 1], such

that the resulting distribution is in Φn,ℓ′. For instance, one such ϕ′ is defined by

ϕ′(∆) =

{

(1− q) · ϕ(∆), if ∆ ⊂ [2..n− 1]

ϕ([2..n− 1]) + q
∑

∆′⊂[2..n−1] ϕ(∆′), if ∆ = [2..n− 1]

where

q =
ℓ′ − ℓ

(n− 2)− ℓ

It is straightforward to show that the above is a valid distribution, and that

∑

∆

(
|∆| · ϕ′(∆)

)
= ℓ′

G′ is then generated as follows. For every u ∈ [0..n − 1] such that ∆u = [2..n − 1] (i.e.,

node u has outgoing edges to all other nodes in G), we let ∆′
u = ∆u; for each of the

remaining u, we let ∆′
u = ∆u or ∆′

u = [2..n − 1] with probabilities ϕ′(∆u)/ϕ(∆u) and

1 − ϕ′(∆u)/ϕ(∆u), respectively — the random choice for each u is made independently. It

Chapter 8. Proof of the lower bound 140

is straightforward to verify that G′ has the same distribution as G(ϕ′). Also, for any u 6= 0,

if 〈v0 = 0, v1, . . . , vk = u〉 is the greedy routing path in G′ from 0 to u then 〈v0, . . . , vk−1〉 is

a proper prefix of the greedy routing path from 0 to u in G. Thus, for all u,

L(G, 0, u) ≥ L(G′, 0, u)

which yields (8.4), for α = 1. Hence, by (8.5), T (n, ℓ) ≥ T (n, ℓ′). �

Proof of Lemma 8.2. We define G′ as a function of G. For each u ∈ [0..n′ − 1], we let

∆′
u = ∆u ∩ [0..n′ − 1]

Note that the greedy routing path in G′ from 0 to each u is identical to the corresponding

routing path in G, and, thus,

L(G′, 0, u) = L(G, 0, u)

So,

L(G′) = (1/n′)
∑

u<n′

L(G, 0, u) ≤ (1/n′)
∑

u<n

L(G, 0, u) = (n/n′) · L(G)

— i.e., (8.4) holds for α = n′/n. Note also that G′ has the same distribution as G(ϕ′) for

some ϕ′ ∈ Φn′,ℓ′ where

ℓ′ =
∑

∆⊆[0..n−1]

(
|∆ ∩ [0..n′ − 1]| · ϕ(∆)

)
≤ ℓ

Therefore, by (8.5),

T (n, ℓ) ≥ (n′/n) · T (n′, ℓ′) ≥ (n′/n) · T (n′, ℓ)

where the second inequality holds because of Lemma 8.1 (since ℓ′ ≤ ℓ). �

8.4 Routing trees

In this section, we describe a structure we will use in the proofs of the remaining two

auxiliary results, Lemma 8.3 and Theorem 8.4. For every G ∈ Gn, the routing tree of G

is the subgraph of G that consists of the greedy routing paths from node 0 to all the other

nodes. An example is illustrated in Figures 8.1(a) and (b).2 The next lemma states an

invariant of routing trees. (The proof follows from the properties of greedy routing and is

omitted.) By 〈〈i, k〉〉, for i, k ∈ Z, we denote the set [i..i + k − 1].

2Note that for each u ∈ [1..n−1], we can similarly define the routing tree where the source of the routing
paths is node u (instead of 0). However, in all the routing trees we consider in our analysis we assume that
the source is node 0.

Chapter 8. Proof of the lower bound 141

1

0

2

3

4

5

6

7

0

1

2

3

4

5

6 7

0

1

2

5

(c)(b)(a)

Figure 8.1: (a) Example of a G ∈ G8; (b) the routing tree of G; (c) the 2-prefix of G’s

routing tree.

Lemma 8.5. Let R be the routing tree of a graph in Gn. Then,

(a) R is a tree, and

(b) for every node u, the subtree of R rooted at u consists of the nodes in 〈〈u, s〉〉, where s

is the size of the subtree.

Note that the depth of each node u in R is the delivery time L(G, 0, u). So, the average

node depth in R is equal to L(G), and if G is randomly generated in G(ϕ) then the expected

average depth is equal to T (ϕ). Note also that part (b) of the lemma can be equivalently

stated as: a pre-order walk of R visits the nodes in increasing order. (We assume that the

children of each internal node of R are sorted from left to right in increasing order.)

Suppose now we have only partial knowledge of G; specifically, suppose we just know

its size n, and the delta-sets of the first t ∈ [0..n] nodes, 0, . . . , t − 1. (For t = 0, we do

not know the delta-set of any node.) What can we infer about the routing tree R of G?

Consider the subgraph of R induced by the nodes 0, . . . , t−1 and their children in R; we call

this subgraph the t-prefix of R. (For t = 0, the t-prefix of R consists only of node 0.) An

example is shown in Figure 8.1(c). Based on Lemma 8.5 we can show the following result.

(The proof is by induction on t and is omitted).

Lemma 8.6. Let G ∈ Gn, R be the routing tree of G, and Rt be the t-prefix of R, for some

t ∈ [0..n]. Then, Rt is a tree, and is completely determined given n and the delta-sets of

nodes 0, . . . , t− 1. Each node of G that is not in Rt is in a subtree of R rooted at some leaf

of Rt. For each leaf u of Rt, the subtree of R rooted at u has size u − u′, where u′ is the

smallest node of Rt that is larger than u, or u′ = n if no such node exists.

Chapter 8. Proof of the lower bound 142

8.5 Proof of Lemma 8.3

As in the proof of Lemmata 8.1 and 8.2, we employ a coupling argument. For an arbitrary

ϕ ∈ Φn,ℓ, we describe a coupling 〈G, G′〉 of G(ϕ) and G(ϕ′), for some ϕ′ ∈ Φn,ℓ′, such thatE[L(G)] ≥ αE[L(G′)], for α = ℓ′/ℓ (8.6)

So, by (8.2), we have T (ϕ) ≥ αT (ϕ′), which yields the desired result, T (n, ℓ) ≥ αT (n, ℓ′) —

since ϕ is an arbitrary distribution in Φn,ℓ.

Below we denote by R and R′ the routing trees of G and G′, respectively. Also, for each

u ∈ [0..n− 1], we let ∆u and ∆′
u be the delta-sets of u in G and G′, respectively.

We begin with an informal description of the coupling. We generate G first, according

to the G(ϕ) model. Then, based on the G constructed we construct G′ inductively by

considering each node u = 0, 1, . . . , n − 1 in turn. With each node u of G′ we associate a

node Cu of G (this association is not necessarily one-to-one). We initialize the inductive

construction by setting C0 = 0 — i.e., associating with the root of R′ the root of R. For the

node u of G′ under consideration, we define ∆′
u and, simultaneously, define the association

of u’s children in R′ to nodes in R. Specifically, we choose ∆′
u = ∅ with probability 1 − α,

and ∆′
u = ∆Cu with probability α. So, in the first case u has no long-range contacts in G′

and (if u is not a leaf of R′) its only child in R′ is u +1. In this case, we associate with u +1

the node in G to which u is already associated, i.e., Cu+1 = Cu. In the second case, u has

long-range contacts in G′ at the same ring distances as the corresponding node Cu does in

G and this defines the set of u’s children in R′. In this case, we associate with each child

u + δ of u in R′ the corresponding child of Cu in R, i.e., Cu+δ = Cu + δ.

We now describe the coupling construction more formally. We choose ∆0, . . . , ∆n−1 inde-

pendently at random, each according to distribution ϕ — as in G(ϕ). Also, we independently

choose n random bits B0, . . . , Bn−1, such that, for each 0 ≤ u < n, Pr[Bu = 1] = α. Then,

for each u = 0, . . . , n− 1, ∆′
u is defined inductively by

∆′
u =

{

∅, if Bu = 0

∆Cu , if Bu = 1

where

Cu =







0, if u = 0

CFu , if u > 0 and BFu = 0

CFu + (u− Fu), if u > 0 and BFu = 1

and Fu is u’s parent in the u-prefix of R′ — which is also u’s parent in R.

Chapter 8. Proof of the lower bound 143

That G′ is well defined is immediate from the fact that the u-prefix of R′ is completely

determined given ∆′
0, . . . , ∆

′
u−1 (by Lemma 8.6), and from the following claim. (The proof

of the claim is by an easy induction and is omitted).

Claim 8.7. For all u ∈ [0..n− 1], 0 ≤ Cu ≤ u.

The next result gives more insight into the construction of G′. (The proof, by induction,

is omitted). Su and S ′
u denote the sizes of the subtrees of R and R′, respectively, rooted at u.

Recall (from Lemma 8.5) that the sets of nodes of these subtrees are 〈〈u, Su〉〉 and 〈〈u, S ′
u〉〉,

respectively.

Claim 8.8. For all u ∈ [0..n− 1],

(a) S ′
u ≤ SCu.

(b) For all u′ ∈ [u + 1, n− 1],

− If u′ < u + S ′
u then Cu′ ∈ 〈〈Cu, SCu〉〉; in particular, if Bu = 1 then Cu′ 6= Cu.

− If u′ ≥ u + S ′
u then Cu′ ≥ Cu + SCu

Part (b) says that if u′ > u then Cu′ ≥ Cu (where the inequality is strict if Bu = 1), and Cu′

is in the subtree of R rooted at Cu iff u′ is in the subtree of R′ rooted at u.

We now show that the marginal distribution of G′ is the same as the distribution of

G(ϕ′), for some ϕ′ ∈ Φn,ℓ′. For that, it is convenient to think of the construction of G′ as

a random process consisting of n steps, 0 up to n − 1, where in step t we decide the value

of ∆′
t, and the value of each Bu and ∆u is generated right before it is about to be used —

not earlier. Clearly, Bt is generated in step t. Let Ut be the set of nodes u for which ∆u is

generated in some of the steps 0, . . . , t − 1. Note that Ut = {Cv : v < t, Bv = 1}, so, by

Claim 8.8(b), Ct /∈ Ut; i.e., ∆Ct is not generated before step t. Therefore, in each step t: we

first choose Bt (independently of past choices); if Bt = 0 we set ∆′
t = ∅; otherwise, we choose

∆Ct (again independently of past decisions) and let ∆′
t = ∆Ct . Consequently, ∆′

0, . . . , ∆
′
n−1

are generated independently at random, each according to the distribution ϕ′ defined by

ϕ′(∆) =

{

αϕ(∆), if ∆ 6= ∅

αϕ(∅) + (1− α), if ∆ = ∅

Note that ϕ′ ∈ Φn,ℓ′, since

∑

∆

(
|∆| · ϕ′(∆)

)
=
∑

∆ 6=∅

(
|∆| · ϕ′(∆)

)
= α

∑

∆ 6=∅

(
|∆| · ϕ(∆)

)
= αℓ = ℓ′

Chapter 8. Proof of the lower bound 144

It remains to prove (8.6), i.e., that E[L(G)] ≥ αE[L(G′)]. Roughly speaking, we describe

a sequence L0, . . . , Ln of progressively more accurate estimates of L(G′), where estimate Lt

is based on G and the binary string

At = 〈B0, . . . , Bt−1〉

The first of these estimates is L0 = α−1L(G), the last one is Ln = L(G′), and for all t < n,

we have E[Lt+1] ≤ E[Lt]. Combining these three facts yields the desired result.

For every t ∈ [0..n], we let Rt be the t-prefix of R′ and V t be the set of nodes of Rt, and

we define

Lt =
1

n




∑

u∈[0..t−1]

L(G′, 0, u) +
∑

u∈V t−[0..t−1]



S ′
u · L(G′, 0, u) + α−1

∑

v∈〈〈Cu ,S′

u〉〉

L(G, Cu, v)









Before we explain the above formula, we establish that Lt = Lt(G, At). Recall that [0..t−1] ⊆

V t, and that, for all u ∈ V t, L(G′, 0, u) and S ′
u are a function of Rt (by Lemma 8.6). Also,

since Rt is a function of ∆′
0, . . . , ∆

′
t−1 (by Lemma 8.6), and these delta-sets are a function

of G, At (by the coupling construction), we have that, for all u ∈ V t, L(G′, 0, u) and S ′
u are

a function of G, At. Also, for all u ∈ V t, Cu = Cu(G, At) (by the coupling construction).

Therefore, Lt = Lt(G, At).

In the definition of Lt, the first sum accounts for the lengths of the greedy routing paths

from 0 to the first t nodes of G′; the second sum is an estimate of the lengths of the routing

paths to the remaining nodes of G′ — by Lemma 8.6, these nodes are in the subtrees of R′

rooted at all u ≥ t that are leaves of Rt. Specifically, inside this second sum, the first term

accounts for the lengths of the routing paths up to u for all (the S ′
u) nodes in R′’s subtree

rooted at u; the second term is an estimate of the lengths of the routing paths from u to

these nodes; this estimate is proportional to the sum of the lengths of the routing paths in

G from Cu to the nodes Cu, Cu + 1, . . . , Cu + S ′
u − 1, which, by Claim 8.8(a), are all in the

subtree of R rooted at Cu.

Note that

L0 = α−1L(G) and Ln = L(G′) (8.7)

Let Zt+1 = n(Lt+1 − Lt). It is straightforward to show that

Zt+1 =

{

S ′
t − 1− α−1L(G, Ct, Ct + S ′

t − 1), if Bt = 0

−(α−1 − 1) · (S ′
t − 1), if Bt = 1

Chapter 8. Proof of the lower bound 145

We then haveE[Zt+1 | G, At] = E[Zt+1 | G, At, Bt = 0] ·Pr[Bt = 0 | G, At]

+E[Zt+1 | G, At, Bt = 1] ·Pr[Bt = 1 | G, At]

=
(
S ′

t − 1− α−1L(G, Ct, Ct + S ′
t − 1)

)
· (1− α)

− (α−1 − 1) · (S ′
t − 1) · α

= −(α−1 − 1) · L(G, Ct, Ct + S ′
t − 1)

≤ 0

Therefore, E[Lt+1−Lt |G, At] ≤ 0. Taking the expectation of both sides yields E[Lt+1−Lt] ≤

0, or, equivalently, E[Lt+1] ≤ E[Lt], which implies thatE[Ln] ≤ E[L0]

Substituting the values of Ln and L0 from (8.7), we obtain (8.6).

8.6 More on routing trees

We now describe some additional concepts and terminology about routing trees. Let G ∈ Gn

and R be the routing tree of G. Also, for every u ∈ [0..n − 1], let Ru be the subtree of R

rooted at node u, and su be the size of Ru. Recall from Lemma 8.5(b) that the set of nodes

of Ru is 〈〈u, su〉〉 = [u..u + su − 1]. A node v of G is called an r-descendant of u, for some

r ≥ 1, if v is a node of Ru and v − u < r; or, equivalently, if v ∈ 〈〈u, min{r, su}〉〉. If the

parent of v in R is an r-descendant of u, but v itself is not then v is called an r-successor

of u. Examples of these definitions are illustrated in Figure 8.2(a). If su ≤ r, all the nodes

of Ru are r-descendants of u; i.e., u has no r-successors. If su > r, the following picture

emerges: Let p = 〈u0, . . . , uk〉 be the path in Ru from u to the largest r-descendant of u, i.e.,

node u+r−1; we call p the r-path of u. For example, the 7-path of node 1 in Figure 8.2(a) is

〈1, 5, 7〉. The r-descendants of u are the nodes along p, plus the nodes of the subtrees rooted

at the children of nodes u0, . . . , uk−1 that lie to the left of p on the plane; the r-successors of

u are the children of nodes u0, . . . , uk−1 that lie to the right of p, plus all the children of uk.

Note that the r-successors of u form a “frontier” between the r-descendants of u and the other

nodes of Ru: The path from u to each of its r-descendants consists only of r-descendants of

u; and the path to any other node of Ru consists of one or more r-descendants of u, followed

Chapter 8. Proof of the lower bound 146

(b)(a)

0

1

2

3

4

5

7

8

11 12

13

14

15

16

17

9

10

0

6

1

2

3

4

5

7

8

11 12

13

14

15

16

17

9

10
6

Figure 8.2: (a) The 7-descendants of nodes 1 and 15 are the nodes 1, . . . , 7, and 15, 16, 17,

respectively; the 7-successors of node 1 are the nodes 8, 9, 13; (b) the 4-significant nodes are

marked with filled circles; the (12, 4)-partition is {[0..3], {4}, [5..8], [9..11]}.

by one r-successor of u, and then zero or more nodes that are neither r-descendants nor

r-successors of u.

Consider now the set of nodes that consists of node 0, 0’s r-successors, the r-successors

of them, and so on. We call the nodes in this set the r-significant nodes of G. Also, if v

is an r-descendant of some r-significant node u, we say that u is the r-ancestor of v. Let

z0 = 0 < z1 < · · · < zκ−1 be the r-significant nodes of G, and zκ = n. Then, for each

k ∈ [0..κ − 1], the r-descendants of zk (or, equivalently, the nodes whose r-ancestor is zk)

are the nodes in [zk..zk+1 − 1]. For every m ∈ [1..n], the partition [0..m− 1] into the sets

[z0..z1 − 1], [z1..z2 − 1], . . . , [zκ′−1..m− 1]

where κ′ = min{k : zk ≥ m}, is called the (m, r)-partition with respect to G. An example is

described in Figure 8.2(b).

From the above, it follows that the routing path in G from node 0 to any node consists

of one or more r-significant nodes, each followed by zero or more r-descendants of it. For

example, in the path 〈0, 1, 5, 9, 10, 12〉 of the routing tree in Figure 8.2(b), nodes 0, 5, 9 are

4-significant nodes, node 1 is a 4-descendant of 0, and nodes 10, 12 are 4-descendants of 9.

For every node v of G, it is possible to identify the r-significant nodes in the routing path

from 0 to v in an “on-line” fashion as we perform greedy routing from 0 to v — we assume

that initially (when at node 0) we have no knowledge of G other than its size n, and we

Chapter 8. Proof of the lower bound 147

learn the delta-set of each node in the path when we visit that node. We can achieve that

using the following simple algorithm. Below by ∆u we denote the delta-set of node u.

• Let S denote the set of r-significant nodes identified so far; initially, S = ∅.

• We add 0 to S — we do not know ∆0, yet.

• Each time we add a node u to S:

◦ If v − u < r the algorithm ends.

◦ Otherwise:

− we learn ∆u (and, thus, the next node in the path to v)

− while the next node in the path is < u + r we move to that node, and learn its

delta-set

− let w be the first node in the path such that w−u ≥ r — we do not know ∆w, yet

− we add w to S.

It is straightforward to verify that when the algorithm ends the nodes in S are the r-

significant nodes in the routing path from 0 to v. For each u ∈ S, we can also compute the

number of its r-descendants, based only on the delta-sets of the nodes that precede u in this

path; it is equal to min{r, u′ − u} where u′ is the smallest among the neighbors that are

greater than u of the nodes that precede u in the path; or u′ = n, if no such node exists.

The next lemma is immediate from the above discussion. It says that the r-ancestor z of

v and the number m of the r-descendants of z are completely determined by the delta-sets

of the nodes that precede z in the routing path from 0 to z. Also, knowing these delta-sets

(and, thus, z and m) does not reveal any information about the delta-sets of the remaining

nodes in the graph.

Lemma 8.9. Let G ∈ Gn, v ∈ [0..n− 1], z be the r-ancestor of v in G, for some r ∈ [1..n],

and m be the number of r-descendants of z in G. Let also 〈u0, . . . , uk〉 be the prefix of the

greedy routing path in G from 0 to v, up to (but not including) z. Then, for every G′ ∈ Gn

such that nodes u0, . . . , uk of G′ have the same delta-sets as the corresponding nodes of G,

the r-ancestor of v in G′ is z, and the number of r-descendants of z in G′ is m.

8.7 Proof of Theorem 8.4

Let ϕ be an arbitrary distribution in Φn,1. For every m ∈ [1..n], we denote by Λm the

expected value of the average of the delivery times in G(ϕ) from node 0 to the first m nodes;

Chapter 8. Proof of the lower bound 148

i.e.,

Λm = E [1

m

∑

0≤u<m

L(G, 0, u)

]

where G is randomly generated in G(ϕ). Note that Λn = E[L(G)] = T (ϕ).

Informally, the proof proceeds as follows. First, we observe that for any triplet m, r, η ∈ N

such that η ≤ r ≤ m ≤ n, Λm is bounded from below by the sum of the following two

terms:

(1) E[L(G, 0, Z)], where Z is the r-ancestor of a uniformly-random node in [0..m− 1];

(2) q · Λm∗ , where q is the probability that Z has at least η r-descendants in [0, m − 1],

and m∗ ∈ [η..r] is such that Λm∗ is minimal.

Roughly speaking, term (1) accounts for the number of steps until we get within distance

r of the average destination, and term (2) bounds from below the remaining number of

steps to the destination. By recursively apply this result, we then obtain a lower bound for

T (ϕ) = Λn. Specifically, in each recursive step we take r ≈ m/ logβ n and η ≈ m/ logβ+γ n,

for some constants β, γ > 0. For these values of r and η we show that each term of type (1)

is bounded from below by T (n′)/λ, where n′ is polylogarithmic in n, and λ is proportional

to the expected number of long-range contacts a node has at ring distances between r and

m. We also show that the probabilities q in the terms of type (2) are very close to 1. So, the

lower bound we obtain for T (ϕ) looks roughly like: T (n′) ·
∑

i(1/λi), where i ranges from 1 to

the total number of recursive steps, which is Θ(log n/ log log n), and λi is the value of λ that

corresponds to step i. Then, by observing that
∑

i λi is bounded from above by a constant,

we obtain that T (ϕ) ≥ Θ(log2 n/ log2 log n) ·T (n′); thus, T (n) ≥ Θ(log2 n/ log2 log n) ·T (n′).

Finally, since n′ is polylogarithmic in n, recursive application of the last inequality yields

the desired bound for T (n).

Our proof suggests that to achieve (asymptotically) optimal routing performance, ϕ

should be such that a node in G(ϕ) has roughly the same expected number of long-range

contacts in all intervals of ring distances that are of the form [u..u logc n], for a constant

c. Note that Kleinberg’s construction has the property that a node has exactly the same

expected number of long-range contacts in all intervals of ring distances of the form [u..cu].

We now present the detailed proof. Let G be a randomly generated graph in G(ϕ), and

fix r, m ∈ N
∗ such that r ≤ m ≤ n. Let Z be the r-ancestor in G of a uniformly-random

node in [0..m− 1], selected independently of the choice of G. Let also M be the number of

r-descendants of Z in G that are in [0..m − 1]. We can express Λm in terms of Z and M

Chapter 8. Proof of the lower bound 149

as follows. Let H be an arbitrary possible instance of G(ϕ), and ΠH be the (m, r)-partition

with respect to H . Then,

1

m

∑

0≤u<m

L(H, 0, u) =
1

m

∑

b∈ΠH

∑

u∈b

L(H, 0, u) (8.8)

Given G = H , the probability that 〈〈Z, M〉〉 is equal to any fixed block of ΠH is proportional

to the size of that block; formally, for every b ∈ ΠH ,Pr[〈〈Z, M〉〉 = b | G = H] =
|b|

m

Applying the above to the right-hand side of (8.8) yields

1

m

∑

0≤u<m

L(H, 0, u) =
∑

b∈ΠH

(Pr[〈〈Z, M〉〉 = b | G = H] ·
1

|b|

∑

u∈b

L(H, 0, u)

)

= E [1

M

∑

u∈〈〈Z,M〉〉

L(G, 0, u)

∣
∣
∣
∣
G = H

]

Therefore,

Λm = E [1

M

∑

u∈〈〈Z,M〉〉

L(G, 0, u)

]

Combining this and the fact that

∑

u∈〈〈Z,M〉〉

L(G, 0, u) = M · L(G, 0, Z) +
∑

u∈〈〈Z,M〉〉

L(G, Z, u)

we obtain

Λm = E[L(G, 0, Z)] +E [1

M

∑

u∈〈〈Z,M〉〉

L(G, Z, u)

]

(8.9)

We now focus on the term E [(1/M)
∑

u∈〈〈Z,M〉〉 L(G, Z, u)
]
on the right-hand side of (8.9).

By Lemma 8.9, knowledge of the values of Z and M does not reveal any information about

the delta-sets of the nodes in 〈〈Z, M〉〉. More formally, let ∆u, for each u ∈ [0..n − 1],

denote the delta-set of node u. Let also Ez,m′ denote the event: “〈〈Z, M〉〉 = 〈〈z, m′〉〉.” For

any z, m′ such that Pr[Ez,m′] > 0, we have that, conditioned on Ez,m′, ∆z , . . . , ∆z+m′−1

are independent, and each has distribution ϕ. From this, it is immediate that for every

u ∈ 〈〈z, m′〉〉, E[L(G, Z, u) | Ez,m′] = E[L(G, 0, u− z)]

Chapter 8. Proof of the lower bound 150

So, we haveE [1

M

∑

u∈〈〈Z,M〉〉

L(G, Z, u)

]

=
∑

z,m′

(E [1

m′

∑

u∈〈〈z,m′〉〉

L(G, z, u)

∣
∣
∣
∣
Ez,m′

]

·Pr[Ez,m′]

)

=
∑

z,m′

(1

m′

∑

u∈〈〈0,m′〉〉

E[L(G, 0, u)] ·Pr[Ez,m′]
)

=
∑

z,m′

(
Λm′ ·Pr[Ez,m′]

)

=
∑

1≤m′≤r

(
Λm′ ·Pr[M = m′]

)

In the last sum, if we restrict the range of m′ to [η..r], for some η ∈ [1..r], and replace each

Λm′ with Λm∗ , for some m∗ ∈ [η..r] such that Λm∗ ≤ Λm′ for all m′ ∈ [η..r], we obtainE [1

M

∑

u∈〈〈Z,M〉〉

L(G, Z, u)

]

≥ Λm∗ ·Pr[M ≥ η]

By applying the above to (8.9), yields

Λm ≥ E[L(G, 0, Z)] + Λm∗ ·Pr[M ≥ η] (8.10)

Then next lemma provides lower bounds for E[L(G, 0, Z)] and Pr[M ≥ η]. (Its proof is

described at the end of this section.)

Lemma 8.10.

(a) Let θ ∈ [2..r − 1], and λ be the expected number of long-range contacts of a node at

ring distances between θ and m− 1, i.e.,

λ = E [|∆0 ∩ [θ..m− 1]|
]

There are constants c > 0 and b > 1 such that if m/r ≥ b thenE[L(G, 0, Z)] ≥ c ·min

{
r

θ − 1
,

1

λ
· T
(⌊ m

r + θ

⌋)}

(b) Pr[M ≥ η] ≥ 1−
η − 1

r
·
(E[L(G, 0, r − 1)] + O(1)

)

Based on (8.10) we can bound T (ϕ) from below as follows. First we define quantities ni,

ri, ηi, θi, λi, Zi, and Mi. The definition is recursive:

n0 = n

Chapter 8. Proof of the lower bound 151

and for each i = 0, . . . , τ − 1, where

τ = min{j : nj ≤ logβ+γ n}

we let:

ri be the d ∈
[
⌈ni/ logβ n⌉..⌈2ni/ logβ n⌉

]
such that E[L(G, 0, d− 1)] ≤ E[L(G, 0, d′− 1)],

for all d′ ∈
[
⌈ni/ logβ n⌉..⌈2ni/ logβ n⌉

]

ηi = ⌈ni/ logβ+γ n⌉

θi = ⌈ni/ logβ+δ n⌉

ni+1 be the d ∈ [ηi..ri] such that Λd ≤ Λd′, for all d′ ∈ [ηi..ri]

λi = E [|∆0 ∩ [θi..ni − 1]|
]

Zi be the ri-ancestor of a node chosen independently and uniformly at random from

[0..ni − 1]

Mi be the number of the ri-descendants of Zi that are in [0..ni − 1].

β, γ, and δ are constants such that

2 ≤ δ ≤ β ≤ γ − 3

(Note that all quantities defined above, except for the Zi and Mi, can be computed directly

from ϕ — they are not random variables.) Now, by recursively applying (8.10) for k times,

where k ∈ [0..τ], we obtain the following bound for T (ϕ) = Λn:

T (ϕ) ≥
∑

i<k

(E[L(G, 0, Zi)] ·
∏

j<i

Pr[Mj ≥ ηj]

)

+ Λnk
·
∏

j<k

Pr[Mj ≥ ηj] (8.11)

Next, we use Lemma 8.10 to derive lower bounds for the E[L(G, 0, Zi)] and Pr[Mi ≥ ηi].

By Lemma 8.10(a),E[L(G, 0, Zi)] ≥ c ·min

{
ri

θi − 1
,

1

λi
· T
(⌊ ni

ri + θi

⌋)}

(We can use Lemma 8.10(a), because for i < τ , ni/ri = Θ(logβ n), and, thus, ni/ri > b for

all large enough n.) Note that since 1
2
logβ n − 1 ≤ ni

ri+θi
≤ logβ n, we have, by Lemma 8.2,

that

T
(⌊ ni

ri + θi

⌋)

≥
(1

2
− o(1)

)

· T
(⌊1

2
logβ n− 1

⌋)

Also,
ri

θi − 1
≥ logδ n ≥ log2 n

Chapter 8. Proof of the lower bound 152

since δ ≥ 2. Therefore,E[L(G, 0, Zi)] ≥ c′ ·min

{

log2 n,
1

λi

· T
(⌊1

2
logβ n− 1

⌋)}

(8.12)

for some constant c′ > 0. For Pr[Mi ≥ ηi], by Lemma 8.10(b), we have thatPr[Mi ≥ ηi] ≥ 1−
ηi − 1

ri
·
(E[L(G, 0, ri − 1)] + O(1)

)

Note that, by the definition of ri,

(⌈ 2ni

logβ n

⌉

−
⌈ ni

logβ n

⌉

+ 1
)

·E[L(G, 0, ri − 1)] ≤ niΛni

which implies that E[L(G, 0, ri − 1)] ≤ logβ n · Λni

Also,
ηi − 1

ri
≤

1

logγ n
≤

1

logβ+3 n

since γ ≥ β + 3. Therefore, Pr[Mi ≥ ηi] ≥ 1− ĉ
Λni

log3 n
(8.13)

for a constant ĉ > 0.

We now combine results (8.11)–(8.13) to derive a lower bound for T (ϕ) in terms of T (n′),

for some n′ that is polylogarithmic in n. We assume that n ≥ ñ, where ñ is a constant such

that τ > 0 for all n ≥ ñ. Note that

1

β + γ
·

log n

log log n
−O(1) ≤ τ ≤

(2

β
+ o(1)

) log n

log log n
(8.14)

We distinguish two cases.

Case 1: max
{
Λni

, 1
c′
E[L(G, 0, Zi)]

}
≥ log2 n, for some i < τ .

Let k be the smallest such i. Then, by (8.13), for all i < k,Pr[Mi ≥ ηi] ≥ 1−
ĉ

log n

If Λnk
≥ log2 n then, by (8.11),

T (ϕ) ≥ Λnk
·
∏

j<k

Pr[Mj ≥ ηj] ≥ log2 n ·
(

1−
ĉ

log n

)k

Likewise, if E[L(G, 0, Zk)] ≥ c′ log2 n,

T (ϕ) ≥ E[L(G, 0, Zk)] ·
∏

j<k

Pr[Mj ≥ ηj] ≥ c′ log2 n ·
(

1−
ĉ

log n

)k

Chapter 8. Proof of the lower bound 153

Since k < τ = O(log n/ log log n) (by (8.14)), we have that in both cases

T (ϕ) ≥ c1 log2 n (8.15)

for some constant c1 > 0.

Case 2: max
{
Λni

, 1
c′
E[L(G, 0, Zi)]

}
< log2 n, for all i < τ .

By (8.13), for all i < τ , Pr[Mi ≥ ηi] ≥ 1−
ĉ

log n

So, by (8.11), applied for k = τ , we obtain

T (ϕ) ≥
∑

i<τ

(E[L(G, 0, Zi)] ·
∏

j<i

Pr[Mj ≥ ηj]
)

≥
(

1−
ĉ

log n

)τ ∑

i<τ

E[L(G, 0, Zi)]

≥ c′′
∑

i<τ

E[L(G, 0, Zi)]

for a constant c′′ > 0. Note that, by (8.12) and the case hypothesis that E[L(G, 0, Zi)] <

c′ log2 n we have that, for all i < τ ,E[L(G, 0, Zi)] ≥
c′

λi

· T
(⌊1

2
logβ n− 1

⌋)

Therefore,

T (ϕ) ≥ c′c′′T
(⌊1

2
logβ n− 1

⌋)∑

i<τ

1

λi

Recall now that λi = E [|∆0 ∩ [θi..ni − 1]|
]
, and note that, since β ≥ δ, each d ∈ [0..n − 1]

belongs to at most two of the sets [θi..ni − 1], for i = 0, . . . , τ − 1. Therefore,
∑

i<τ λi ≤

2E[|∆0|] = 2. Because of the convexity of 1/x, the last result yields

∑

i<τ

1

λi
≥

1

2
τ 2 ≥

1

2

(log n

(β + γ) log log n
−O(1)

)2

by (8.14). Thus,

T (ϕ) ≥ c2

(log n

log log n

)2

· T
(⌊1

2
logβ n− 1

⌋)

(8.16)

for some constant c2 > 0. {end of Case 2}

Since (8.15) and (8.16) hold for all ϕ ∈ Φn,1, we have that, for all large enough n,

T (n) ≥ min
{
c1 log2 n, g(n) · T

(
α(n)

)}
(8.17)

Chapter 8. Proof of the lower bound 154

where

g(n) = c2
log2 n

log2 log n
and α(n) =

⌊1

2
logβ n− 1

⌋

We can now obtain the desired bound for T (n) as follows. Let n̂ be a large enough constant

such that (8.17) holds for all n ≥ n̂. Let also κ be such that

α(κ+1)(n) < n̂ ≤ α(κ)(n)

(By f (k)(x) we denote the function f(x) iteratively applied k ≥ 0 times to an initial value

of x.) We recursively apply (8.17) until some of the following two conditions is met:

(i) in some recursive step the first argument of min{·, ·} is smaller or equal to the second;

(ii) κ′ steps have been performed, for some κ′ ≤ κ that we specify later.

So, there are κ′ + 1 possible cases: one for each of the κ steps in which condition (i) may

be satisfied, and the case where condition (i) is never satisfied. The corresponding bounds

obtained for T (n) are T0, . . . , Tκ′, where

Tk =

{ (∏

i<k g(α(i)(n))
)
· c1 log2(α(k)(n)), if 0 ≤ k < κ′

(∏

i<κ g(α(i)(n))
)
· 2

3
, if k = κ′

(To obtain Tκ′ we used the trivial fact that T (m) ≥ 2
3
, for m ≥ 3.) Thus,

T (n) ≥ min{T0, . . . , Tκ′} (8.18)

Note that α(n) ≥ log n, for all n ≥ 8; so, if we stipulate that n̂ ≥ 8 we have that, for all

k ≤ κ,

α(k)(n) ≥ log(k) n

Thus, for every k ∈ [0..κ′ − 1],

Tk ≥
(∏

i<k

g(log(i)(n))
)

· c1 log2(log(k)(n)) = c1c
k
2log2 n

and, similarly,

Tκ′ ≥
2

3
cκ′

2

log2 n

(log(κ′+1) n)2

By letting

κ′ = min{κ, log∗(n)− 1}

we obtain that, for all k ∈ [0..κ′],

Tk ≥ c3
log2 n

alog∗ n
(8.19)

Chapter 8. Proof of the lower bound 155

for some constants c3 > 0 and a > 1. (Note that

log(κ′+1) n ≤ max{log(κ+1) n, log(log∗(n)) n} ≤ max{α(κ+1)(n), 1} ≤ n̂.
)

Combining (8.18) and (8.19), yields T (n) = Ω(log2 n/alog∗ n).

Proof of Lemma 8.10(a)

Recall that G is a randomly generated graph in G(ϕ), where ϕ ∈ Φn,1, and Z is the r-ancestor

of a uniformly-random node in [0..m− 1].

Let G⋆ be the m-node augmented ring such that, for each k ∈ [0..m− 1], the delta-set of

node k of G⋆ is

∆⋆
k = ∆k ∩ [0..m− 1]

(∆k is the delta-set of node k in G.) Note that the routing tree of G⋆ is identical to

the subgraph of the routing tree of G induced by the nodes in [0..m − 1]. So, Z can be

equivalently viewed as the r-ancestor of a uniformly-random node in G⋆, and E[L(G, 0, Z)] =E[L(G⋆, 0, Z)].

The proof proceeds roughly as follows. Based on G, we describe the construction of an

m′-node augmented ring G′, where m′ ≈ m/(r+θ). Roughly speaking, G′ is a “scaled-down”

version G⋆. We then compute a lower bound for E[L(G⋆, 0, Z)] in terms of E[L(G′)]. To

make the lengths of the routing paths in G′ comparable to those in G⋆ we assign to each

node u of G′ a positive weight Wu, and consider, instead, the “weighted” length of each

routing path in G′ — i.e., the sum of the weights of the nodes along this path. We show

that E[L(G⋆, 0, Z)] is bounded from below by the expected weighted length of the routing

paths in G′, and then we bound the latter in terms of E[L(G′)]. We complete the proof by

deriving a lower bound for E[L(G′)] in terms of T (m′).

Before we describe how graph G′ and the node weights W0, . . . , Wm′−1 are generated in

terms of G⋆, we describe the distribution they will have. We also compute some quantities

related to this distribution. The size of G′ is

m′ =
⌊m

r′

⌋

, where r′ = r + θ

We require that m ≥ 3r′, which is true when, say,

m

r
≥ b = 6

Chapter 8. Proof of the lower bound 156

For each u ∈ [0..m′−1], let ∆′
u denote the delta-set of node u of G′. The pairs 〈∆′

0, W0〉, . . . ,

〈∆′
m′−1, Wm′−1〉 are mutually independent and they have the same distribution, which is

roughly as follows. Recall from Section 8.6 that the r-path of node 0 in G⋆ is the routing

path from 0 to its largest r-descendant, r−1. Consider the prefix of this path until we reach

a node Y such that either (i) some of the long-range contacts of Y is at ring distance ≥ θ

from Y , or (ii) some of the neighbors of Y (successor or long-range contact) is ≥ r. Let W

be the length of this prefix, and D be a “scaled-down” version of ∆⋆
Y (which we describe

later). Then, for each u, 〈∆′
u, Wu〉 has the same distribution as 〈D, W 〉.

More precisely, let 〈X1, X2, . . .〉 denote r-path of 0 in G⋆. We will assume that the

sequence of Xt is infinite, and that Xt = r− 1 for all t after the destination r− 1 is reached.

Let τ1 be the earliest step when a node with some long-range contact at a ring distance ≥ θ

is encountered; i.e.,

τ1 = min
{
t : ∆∗

Xt
∩ [θ..m− 1] 6= ∅

}

Let also τ2 be the earliest step when a node with a neighbor that is ≥ r is reached; i.e.,

τ2 = min
{
t : (∆⋆

Xt
∪ {1}) ∩ [r −Xt..m− 1] 6= ∅

}

We define

W = min{τ1, τ2} and D = Ψ(∆⋆
XW

)

where

Ψ(∆) = [2..m′ − 1] ∩
⋃

d∈∆∩[θ..m−1]

{⌊ d

r′

⌋

+ δ : δ = −1, 0, 1, 2
}

Note that Ψ(∆) = ∅ iff ∆ ∩ [θ..m− 1] = ∅; and ∆⋆
XW
∩ [θ..m− 1] = ∅ iff τ1 > τ2. So,

D =

{

Ψ(∆⋆
Xτ1

) 6= ∅, if τ1 ≤ τ2

∅, if τ1 > τ2

We denote the joint distribution of 〈D, W 〉 by ϕ̂, and the marginal distribution of D by ϕ′.

Note that ϕ′ ∈ Φm′,ℓ′, where

ℓ′ = E[|D|]

For each u ∈ [0..m− 1], ϕ̂ will be the joint distribution of 〈∆′
u, Wu〉 (and ϕ′ the marginal of

∆′
u).

Claim 8.11, below, provides an upper bound for ℓ′, and a lower bound for the conditional

expectation of W given D. Recall that λ is the expected number of long-range contacts a

Chapter 8. Proof of the lower bound 157

node in G(ϕ) (or, equivalently, in G⋆) has at ring distances between θ and m− 1. Let π be

the probability a node has at least one such long-range contact; i.e.,

π = Pr [∆∗
0 ∩ [θ..m− 1] 6= ∅

]

(Note that λ ≥ π.)

Claim 8.11.

(a) If π 6= 0 then ℓ′ ≤
4λ

π
.

(b) E[W | D] ≥ c1 min
{ r

θ − 1
,

1

π

}

, for some constant c1 > 0.

Proof. For part (a) we have

ℓ′ = E [|Ψ(∆⋆
Xτ1

)|
∣
∣ τ1 ≤ τ2

]
·Pr[τ1 ≤ τ2]

≤ E [|Ψ(∆⋆
Xτ1

)|
∣
∣ τ1 ≤ τ2

]

= E [|Ψ(∆⋆
0)|
∣
∣ ∆⋆

0 ∩ [θ..m− 1] 6= ∅
]

=
E[|Ψ(∆⋆

0)|]Pr[∆⋆
0 ∩ [θ..m− 1] 6= ∅]

=
1

π
·E[|Ψ(∆⋆

0)|] (8.20)

where the second-to-last equality holds because Ψ(∆⋆
0) = ∅ if ∆⋆

0 ∩ [θ..m − 1] = ∅. By the

definition of Ψ,

|Ψ(∆⋆
0)| ≤ 4|∆⋆

0 ∩ [θ..m− 1]|

so, E[|Ψ(∆⋆
0)|] ≤ 4E[|∆⋆

0 ∩ [θ..m− 1]|] = 4λ

Applying this to (8.20) yields ℓ′ ≤ 4λ/π.

We now proceed to part (b). Let

ρ =
⌈ r

θ − 1

⌉

For the case D = ∅ we have E[W | D = ∅] = E[τ2 | τ1 > τ2] ≥ ρ (8.21)

where the first relation holds because D = ∅ iff τ1 > τ2; and the second relation holds

because if τ1 > τ2 then Xt+1 −Xt ≤ θ − 1 for all t ∈ [1..τ2], and r −Xτ2 ≤ θ − 1, and, thus,

τ2 ≥ r/(θ − 1).

Chapter 8. Proof of the lower bound 158

Next, we consider the case D = ∆, for some ∆ 6= ∅. We haveE[W | D = ∆] = E[W | D 6= ∅] = E[τ1 | τ1 ≤ τ2]

= E[τ1 | τ1 ≤ min{ρ, τ2}] ·Pr[τ1 ≤ min{ρ, τ2}]

+E[τ1 | ρ < τ1 ≤ τ2] ·Pr[ρ < τ1 ≤ τ2]

Since E[τ1 | τ1 ≤ min{ρ, τ2}] ≤ ρ < E[τ1 | ρ < τ1 ≤ τ2],E[W | D = ∆] ≥ E[τ1 | τ1 ≤ min{ρ, τ2}] = E[τ1 | τ1 ≤ ρ] (8.22)

where the second relation holds because if τ1 ≤ ρ then τ1 ≤ τ2 (since τ1 > τ2 yields τ1 > τ2 ≥

ρ, as we argued earlier). We haveE[τ1 | τ1 ≤ ρ] =

ρ
∑

j=1

jPr[τ1 = j | τ1 ≤ ρ] =

ρ
∑

j=1

j
Pr[τ1 = j]Pr[τ1 ≤ ρ]

=

ρ
∑

j=1

j
πqj−1

1− qρ

where q = 1− π. After some computations we obtainE[τ1 | τ1 ≤ ρ] =
1− qρ(1 + πρ)

π(1− qρ)
(8.23)

Since (1− qρ) ≤ 1 and qρ ≤ e−πρ,E[τ1 | τ1 ≤ ρ] ≥
1− e−πρ(1 + πρ)

π
≥

0.18

π
, if πρ ≥ 0.78 (8.24)

For smaller values of πρ we obtain a lower bound for E[τ1 | τ1 ≤ ρ] as follows. By dividing

both the numerator and denominator on the right-hand side of (8.23) by (1− qρ) we getE[τ1 | τ1 ≤ ρ] =
1 + πρ− πρ(1− qρ)−1

π

and since, for πρ < 1, qρ ≤ 1− πρ + 1
2
(πρ)2,E[τ1 | τ1 ≤ ρ] ≥

1 + πρ− πρ(πρ− 1
2
(πρ)2)−1

π
= ρ

1− πρ

2− πρ
≥ 0.18ρ, if πρ ≤ 0.78 (8.25)

By (8.24) and (8.25), for all values of πρ,E[τ1 | τ1 ≤ ρ] ≥ 0.18 min
{

ρ,
1

π

}

So, by (8.22), E[W | D = ∆] ≥ 0.18 min
{

ρ,
1

π

}

Combining this and (8.21) yields part (b) of the claim. �

Chapter 8. Proof of the lower bound 159

We now describe how we generate G′ and W0, W1, . . . , Wm′−1 from G⋆. The construction

has similarities to that we used in the proof of Lemma 8.3. We denote by R and R′ the

routing trees of G⋆ and G′, respectively.

We begin with an informal exposition. We generate the pairs 〈∆′
u, Wu〉 inductively by

considering each node u = 0, . . . , m′ − 1 in turn. If u is a leaf of R′, we choose 〈∆′
u, Wu〉

independently at random from ϕ̂. With each u that is not a leaf we associate a node Cu of R.

As in the construction in the proof of Lemma 8.3, C0 = 0, and for u 6= 0, Cu is determined

when the delta-set of the parent of u in R′ is determined. ∆′
u and Wu are defined similarly

to D and W , using the r-path of Cu in G⋆ instead of the r-path of 0. Let Yu be the node in

the r-path of Cu whose delta-set is used to compute ∆′
u. With each non-leaf child u + δ of

u in R′ we associate a distinct child Cu+δ of Yu in R, such that Cu+δ ≈ Yu + δr′.

We now give a formal description of the construction. For each k ∈ [0..m− 1], let Ak be

the r-ancestor of node k in G⋆, and

Bk =

{

Ak, if Ak = k

Ak + r′, otherwise

So, if k is an r-significant node of G⋆ then Bk = k; otherwise, Bk = Ak+r′ > Ak+r > k > Ak.

For each u = 0, . . . , m′ − 1, 〈∆′
u, Wu〉 is defined as follows. Let S ′

u be the size of the subtree

of R′ rooted at u.

◦ If S ′
u > 1 then

∆′
u = Ψ(∆⋆

Yu
) and Wu = L(G⋆, Cu, Yu) + 1

where:

− Yu is the first node in the r-path of Cu in G⋆ such that some of the following conditions

holds: (i) ∆⋆
Yu
∩ [θ..m− 1] 6= ∅, or (ii) a child of Yu in R is ≥ Cu + r.

− Cu = 0, if u = 0; and if u > 0, Cu is the largest child of YFu in R that is ≤ BCFu
+

(u− Fu) · r
′, where Fu is u’s parent in R′.

◦ If S ′
u = 1 we choose 〈∆′

u, Wu〉 independently at random according to ϕ̂.

Note that, given G, the above construction is “almost” deterministic: R′ = R′(R) and for

every node u that is not a leaf of R′, ∆′
u = ∆′

u(G
⋆) and Wu = Wu(G

⋆). The only randomness

introduced (other than the choice of G⋆) is in the selection of the delta-sets and weights of

the leaves of R′.

The next result is the analogue of Claims 8.7 and 8.8. (The proof is omitted.) For k < m,

we denote by Sk the size of the subtree of R rooted at k.

Chapter 8. Proof of the lower bound 160

Claim 8.12. For all u ∈ [0..m′ − 1], if S ′
u > 1 then

(a) 0 ≤ Cu ≤ Yu < Cu + r and BCu ≤ ur′.

(b) BCu + S ′
ur

′ ≤ Cu + SCu = Yu + SYu.

(c) For all u′ ∈ [u + 1..m− 1],

− If u′ < u + S ′
u and S ′

u′ > 1 then Cu′ ∈ 〈〈Yu, SYu〉〉 − {Yu}.

− If u′ ≥ u + S ′
u and S ′

u′ > 1 then Cu′ ≥ Yu + SYu.

We now show that G′ and W0, . . . , Wm′−1 have the distribution we described at the

beginning of this proof; i.e., 〈∆′
0, W0〉, . . . , 〈∆

′
m′−1, Wm′−1〉 are mutually independent, and

each pair has distribution ϕ̂. As in the proof of Lemma 8.3, we think of the construction as

a random m′-step process, where in step t we determine the value of 〈∆′
t, Wt〉, and each ∆⋆

k

is generated right before it is about to be used for the first time — not earlier. Let Ut be

the set of nodes k for which ∆⋆
k is generated in some of the steps 0, . . . , t− 1. Note that Ut

consists of the nodes in the routing paths of G⋆ from Cu to Yu, for all u < t such that S ′
u > 1.

So, by Claim 8.12(c), if S ′
t > 1 then k /∈ Ut, for all k ≥ Ct, and, thus, the delta-sets of the

nodes in the path from Ct to Yt are generated in step t. It is now easy to see that 〈∆′
t, Wt〉

is constructed independently of choices made in previous steps, and has distribution ϕ̂.

Next we bound the expected “weighted” delivery time in G′ in terms of the corresponding

“unweighted” quantity. For each u, v ∈ [0..m′ − 1], let

Lw(u, v) =
∑

u′∈pu,v

Wu′

where pu,v is the set of all the nodes in the routing path from u to v in G′, excluding the last

node v. Let also

Lw =
1

m′

m′−1∑

u=0

Lw(0, u)

So, Lw(u, v) and Lw are the weighted versions of L(G′, u, v) and L(G′), respectively. Let H

be any (fixed) possible instance of G(ϕ′), and let pH
0,u, ∆

′
v
H be the corresponding values of

p0,u, ∆
′
v. Then,E [Lw(0, u) | G′ = H

]
= E [∑

v∈p0,u

Wv

∣
∣
∣ G′ = H

]

=
∑

v∈pH
0,u

E[Wv | G
′ = H]

=
∑

v∈pH
0,u

E [W ∣
∣ D = ∆′

v
H]

Chapter 8. Proof of the lower bound 161

where the last relation holds because of the independence of the 〈∆′
i, Wi〉 pairs, and the fact

that they are distributed like 〈D, W 〉. By Claim 8.11(b) then,E[Lw(0, u) | G′ = H] ≥ c1 min
{ r

θ − 1
,

1

π

}

· |pH
0,u| = c1 min

{ r

θ − 1
,

1

π

}

· L(H, 0, u)

Taking the average over all u < m′, and the expectation over all H , yieldsE[Lw] ≥ c1 min
{ r

θ − 1
,

1

π

}

·E[L(G′)] (8.26)

Now, since G′ is a random graph in G(ϕ′), and ϕ′ ∈ Φm′,ℓ′, E[L(G′)] ≥ T (m′, ℓ′). So, if

π > 0 then, by Claim 8.11(a) and Lemma 8.1,E[L(G′)] ≥ T
(

m′, min
{4λ

π
, m′ − 2

})

and by applying Lemma 8.3 to the right-hand side, we obtainE[L(G′)] ≥
π

4λ
· T (m′)

Using the above and the trivial fact that T (i) ≥ 2/3, for all i ≥ 3, (8.26) yieldsE[Lw] ≥ c2 min
{ r

θ − 1
,

1

λ
· T (m′)

}

(8.27)

for some constant c2 > 0.

The last piece of the proof is to bound E[L(G⋆, 0, Z)] in terms of E[Lw]. We use the

following result.

Claim 8.13. Let H be a (fixed) possible instance of G⋆ and u ∈ [0..m′ − 1] be such that if

G⋆ = H then u is not a leaf of R′. Then,

r′ ·E [∑

v∈〈〈u,S′

u〉〉

Lw(u, v)
∣
∣
∣ G⋆ = H

]

≤
∑

k∈〈〈BCu ,r′S′

u〉〉

L(H, Cu, Ak)

(The proof is by induction on S ′
u; the details of the proof are omitted.)

By Claim 8.13, applied for u = 0,

∑

k<r′m′

L(H, 0, Ak) ≥ r′E [∑
v<m′

Lw(0, v)
∣
∣
∣ G⋆ = H

]

and taking the expectation over all H , yieldsE [∑
k<r′m′

L(G⋆, 0, Ak)
]

≥ r′m′E[Lw]

Chapter 8. Proof of the lower bound 162

So, E[L(G⋆, 0, Z)] =
1

m
E [∑

k<m

L(G⋆, 0, Ak)
]

≥
1

m
E [∑

k<r′m′

L(G⋆, 0, Ak)
]

≥
r′m′

m
E[Lw] ≥

2

3
E[Lw]

where the last relation holds when m/r′ ≥ 3r′. Substituting E[Lw] above with the right-hand

side of (8.27) yields the desired bound for E[L(G, 0, Z)] = E[L(G⋆, 0, Z)].

Proof of Lemma 8.10(b)

Recall that 1 ≤ η ≤ r ≤ m ≤ n, G is a randomly generated graph in G(ϕ), where ϕ ∈ Φn,1,

and M is the number of nodes in [0..m − 1] that are r-descendants of Z in G, where Z is

the r-ancestor of a uniformly-random node in [0..m− 1].

For each node u of G, let Du be the number of nodes in [0..m−1] that are r-descendants

of the r-ancestor of u. (So, if u is an r-significant node then Du is the number of its r-

descendants that are in [0..m − 1].) Let S be the set of the r-significant nodes that are in

[0..m− 1], and

S∗ = {u ∈ S : Du = r}

Then, Pr[M < η] = E [Pr[M < η | G]
]

= E [1

m
· |{u : Du < η}|

]

≤ E [η − 1

m
· |{u ∈ S : Du < η}|

]

≤
η − 1

m
·E [|S| − |S∗|

]
(8.28)

We now describe an upper bound for |S|. For each node u, we define Nu as follows: if u ∈ S∗,

Nu is the total number of long-range contacts of the nodes in the r-path of u (i.e., the path

from u to its largest r-descendant u + r − 1 — see Section 8.6); if u /∈ S∗, Nu = 0. Note

that every node in S − {0} is an r-successor of some node in S∗. Note also that if u ∈ S∗

then the number of its r-successors is at most equal to Nu, plus 1 (for the ring successor of

u + r − 1). From these two observations it follows that

|S| − 1 ≤
∑

u∈S∗

(Nu + 1) = |S∗|+
∑

u

Nu

Combining this with (8.28) yieldsPr[M < η] ≤
η − 1

m

(

1 +E [∑
u

Nu

])

(8.29)

Chapter 8. Proof of the lower bound 163

In the rest of the proof we establish an upper bound for E[
∑

u Nu]; we show it is at most
m
r
(1 + E[L(G, 0, r − 1)]). Roughly speaking, this is true because, for every u ∈ S∗, the

expected value of Nu is E[L(G, 0, r−1)]+1, and |S∗| is at most m/r. Combining this bound

for E[
∑

u Nu] and (8.29) yields the desired bound for Pr[M < η]. The next claim computes

the expected value of Nu. For each node u, let ∆u denote the delta-set of u. Note that, by

Lemma 8.6, ∆0, . . . , ∆u−1 completely determine which of the nodes in [0..u] are in S∗.

Claim 8.14. If u ∈ S∗ then E[Nu | ∆0, . . . , ∆u−1] = E[L(G, 0, r − 1)] + 1.

Proof. Conditioned on the event “u ∈ S∗,” Nu is independent of ∆0, . . . , ∆u−1 (since

∆u, . . . , ∆u+r−1 are independent of ∆0, . . . , ∆u−1). Also, the conditional distribution of

Nu given u ∈ S∗ does not depend on the value of u (since ∆u, . . . , ∆u+r−1 are independent,

each with distribution ϕ). Thus,E[Nu | ∆0, . . . , ∆u−1] = E[N0]

Let 〈v0, v1, . . . , vσ〉 be the r-path of node 0. For each j ≥ 0, we define Kj as follows: if

j ≤ σ, Kj is the number of long-range contacts of vj ; if j > σ, Kj is chosen independently

at random according the distribution of |∆0|. Let A be the set of all possible values of σ.

Note that E[Kj | σ = i] = E[|∆0|], for j > i ∈ A (8.30)

Also, E[Kj | σ ≥ j] = E[|∆0|], for 0 ≤ j ≤ max A

Combining the above two results yields that, for all j ≥ 0,E[Kj] = E[|∆0|] (8.31)

Now, we have E[N0] =
∑

i∈A

(E[N0 | σ = i] ·Pr[σ = i]
)

=
∑

i∈A

i∑

j=0

(E[Kj | σ = i] ·Pr[σ = i]
)

=
∑

j≥0

(E[Kj]−
∑

i∈A : i<j

(E[Kj | σ = i] ·Pr[σ = i]
))

=
∑

j≥0

(E[|∆0|]−E[|∆0|] ·Pr[σ < j]
)

=
∑

j≥0

(1−Pr[σ < j])

Chapter 8. Proof of the lower bound 164

where the second-to-last line is obtained using (8.31) and (8.30), and the last line holds

because E[|∆0|] = 1. Therefore, by letting j′ = j − 1, we obtainE[N0] = 1 +
∑

j′≥0

(1−Pr[σ ≤ j′]) = 1 +E[σ] = 1 +E[L(G, 0, r − 1)] �

We now derive the upper bound for E[
∑

u Nu]. We do that by describing a sequence

X0, . . . , Xm of progressively more accurate estimates of
∑

u Nu, such that Xm ≥
∑

u Nu,

X0 = m
r
(E[L(G, 0, r− 1)] + 1), and, for all t < m, E[Xt+1] ≤ E[Xt]. We define the sequence

if Xt as follows. For each t ∈ [0..m],

Xt =
∑

0≤u<t

Nu +
m− Zt

r

(
1 +E[L(G, 0, r − 1)]

)

where

Zt =

{

0, if t = 0

max
{
u ∈ S∗ : u < t

}
+ r, if t > 0

For all t ∈ [0..m− 1], we then have

Xt+1 −Xt =

{

0, if t /∈ S∗

Nt −
Zt−Zt+1

r
(1 +E[L(G, 0, r − 1)]) if t ∈ S∗

Note that if t ∈ S∗ then Zt − Zt+1 ≥ r, and, by Claim 8.14, E[Nt | ∆0, . . . , ∆t−1] =

1 +E[L(G, 0, r − 1)]. So, if t ∈ S∗,E[Xt+1 −Xt | ∆0, . . . , ∆t−1] ≤ 0

The above also holds (as equality) if t /∈ S∗. Therefore, for all t ∈ [0..m−1], E[Xt+1] ≤ E[X1],

which implies that E[Xm] ≤ E[X0]. Substituting the values of Xm and X0, we obtainE [∑
u

Nu +
m− Zm

r
(1 +E[L(G, 0, r − 1)])

]

≤
m

r
(1 +E[L(G, 0, r − 1)])

and, since Zm ≤ m, we haveE [∑
u

Nu

]

≤
m

r
(1 +E[L(G, 0, r − 1)])

This, together with (8.29), yieldsPr[M < η] ≤
η − 1

m

(

1 +
m

r
(1 +E[L(G, 0, r − 1)])

)

=
η − 1

r

(r

m
+ 1 +E[L(G, 0, r − 1)])

)

which yields the desired bound for Pr[M ≥ η], since r ≤ m.

Chapter 9

Concluding remarks and future work

We conclude with a brief summary of our results and an outline of some open research

problems that are closely related to them.

9.1 Adversarial load balancing in DHTs

We proposed the first key-space partitioning scheme for DHTs that provably maintains

bounded ratio of largest to smallest block sizes, in the face of adversarial node arrivals and

departures. All other key-space partitioning schemes that have been proposed so far rely on

the assumption that either there are no departures, or that nodes leave the system randomly.

Our scheme requires Θ(R log n) messages per arrival and departure of a node, in an n-node

system where routing requires R messages. It would be interesting to investigate whether

it is possible to achieve load balancing against an adversary using a more efficient key-

space partitioning scheme, or if our scheme is (asymptotically) optimal in terms of message

complexity. Note that the most efficient key-space partitioning scheme for a non-adversarial

setting that has been proposed so far ([50]) requires only Θ(R + log n) messages per arrival

and Θ(log n) messages per departure.

9.2 Complexity of greedy routing in augmented grids

We have shown that the expected number of steps for greedy routing in augmented rings of

n nodes with on average ℓ long-range contacts per node is Ω((log2 n)/ℓalog∗ n). This improves

a lower bound by Aspnes et al., and shows that the combination of augmented rings and

165

Chapter 9. Concluding remarks and future work 166

greedy routing cannot achieve an optimal tradeoff between degree and routing paths length,

even when ℓ = Θ(log n), a case of practical interest.

Our lower bound is very close to the upper bound of O((log2 n)/ℓ) that greedy rout-

ing achieves in Kleinberg’s (one-dimensional) small-world networks, a particular instance of

augmented rings. Our analysis suggests that an (asymptotically) optimal distribution ϕ for

choosing long-range contacts has structural properties similar to those of the distribution

used in Kleinberg’s construction. We conjecture that our lower bound can be improved

to Ω((log2 n)/ℓ), i.e., that Kleinberg’s construction is in fact (asymptotically) optimal for

greedy routing in augmented rings.

In our work we have focused on unidirectional greedy routing, where the distance from

node u to node v is the number of edges along the ring in, say, clockwise direction from

u to v. In bidirectional greedy routing, the distance between two nodes is the minimum

number of ring edges between them in either clockwise or counterclockwise direction. In

most actual designs, both versions of greedy routing give (asymptotically) the same results.

We conjecture that the same asymptotic bounds apply to both versions.

The augmented ring model naturally generalizes to more than one dimensions, by using

the d-dimensional torus (or grid) as a base graph instead of the ring. Kleinberg’s construction

also generalizes to higher dimensions resulting in the same O((log2 n)/ℓ) upper bound for

greedy routing. It is interesting to investigate whether the use of additional dimensions

improves the performance of greedy routing or if a lower bound similar to that for the

one-dimensional case applies.

Bibliography

[1] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Manfred

Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: A self-organizing struc-

tured P2P system. SIGMOD Record, 32(3):29–33, 2003.

[2] Ittai Abraham, Baruch Awerbuch, Yossi Azar, Yair Bartal, Dahlia Malkhi, and Elan

Pavlov. A generic scheme for building overlay networks in adversarial scenarios. In

Proceedings of the 17th International Parallel and Distributed Processing Symposium

(IPDPS 2003), page 40.2, April 22–26 2003.

[3] Ittai Abraham, Dahlia Malkhi, and Gurmeet Singh Manku. Papillon: Greedy rout-

ing in rings. http://arxiv.org/abs/cs/0507034, 2005. See also Proceedings of the

19th International Symposium on Distributed Computing (DISC 2005), pages 514–515,

September 26–29 2005.

[4] Micah Adler, Eran Halperin, Richard Karp, and Vijay Vazirani. A stochastic process

on the hypercube with applications to peer-to-peer networks. In Proceedings of the 35th

ACM Symposium on Theory of Computing (STOC 2003), pages 575–584, June 9–11

2003.

[5] James Aspnes, Zoë Diamadi, and Gauri Shah. Greedy routing in peer-to-peer systems.

http://arxiv.org/abs/cs/0302022, 2006.

[6] James Aspnes, Zoë Diamadi, and Gauri Shah. Fault-tolerant routing in peer-to-peer

systems. In Proceedings of the 21st ACM Symposium on Principles of Distributed Com-

puting (PODC 2002), pages 223–232, July 21–24 2002.

[7] James Aspnes and Gauri Shah. Skip graphs. In Proceedings of the 14th ACM-SIAM

Symposium on Discrete Algorithms (SODA 2003), pages 384–393, January 12–14 2003.

167

Bibliography 168

[8] Yossi Azar, Andrei Broder, Anna Karlin, and Eli Upfal. Balanced allocations. SIAM

Journal on Computing, 29(1):180–200, 1999.

[9] Hari Balakrishnan, M. Frans Kaashoek, David R. Karger, Robert Morris, and Ion Stoica.

Looking up data in P2P systems. Communications of the ACM, 46(2):43–48, 2003.

[10] Magdalena Balazinska, Hari Balakrishnan, and David Karger. INS/Twine: A scalable

peer-to-peer architecture for intentional resource discovery. In Proceedings of the 1st

International Conference on Pervasive Computing, pages 195–210, August 26–28 2002.

[11] Lali Barrière, Pierre Fraigniaud, Evangelos Kranakis, and Danny Krizanc. Efficient

routing in networks with long range contacts. In Proceedings of the 15th International

Symposium on Distributed Computing (DISC 2001), pages 270–284, October 3–5 2001.

[12] Mayank Bawa, Gurmeet Singh Manku, and Prabhakar Raghavan. SETS: Search en-

hanced by topic segmentation. In Proceedings of the 26th International ACM SIGIR

Conference (SIGIR 2003), pages 306–313, July 28–August 1 2003.

[13] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi, Antony Row-

stron, and Atul Singh. SplitStream: High-bandwidth multicast in cooperative environ-

ments. In Proceedings of the 19th ACM Symposium on Operating Systems Principles

(SOSP 2003), pages 298–313, October 19–22 2003.

[14] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A

distributed anonymous information storage and retrieval system. In Proceedings of

the International Workshop on Design Issues in Anonymity and Unobservability, pages

311–320, July 25–26 2000.

[15] Don Coppersmith, David Gamarnik, and Maxim Sviridenko. The diameter of a long

range percolation graph. In Proceedings of the 13th ACM-SIAM Symposium on Discrete

Algorithms (SODA 2002), pages 329–337, January 6–8 2002.

[16] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-

Area cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on

Operating Systems Principles (SOSP 2001), pages 202–215, October 21–24 2001.

[17] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and Robert

Morris. Designing a DHT for low latency and high throughput. In Proceedings of the 1st

Bibliography 169

USENIX Symposium on Networked Systems Design and Implementation (NSDI 2004),

pages 85–98, March 29–31 2004.

[18] Philippe Duchon, Nicolas Hanusse, Emmanuelle Lebhar, and Nicolas Schabanel. Could

any graph be turned into a small-world? Theory of Computing Systems, 355(1):96–103,

2006.

[19] Michele Flammini, Luca Moscardelli, Alfredo Navarra, and Stéphane Pérennes. Asymp-

totically optimal solutions for small world graphs. In Proceedings of the 19th Inter-

national Symposium on Distributed Computing (DISC 2005), pages 414–428, Septem-

ber 26-29 2005.

[20] Pierre Fraigniaud. Greedy routing in tree-decomposed graphs. In Proceedings of the 13th

European Symposium on Algorithms (ESA 2005), pages 791–802, October 3–6 2005.

[21] Pierre Fraigniaud. Small worlds as navigable augmented networks: Model, analysis,

and validation. In Proceedings of the 15th European Symposium on Algorithms (ESA

2007), pages 2–11, October 8–10 2007.

[22] Pierre Fraigniaud and Philippe Gauron. D2B: A de Bruijn based content-addressable

network. Theory of Computing Systems, 355(1):65–79, 2006.

[23] Pierre Fraigniaud, Cyril Gavoille, Adrian Kosowski, Emmanuelle Lebhar, and Zvi

Lotker. Universal augmentation schemes for network navigability: Overcoming the

sqrt(n)-barrier. In Proceedings of the 19th ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA 2007), pages 1–7, June 9–11 2007.

[24] Pierre Fraigniaud, Cyril Gavoille, and Christophe Paul. Eclecticism shrinks even small

worlds. In Proceedings of the 23rd ACM Symposium on Principles of Distributed Com-

puting (PODC 2004), pages 169–178, July 25–28 2004.

[25] Michael Freedman, Eric Freudenthal, and David Mazières. Democratizing content pub-

lication with Coral. In Proceedings of the 1st USENIX/ACM Symposium on Networked

Systems Design and Implementation (NSDI 2004), pages 239–252, March 29–31 2004.

[26] Prasanna Ganesan and Gurmeet Singh Manku. Optimal routing in Chord. In Proceed-

ings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages

176–185, January 11–14 2004.

Bibliography 170

[27] George Giakkoupis and Vassos Hadzilacos. A scheme for load balancing in heterogeneous

distributed hash tables. In Proceedings of the 24th ACM Symposium on Principles of

Distributed Computing (PODC 2005), pages 302–311, July 17–20 2005.

[28] George Giakkoupis and Vassos Hadzilacos. On the complexity of greedy routing in ring-

based peer-to-peer networks. In Proceedings of the 26th ACM Symposium on Principles

of Distributed Computing (PODC 2007), pages 99–108, August 12–15 2007.

[29] Krishna Gummadi, Ramakrishna Gummadi, Steven Gribble, Sylvia Ratnasamy, Scott

Shenker, and Ion Stoica. The impact of DHT routing geometry on resilience and prox-

imity. In Proceedings of the ACM SIGCOMM 2003 Conference, pages 381–394, Au-

gust 25–29 2003.

[30] Nicholas Harvey, Michael Jones, Stefan Saroiu, Marvin Theimer, and Alec Wolman.

Skipnet: A scalable overlay network with practical locality properties. In Proceedings

of the 4th USENIX Symposium on Internet Technologies and Systems (USITS 2003),

March 26–28 2003.

[31] Kirsten Hildrum and John Kubiatowicz amd Satosj Rap amd Ben Zhao. Distributed

object location in a dynamic network. Theory of Computing Systems, 37(3):405–440,

2004.

[32] Ryan Huebsch, Joseph Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker, and

Ion Stoica. Querying the internet with PIER. In Proceedings of the 29th International

Conference on Very Large Data Bases (VLDB 2003), pages 321–332, September 9–12

2003.

[33] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A decentralized peer-to-

peer web cache. In Proceedings of the 21st ACM Symposium on Principles of Distributed

Computing (PODC 2002), pages 213–222, July 21–24 2002.

[34] Frans Kaashoek and David Karger. Koorde: A simple degree-optimal hash table. In

Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS 2003),

pages 98–107, February 20–21 2003.

[35] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina

Panigrahy. Consistent hashing and random trees: Distributed caching protocols for

Bibliography 171

relieving hot spots on the World Wide Web. In Proceedings of the 29th ACM Symposium

on Theory of Computing (STOC 1997), pages 654–663, May 4–6 1997.

[36] David Karger and Matthias Ruhl. Simple efficient load balancing algorithms for peer-to-

peer systems. In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA 2004), pages 36–43, 2004.

[37] Krishnaram Kenthapadi and Gurmeet Singh Manku. Decentralized algorithms using

both local and random probes for P2P load balancing. In Proceedings of the 17th ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA 2005), pages 135–

144, July 18–20 2005.

[38] Valerie King and Jared Saia. Choosing a random peer. In Proceedings of the 23rd

ACM Symposium on Principles of Distributed Computing (PODC 2004), pages 125–

130, July 25–28 2004.

[39] Jon Kleinberg. The small-world phenomenon: An algorithm perspective. In Proceedings

of the 32nd ACM Symposium on Theory of Computing (STOC 2000), pages 163–170,

May 21–23 2000.

[40] Jon Kleinberg. Small-world phenomena and the dynamics of information. In Advances in

Neural Information Processing Systems 14 (NIPS 2001), pages 431–438, December 3–8

2001.

[41] Jon Kleinberg. Complex networks and decentralized search algorithms. In Proceedings

of the International Congress of Mathematicians (ICM), August 22–30 2006.

[42] Emmanuelle Lebhar and Nicolas Schabanel. Almost optimal decentralized routing in

long-range contact networks. In Proceedings of the 31st International Colloquium on

Automata, Languages and Programming (ICALP 2004), pages 894–905, July 12–16

2004.

[43] Frank Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Ar-

rays, Trees, Hypercubes. Morgan Kaufmann, 1992.

[44] Xiaozhou Li, Jayadev Misra, and Greg Plaxton. Active and concurrent topology main-

tenance. In Proceedings of the 18th International Symposium on Distributed Computing

(DISC 2004), pages 320–334, October 4–7 2004.

Bibliography 172

[45] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution

of peer-to-peer systems. In Proceedings of the 21st ACM Symposium on Principles of

Distributed Computing (PODC 2002), pages 233–242, July 21–24 2002.

[46] David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Raghavan, and Andrew

Tomkins. Geographic routing in social networks. Proceedings of the National Academy

of Sciences of the USA, 102(33):11623–11628, August 2005.

[47] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim. A sur-

vey and comparison of peer-to-peer overlay network schemes. IEEE Communications

Surveys & Tutorials, 7:72–93, 2005.

[48] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and dynamic

emulation of the butterfly. In Proceedings of the 21st ACM Symposium on Principles of

Distributed Computing (PODC 2002), pages 183–192, July 21–24 2002.

[49] Gurmeet Singh Manku. Routing networks for DHTs. In Proceedings of the 22nd

ACM Symposium on Principles of Distributed Computing (PODC 2003), pages 133–

142, July 13–16 2003.

[50] Gurmeet Singh Manku. Balanced binary trees for ID management and load balance in

distributed hash tables. In Proceedings of the 23rd ACM Symposium on Principles of

Distributed Computing (PODC 2004), pages 197–205, July 25–28 2004.

[51] Gurmeet Singh Manku. Dipsea: A Modular Distributed Hash Table. PhD thesis, Stan-

ford University, Department of Computer Science, September 2004.

[52] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony: Dis-

tributed hashing in a small world. In Proceedings of the 4th USENIX Symposium on

Internet Technologies and Systems (USITS 2003), pages 127–140, March 26–28 2003.

[53] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neighbor:

The power of lookahead in randomized P2P networks. In Proceedings of the 36th ACM

Symposium on Theory of Computing (STOC 2004), pages 54–63, June 13–15 2004.

[54] Charles Martel and Van Nguyen. Analyzing Kleinberg’s (and other) small-world models.

In Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing

(PODC 2004), pages 179–188, July 25–28 2004.

Bibliography 173

[55] Charles Martel and Van Nguyen. Analyzing and characterizing small-world graphs. In

Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 2005),

pages 311–320, January 23–25 2005.

[56] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information system

based on the XOR metric. In Proceedings of the 1st International Workshop on Peer-

to-Peer Systems (IPTPS 2002), pages 53–65, March 7–8 2002.

[57] Stanley Milgram. The small world problem. Psychology Today, 67(1):60–67, May 1967.

[58] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel, Dan Wallach,

Xavier Bonnaire, Pierre Sens, Jean-Michel Busca, and Luciana Bezerra Arantes. POST:

A secure, resilient, cooperative messaging system. In Proceedings of the 9th Workshop

on Hot Topics in Operating Systems (HotOS 2003), pages 61–66, May 18–21 2003.

[59] Michael Mitzenmacher, Andrea Richa, and Sitaraman Sitaraman. The power of two ran-

dom choices: A survey of techniques and results. Handbook of Randomized Computing:

vol. 1, pages 255–312, June 2001.

[60] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-

versity Press, 1995.

[61] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. Ivy: A

read/write peer-to-peer file system. In Proceedings of the 5th Symposium on Oper-

ating Systems Design and Implementation (OSDI 2002), pages 31–44, December 9–11

2002.

[62] Moni Naor and Udi Wieder. Novel architectures for P2P applications: The continuous-

discrete approach. In Proceedings of the 15th ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA 2003), pages 50–59, June 7–9 2003.

[63] Moni Naor and Udi Wieder. Novel architectures for P2P applications: The continuous-

discrete approach. ACM Transactions on Algorithms, 3(3), 2007.

[64] Greg Plaxton, Rajmohan Rajaraman, and Andréa Richa. Accessing nearby copies

of replicated objects in a distributed environment. Theory of Computing Systems,

32(3):241–280, 1999.

Bibliography 174

[65] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications

of the ACM, 33(6):668–676, June 1990.

[66] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer. Corona: A

high performance publish-subscribe system for the World Wide Web. In Proceedings of

the 3rd USENIX/ACM Symposium on Networked Systems Design and Implementation

(NSDI 2006), pages 15–28, May 8–10 2006.

[67] Venugopalan Ramasubramanian and Emin Gün Sirer. The design and implementation of

a next generation name service for the internet. In Proceedings of the ACM SIGCOMM

2004 Conference, pages 331–342, August 30–September 3 2004.

[68] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A

scalable Content-Addressable Network. In Proceedings of the ACM SIGCOMM 2001

Conference, pages 161–172, August 27–31 2001.

[69] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-level

multicast using Content-Addressable Networks. In Proceedings of the 3nd International

Workshop on Networked Group Communication (NGC 2001), pages 14–29, November 7–

9 2001.

[70] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao, and John

Kubiatowicz. Pond: The OceanStore prototype. In Proceedings of the 2nd USENIX

Conference on File and Storage Technologies (FAST 2003), pages 1–14, March 31–2

2003.

[71] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn in

a DHT. In Proceedings of the USENIX Annual Technical Conference (USENIX 2004),

June 27–July 31 2004.

[72] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location

and routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM

International Conference on Distributed Systems Platforms (MIDDLEWARE 2001),

pages 329–350, November 12–16 2001.

[73] Antony Rowstron and Peter Druschel. Storage management and caching in PAST,

a large-scale, persistent peer-to-peer storage utility. In Proceedings of the 18th ACM

Bibliography 175

Symposium on Operating Systems Principles (SOSP 2001), pages 188–201, October 21–

24 2001.

[74] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. Scribe:

The design of a large-scale event notification infrastructure. In Proceedings of the 3nd

International Workshop on Networked Group Communication (NGC 2001), pages 30–

43, November 7–9 2001.

[75] Aleksandrs Slivkins. Distance estimation and object location via rings of neighbors.

In Proceedings of the 24th ACM Symposium on Principles of Distributed Computing

(PODC 2005), pages 41–50, July 17–20 2005.

[76] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and Sonesh Surana. Internet

Indirection Infrastructure. In Proceedings of the ACM SIGCOMM 2002 Conference,

pages 73–86, August 19–23 2002.

[77] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,

Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer lookup proto-

col for Internet applications. IEEE/ACM Transactions on Networking, 11(1):17–32,

February 2003.

[78] Jeremy Stribling, Jinyang Li, Isaac Councill, M. Frans Kaashoek, and Robert Morris.

OverCite: A distributed, cooperative CiteSeer. In Proceedings of the 3rd USENIX/ACM

Symposium on Networked Systems Design and Implementation (NSDI 2006), pages 143–

153, May 8–10 2006.

[79] Hermann Thorisson. Coupling, Stationarity, and Regeneration. Springer, 2000.

[80] Duncan J. Watts, Peter Sheridan Dodds, and M. E. J. Newman. Identity and search in

social networks. Science, 296:1302–1305, 2002.

[81] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 393:440–442, 1998.

[82] Udi Wieder. The Continuous-Discrete Approach for Designing P2P Networks and Al-

gorithms. PhD thesis, The Weizmann Institute of Science, Department of Computer

Science and Applied Mathematics, August 10 2005.

Bibliography 176

[83] Jun Xu. On the fundamental tradeoffs between routing table size and network diameter

in peer-to-peer networks. In Proceedings of the IEEE INFOCOM 2003 Conference,

March 30–April 3 2003.

[84] Hui Zhang, Ashish Goel, and Ramesh Govindan. Incrementally improving lookup la-

tency in distributed hash table systems. In Proceedings of the 2003 ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer Systems, pages

114–125, June 11–14 2003.

[85] Shalley Zhuang, Ben Zhao, Anthony Joseph, Randy Katz, and John Kubiatowicz.

Bayeux: An architecture for scalable and fault-tolerant widearea data dissemination.

In Proceedings of the 11nd International Workshop on Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV 2001), pages 11–20, June 25–26 2001.

	List of Figures
	Index of Notation
	Introduction
	The peer-to-peer paradigm
	Distributed Hash Tables
	Small-world models and P2P networks
	Our contribution
	Road-map of the thesis

	Balanced key-space partitioning in DHTs
	Introduction
	Existing key-space partitioning schemes
	Early schemes
	Schemes that achieve bounded

	A new key-space partitioning scheme
	Description of the scheme
	Properties

	Road-map of the analysis

	Analysis of our scheme -- Part I: Switching to a simpler process
	The model
	Binary partitions
	Basic operations on binary partitions
	Comparing the balance of binary partitions: the relation
	Two random processes on binary partitions
	B-processes
	S-processes

	Bounding the balance in a B-process by that in an S-process
	The fB mapping
	Proof of Theorem 3.10

	Analysis -- Part II: Starting from a balanced partition
	Statement of the main result: from a safe to a safe partition
	Outline of the proof
	Comparing the balance of safe partitions
	On the outcome of a single step
	On the outcome of a series of steps: A-times and R-times
	Proof of Theorem 4.1

	Analysis -- Part III: Starting from an unbalanced partition
	Statement of the main result: from a non-safe to a safe partition
	Outline of the proof
	Tailed, left-heavy, and almost-safe partitions
	From a thick-tailed to a normal-tailed partition
	-times
	Proof of Lemma 5.4

	From a normal-tailed to a short-tailed partition
	More on A-times
	Proof of Lemma 5.9

	From an arbitrary to an almost-safe partition
	From an almost-safe to a safe partition
	From a short-tailed to a short-tailed partition
	Ak-times
	Proof of Lemma 5.19

	Proof of Theorem 5.1

	Analysis -- Part IV: Putting the pieces together
	From a safe/non-safe to a safe binary partition
	From a safe to an unbalanced to a safe binary partition
	Expected time to reach a safe binary partition
	Proof of Theorem 6.3

	Greedy routing in uniformly-augmented rings
	Introduction
	Discussion and related work
	Decentralized routing in small worlds
	Routing networks for DHTs

	Rigorous statement of our result

	Proof of the lower bound
	Statement of auxiliary results and derivation of Theorems 7.1 and 7.2
	Definitions
	Proofs of Lemmata 8.1 and 8.2
	Routing trees
	Proof of Lemma 8.3
	More on routing trees
	Proof of Theorem 8.4

	Concluding remarks and future work
	Adversarial load balancing in DHTs
	Complexity of greedy routing in augmented grids

	Bibliography

