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ABSTRACT
The test-and-set object is a fundamental synchronization
primitive for shared memory systems. This paper addresses
the number of registers (supporting atomic reads and writes)
required to implement a one-shot test-and-set object in
the standard asynchronous shared memory model with n
processes. The best lower bound is logn − 1 [12, 21] for
obstruction-free and deadlock-free implementations, and re-
cently a deterministic obstruction-free implementation using
O(
√
n) registers was presented [11].

This paper closes the gap between these existing upper
and lower bounds by presenting a deterministic obstruction-
free implementation of a one-shot test-and-set object from
Θ(logn) registers of size Θ(logn) bits. Combining our
obstruction-free algorithm with techniques from previous re-
search [11, 12], we also obtain a randomized wait-free test-
and-set algorithm from Θ(logn) registers, with expected
step-complexity Θ(log∗ n) against the oblivious adversary.
The core tool in our algorithm is the implementation of a
deterministic obstruction-free sifter object, using only 6 reg-
isters. If k processes access a sifter, then when they have
terminated, at least one and at most b(2k + 1)/3c processes
return “win” and all others return “lose”.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures;
D.1.3 [Concurrent Programming]: [Distributed Pro-
gramming]; F.1.2 [Modes of Computation]: [Parallelism
and Concurrency]; F.2 [Analysis of Algorithms and
Problem Complexity]: General
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1. INTRODUCTION
A test-and-set (TAS) object is perhaps the simplest stan-

dard shared memory primitive that has no wait-free deter-
ministic implementation from registers. A one-shot test-
and-set is a one-bit register, which is initially 0, and sup-
ports one operation, namely test&set(). A test&set()

sets the bit’s value to 1 and returns its previous value. The
TAS problem is related to weak leader election, where par-
ticipating processes elect a leader among themselves. The
leader returns win, and all other participating processes re-
turn lose. (The term leader election is ambiguous. It is also
used to denote the name consensus problem, where the los-
ing processes need to output the ID of the winner. We add
the qualifier“weak” in order to distinguish the two variants.)

Leader election and TAS are equally hard problems: A
single test&set() call solves leader election (by replac-
ing the return values 0 and 1 with win and lose, respec-
tively). On the other hand, there is a wait-free linearizable
test&set() implementation, where in addition to partici-
pating in a leader election, a process needs to perform only
two steps on a single register [14].

TAS objects have consensus number two. That is, they
can be used together with registers to solve deterministic
wait-free consensus only in systems with two processes. De-
spite that, TAS is a standard building block for shared mem-
ory algorithms that solve many classical problems, such as
mutual exclusion and renaming [4–7, 9, 19, 20]. Since TAS
objects are among the simplest synchronization primitives,
they are well suited to investigate the difficulties arising in
synchronization problems. Algorithms or impossibility re-
sults for TAS can provide insights into the complexity of
other shared memory problems, and can contribute to solu-
tions for them.

We consider a standard shared memory system in which
n processes communicate through atomic read and write op-
erations on shared registers. A common assumption is that
each register can store Θ(logn) bits, although in some set-
tings registers of unbounded size are assumed. The strongest
reasonable progress condition is wait-freedom, which guar-
antees that every operation finishes in a finite number of the
calling process’s steps, independent of other processes. Since
TAS has consensus number two, no deterministic wait-free
TAS implementation from registers exists, even for 2 pro-
cesses. A weaker progress condition, and the one most fre-
quently used for analyzing space complexity, is obstruction-
freedom [17]. It guarantees that any process will finish its



operation, provided the process takes sufficiently many steps
on its own, without interference from other processes (i.e., if
it runs solo). Any shared memory object has an obstruction-
free implementation from n registers [16].

The randomized step complexity of TAS has been thor-
oughly investigated, with significant progress being made in
recent years [1, 3, 6, 13, 22]. In contrast, little was known
about the space complexity of obstruction-free or random-
ized wait-free TAS. In 1989, Styer and Peterson [21] studied
the space complexity of the related mutual exclusion prob-
lem, under the deadlock-free progress requirement. As a
special case they also considered a variant of deadlock-free
weak leader election, where only the leader has to terminate.
It suffices to add a single one-bit register to transform any
such deadlock-free leader election protocol into a linearizable
deadlock-free TAS. Styer and Peterson proved a space lower
bound of dlogne + 1 registers, and provided an algorithm
that established that this bound is tight. Hence, in the case
of deadlock-freedom, Styer and Peterson’s results answer the
question of the space complexity of one-shot TAS precisely
up to a single register.

Deadlock-freedom is a natural progress property for mu-
tual exclusion related problems, where waiting for other
processes is inherent in the problem specification. But for
other problems, it is inappropriate because it does not pre-
clude a single slow or failing process preventing all other
processes from making progress. Alternative progress prop-
erties, such as obstruction-freedom, lock-freedom, or ran-
domized wait-freedom, are more desirable for such prob-
lems. Research on the space complexity of shared memory
problems has focused on the obstruction-free progress prop-
erty [10, 15, 17, 18]. However, despite significant research on
TAS, until recently the space complexity of obstruction-free
TAS implementations remained an unanswered question.

In 2012, Giakkoupis and Woelfel [13] used the same lower
bound technique as that of Styer and Peterson to conclude
that obstruction-free one-shot TAS requires dlogne − 1 reg-
isters. In 2013 we devised a deterministic obstruction-free
TAS algorithm using just Θ(

√
n) registers, where the longest

solo-run for any process to finish a test&set() method call
comprises Θ(

√
n) steps [11]. We now present an asymptoti-

cally tight result.

Theorem 1. There is a deterministic obstruction-free
implementation of a TAS object from Θ(logn) registers of
size Θ(logn) bits, where any process finishes its test&set()

method call in Θ(logn) solo steps.

In general, there are performance benefits if the solo run
that is required for termination is short, because processes
have a better chance of completing their TAS before they get
interrupted. Our algorithm satisfies an even stronger prop-
erty: A process needs to execute only a constant number of
solo steps Θ(logn) times, to finish its test&set() method
call.

Giakkoupis and Woelfel [13] presented a randomized
TAS algorithm that has O(log∗ k) expected step complex-
ity against the oblivious adversary, where k is the con-
tention. The algorithm requires Θ(n) registers, but with
high probability (w.h.p.) processes access only the first log-
arithmic number of them. In [11] we also showed that any
obstruction-free algorithm can be made randomized wait-
free against the oblivious adversary, with a polynomial ex-
pected step complexity. A combination of two previous al-

gorithms [11, 13] led to a randomized-wait free TAS imple-
mentation from Θ(

√
n) registers, which has expected step

complexity O(log∗ n). This approach, with some additional
work, can be applied to our Θ(logn) space algorithm.

Theorem 2. There is a randomized TAS implementation
from Θ(logn) registers of size Θ(logn) bits, such that for
any fixed schedule (determined by an oblivious adversary),
the maximum number of steps executed by any process is
O(log∗ n) in expectation and O(logn) with high probability.

Recently, Aghazadeh and Woelfel [2] gave a general trans-
formation of any (one-shot) TAS object implemented from
m b-bit registers into a long-lived one using O(m · n) reg-
isters of size max{b, log(n + m)} + O(1) bits. A reset()

operation takes only constant time in the worst-case, and
the step complexity of a test&set() operation of the long-
lived object is the same (up to a constant additive term) as
the one of the one-shot TAS. Applying this to the construc-
tion described in the proof of Theorem 2, yields a long-lived
TAS object implemented from O(n logn) registers, where
the expected step complexity of the test&set() operation
is O(log∗ n) and worst-case step complexity of the reset()

operation is O(1). Previously, the best space bound for
achieving similar step complexities for test&set() and re-

set() was O(n3/2) registers, achieved by, again, combining
previous results [2, 11]. The space lower bound for mutual
exclusion [8] implies that any long-lived TAS implementa-
tion requires at least n registers.

2. MODEL AND TOOLS
Our model of computation is the standard asynchronous

shared memory model where a set P of n processes with dis-
tinct identifiers communicate through a set of shared multi-
reader multi-writer registers. Each register supports two
atomic operations, read and write. To simplify our algo-
rithm and proofs, we use a modified model that uses writes
and scans where each scan returns the content of all regis-
ters instantaneously. This is not a loss of generality because,
as proved in [11], with one additional register, any system
that supports scans and writes can be replaced with atomic
multi-reader multi-writer registers.

Theorem 3. [11] An obstruction-free implementation of
a scan() operation can be obtained by using one reserved
register in addition to those that can be scanned.

Each process runs a program that can access the process’s
local registers as well as shared registers. A schedule is a
sequence of process identifiers. A schedule, σ, gives rise to a
sequence of operations, called an execution as follows. The
ith operation in the execution is the next operation in the
program of the ith process in σ. In our proofs, it suffices to
consider just the shared memory operations in an execution.
In an execution, process p is poised to write to register r, if
it writes to register r in its next step. Equivalently, we say
that p covers register r.

An algorithm is deterministic if each process’s program is
deterministic. A deterministic implementation of a method
is wait-free if, from any point of an execution and for any
process, the process completes its method call in a finite
number of its own steps, regardless of the intervening steps
taken by other processes. A deterministic implementation



of a method is obstruction-free if, from any point of an ex-
ecution and for any process p, p completes its method call
in a finite number of its own steps, provided there are no
intervening steps taken by other processes. In such an exe-
cution, we say that p runs solo during these uninterrupted
steps by p.

The algorithm is randomized if some process’s program
is randomized. An implementation of a method is random-
ized wait-free if, from any point of an execution and for any
process p, the number of steps by p required for p to com-
plete its method call is finite in expectation, regardless of
the intervening steps taken by other processes [16].

A test-and-set (TAS) object stores one bit, which is ini-
tially 0, and supports a test&set() operation that sets the
bit’s value to 1 and returns its previous value. A TAS object
trivially provides a solution to weak leader election, where
each participating process has to decide on one value, win or
lose. Among all processes that finish their leader election
protocol, at most one process is allowed to win, and not all
processes may lose. Hence, if all processes finish, then ex-
actly one process, the leader, wins. Weak leader election
and test-and-set are equally hard problems: Replacing the
return values 0 and 1 of a test&set() operation with win

and lose, respectively, yields a weak leader election proto-
col. On the other hand, Golab, Hendler and Woelfel gave an
implementation of a TAS object using weak leader election
and one additional register [14].

Theorem 4. [14] A linearizable TAS object can be im-
plemented using a weak leader election protocol and one ad-
ditional multi-reader/multi-writer binary register, such that
a test&set() operation requires only a constant number of
read and write operations in addition to the leader election
protocol.

3. EFFICIENT SIFTERS
An f(k)-sifter, where f is a function satisfying 1 ≤ f(k) ≤

max{k − 1, 1}, supports only one method call, compete().
Each compete() method call returns either win or lose. In
any execution, where k processes call compete(), at most
f(k) of them return win, and at most k− 1 return lose. In
this section we prove that:

Theorem 5. There is an obstruction-free implementa-
tion of an (

⌊
2k+1

3

⌋
)-sifter using 6 registers, each of size

Θ(logn)-bits, where the atomic operations are: scan all reg-
isters and write to a designated register, and any process
finishes its compete() method call in a constant number of
solo steps.

Recent randomized TAS constructions [3,13] are based on
randomized sifters, where the number of winning processes
is at most f(k) in expectation. Here, however, we use deter-
ministic sifters, where f(k) is a worst-case bound. Two such
f(k)-sifters can be combined to obtain an f(f(k)) sifter, by
letting the losers of the first sifter lose, and the winners of
the first sifter call compete() on the second sifter. Hence,
combining O(logn) (

⌊
2k+1

3

⌋
)-sifter objects yields a 1-sifter.

A 1-sifter is a weak leader election protocol.
Hence, Theorem 1 follows from Theorems 5, 4 and 3. The

remainder of this section is devoted of the proof of Theo-
rem 5.

Sifter implementation
To aid intuition for our sifter implementation, we first con-
sider a very simple obstruction-free sifter object, A. Object
A consists of an array of three registers, each of which can
hold one process identifier, and supports two operations: 1)
scan of all three registers, which returns a triple of process
identifiers, called a signature and 2) write to a specified reg-
ister. Each process p alternates between writing and scan-
ning. When p writes, it writes its own identifier to a register
of A that did not contain p in its preceding scan. The goal
of any process, p, is to achieve a clean-sweep meaning that
its scan returns signature (p, p, p). In this case, p termi-
nates with win. If, however, while trying for a clean-sweep,
p’s scan returns a signature that contains more copies of a
different identifier than it has copies of p, then p terminates
with lose. Any process that runs alone for six steps without
losing, will return win. Furthermore, not all processes can
return lose. To see this, let w be the last write to A and let
p be the writer of w. If process p returns lose, then there
is a process q that occupies two positions in p’s last scan, so
q cannot return lose. Therefore, A is an implementation of
an obstruction-free sifter object.

Object A, however, is not a very efficient sifter. Suppose
that while a clean-sweep is being achieved by one process,
two other processes cover two distinct registers of A. Then
these covering processes can over-write the clean-sweep, and
be made to again cover two distinct registers. Now a new
process can run under the cover and achieve a clean sweep.
By repeating this scenario, executions are easily created
where all but one process returns win. Also, notice that
to create another winner after a clean-sweep, such an oblit-
eration of the clean-sweep by two (or three) over-writes is
also necessary.

To reduce the number of processes that can return win

to at most a constant fraction of those that compete, the
core idea is to prevent processes that participate in over-
writing a clean-sweep, from covering again, without some
process losing. This is achieved, in our algorithm, by adding
to A a second similar (but not identical) component, B.
Component B is an array of three registers, each of which can
hold a pair consisting of a process identifier and a signature.
Each scan now returns the content of both A and B, and a
write by p can be either a write of p to a register of A, or
a write of (p, sp) to a register of B, where sp is a signature.
Each process begins by competing on component A and still
strictly alternates between writing and scanning.

If process p, competing on component A, gets a scan with
signature of A equal to s, where the identifiers in s are all
distinct and one of them is p, then p leaves A to compete on
component B while remembering s. (Notice that, if p does
not get such a scan and it does not immediately return lose,
then p is in at least two positions in s. Therefore, its last
write could not have been part of an over-write of a clean-
sweep.) By writing the pair (p, s) to registers of B, p tries to
achieve a clean-sweep of B (meaning a scan by p shows each
of the 3 registers of B contains (p, s)). There are two ways
that process p can lose while playing on component B. First,
p loses if, while trying to achieve a clean-sweep of B, one of
p’s scans shows a signature of A different from s. Second, p
loses if its scan shows that for some other process q, (q, s)
occupies at least 2 positions of B. That is, p only returns to
continue competing on component A if it achieves a clean-
sweep of B while each of its scans satisfies 1) the signature



of A is s, and 2) no other process with signature s occupies
more than one register of B.

Our sifter implementation is presented in Figure 1.

Intuition for correctness proof
Our proof will establish that not all processes can return
lose, and at most one more than 2/3 of the processes that
participate can return win. While the proof has to attend
to several subtleties and substantial detail, there are several
insights that aid our intuition. Consider the three ways that
a process can return lose. Let us say p loses on A if process
p loses while playing on component A because the signature
of A in its last scan contained more occurrences of some
other process than occurrences of p. We say p signature-
loses on B if process p with signature s, loses while trying
to achieve a clean-sweep of B, because one of p’s scans shows
a signature of A different from s. We say p process-loses on
B if process p loses because its scan shows that for some
other process q, (q, s) occupies at least 2 positions of B.

For the intuition that not all processes return lose, con-
sider the last write, say w, to A, and let p be the process
that executes w. Process p cannot lose on A because if it
did, then in p’s last scan there is some process, q 6= p, that
occupies 2 positions on A, and that process cannot return
lose without first writing to A after w. Similarly, p can-
not signature-lose on B because, again, that would imply a
write to A after w. So suppose p process-loses on B. Then
we show that there is some other process, say q, that has the
same signature as p and is competing with p, and q cannot
process-lose on B. Process q also cannot signature-lose on
B or lose on A without a write to A happening after w.

Now consider the intervals in an execution between the
final scans of processes that return win (achieve a clean-
sweep of A). If ` processes return win, there are `− 1 such
intervals. We associate a losing process with each of these
intervals as follows. (1) For any process, p, if p loses on A,
then associate p with the interval that contains the last write
by p. Similarly, (2) for any process q that signature-loses on
B, associate q with the interval that contains its last write.

Let I be an interval without an associated losing process
via either (1) or (2). We will prove that there is a sub-
interval I ′ of I and either two or three processes that, during
I ′, move from A to B and finish competing on B using some
signature, say s, while the signature of A remains s. Now
we focus on the execution during I ′. Since B has three reg-
isters, after any clean-sweep on B, a subsequent clean-sweep
on B requires (at least) two processes to over-write the previ-
ous clean-sweep. These over-writers must have signature s,
because, otherwise, an over-writer has a signature different
from that of A and would signature-lose on B, implying that
I already has an associated losing process via (2). If there
are two processes with signature s then I ′ can have at most
one clean-sweep, and if there are three processes then I ′ can
have at most two clean-sweeps. Therefore, at least one of
the two or three processes competing on B with signature
s cannot return win, and (3) one such process is associated
with I. Notice, however, that this process could withhold its
last write in order to be assigned to a later interval via (2).

Therefore, using these three rules of association, we assign
a losing process to every interval, and no process is assigned
to more than two of these intervals. Thus there are at least
(`− 1)/2 processes that cannot return win.

Notation and terminology
A losing scan is a scan by a process such that this process
will return lose in its next step, without doing any further
shared memory operation. A winning scan is a scan by a
process such that this process will return win in its next
step, without doing any further shared memory operation.
For each winning scan there exists a last write by the pro-
cess that performs this scan. We call this write a winning
write. For an execution E, let s1, s2, . . . , sk be the sequence
of winning scans in E and let q1, q2, . . . , qk denote the corre-
sponding sequence of processes that performed these scans.
Observe that ∀i, 1 ≤ i ≤ k, si is preceded by a winning
write wi performed by qi. Furthermore, ∀i, 1 ≤ i ≤ k, si
must happen before wi+1 because at si all registers in A
contain qi’s id however, at wi+1, qi+1 has written its own id
everywhere in A. Hence winning scans and winning writes
strictly interleave. That is, the order of winning scans and
writes in E is w1, s1, w2, s2, . . . , wk, sk.

Given an execution E = op1, op2 . . ., we denote the con-
tiguous subsequence of E starting at opi and ending at the
operation immediately before opj by E[opi : opj). In our
analysis we are interested in intervals between any winning
scan and the next winning write. A sifting interval is a sub-
sequence of an execution that starts at some winning scan
and ends at the operation immediately before the next win-
ning write. Observe that all sifting intervals are disjoint.
Also because there has been a preceding winning scan, no
register of A contains ⊥ in any sifting interval. Given sifting
interval I = E[s∗ : w∗), let scanner(I) denote the process
that executes s∗ and writer(I) denote the process that exe-
cutes w∗. If an execution contains k winning scans, then it
has k − 1 disjoint sifting intervals.

A signature is an ordered triple of identifiers. A signature
(p0, p1, p2) is full if for any i, j ∈ {0, 1, 2}, i 6= j implies pi 6=
pj . The following lemmas concern properties of executions.
Terms such as before, after, next, previous, precedes, and
follows are all with respect to the order of operations in an
execution. A local variable x in the algorithm is denoted by
xp when it is used in the method call invoked by process p.

Proof of correctness
Lemma 6. Suppose at scan s, A = (p0, p1, p2) is a full

signature. For any i ∈ {0, 1, 2}, if pi writes to A after s,
then its first write after s into A is not to A[i].

Proof. Let wi be the first write by pi to A after s. Let
si be the scan by pi preceding wi. If si happens before s,
then there is no write to A by pi in the interval E[si : s).
At s, A[i] = pi, hence at si, A[i] = pi. Suppose si happens
after s. At s, A[i] is the only location that contains pi, and
there is no write to A by pi in the interval E[s : si) and si
is not a losing scan. Therefore, at si, A[i] = pi. In either
case, by Line 11, wi is a write to A[pos] where pos 6= i.

Lemma 7. Suppose at scan s, A = (p0, p1, p2) is a full
signature. Let w be the first write to A after s. Then w
changes the signature of A.

Proof. Let q be the writer of w. If q /∈ {p0, p1, p2}, then
since q writes its own id, it changes the signature of A. If
q ∈ {p0, p1, p2}, then by Lemma 6, a different location from
A[i] is written by q. Hence w changes the signature of A.



Shared Objects:

• A[0, 1, 2] is an array of registers. Each array entry stores a value from P ∪ {⊥} and is initially ⊥.

• B[0, 1, 2] is an array of registers. Each array entry stores a pair (id, sig), where id ∈ P ∪ {⊥}, and sig is a triple from
the set (P ∪ {⊥})3. Initially, id = ⊥ and sig = (⊥,⊥,⊥).

Notation: for any array X and value v, we define num(v,X) := |{i : X[i] = v}|.

Algorithm 1: compete()

1 pos := 0
2 while true do
3 A[pos].write(p)
4 a := scan(A)
5 if ∀ i ∈ {0, 1, 2}, a[i] = p then
6 return win

7 if ∃ q ∈ P, num(p, a) < num(q, a) then
8 return lose

9 if num(p, a) = 1 then
10 if knockout(a) then return lose

11 Let pos ∈ {0, 1, 2} s.t. a[(pos− 1) mod 3] = p and a[pos] 6= p

Algorithm 2: knockout(sig)

12 index := 0;
13 while true do
14 B[index].write((p, sig));
15 (a, b) := scan(A,B);
16 if a 6= sig then return true;
17 if ∃ q ∈ P, q 6= p, num((q, sig), b) ≥ 2 then
18 return true

19 if ∀ i ∈ {0, 1, 2}, b[i] = (p, sig) then
20 return false

21 Let index ∈ {0, 1, 2} s.t. b[index] 6= (p, sig);

Figure 1: Implementation of a sifter for process p ∈ P

Lemma 8. Suppose at scan s1, A = (p0, p1, p2) is a full
signature. Let w be the first write to A after s1. Let s2 be
any scan after w such that at s2, A = (p0, p1, p2). Then:

1. for some i, i ∈ {0, 1, 2}, pi calls knockout(σ) and
returns false in the interval E[w, s2), where σ 6=
(p0, p1, p2), and

2. for all i, i ∈ {0, 1, 2}, pi performs at least one write to
A in the interval E[w : s2).

Proof. By Lemma 7, w changes the value of A by writing
to A[i] for some i ∈ {0, 1, 2}. Since at s2, A[i] = pi, pi
must perform a write to A[i] in the interval E[w : s2). By
Lemma 6, the first write by pi, say, wi

1 to A in the interval
E[w : s2) is to A[j] where j 6= i. Thus pi must perform at
least two writes to A in the interval E[w : s2). Let si2 and
wi

2 denote the second and third shared memory steps by pi
in compete() method call during E[w : s2) and let σ be the
signature of A at si2. Immediately after w, no location in A
contains pi. In the interval E[w : si2), pi writes only once
and si2 is not a losing scan. Hence at si2, pi appears in A[j],
and this is pi’s only location in A. Therefore, σ is full and
σ 6= (p0, p1, p2). This implies pi calls knockout(σ) after si2.
Finally, because wi

2 is a write to A after si2, pi must return
false from this knockout call, proving 1.

By way of contradiction assume there is a k ∈ {0, 1, 2},
pk does not perform any write to A in the interval E[w :
s2). Because at s2, A[k] = pk, no process writes to A[k]
in the interval E[w : s2). In particular, since pi wrote to
A[i] and to A[j] in E[w : s2), k /∈ {i, j}. Furthermore,
to return A[j] to pj , pj must over-write wi

1 in the interval
E[wi

1 : s2). By Lemma 6, the first write by pj , say wj
1, to A

in the interval E[w : s2) is to a location different from A[j],
and by assumption it cannot be to A[k]. So wj

1 is to A[i].

Therefore, pj must do a later write, wj
2, (not necessarily

its next write) to A[j] in this interval. Let sj2 be the scan

by pj preceding wj
2. At sj2, pj ∈ A. However, pj 6= A[k]

because, by assumption, A[k] is not over-written, and pj 6=
A[j] because pj ’s next write is to A[j]. Therefore pj = A[i],
implying by Line 11 that (j − 1) mod 3 = i. Recall that
at si2, pi = A[j], and pi’s next write is to A[i]. Hence, by
Line 11, (i− 1 mod 3) = j. However, (i− 1 mod 3) = j and
(j − 1 mod 3) = i is impossible. Hence pk must perform at
least one write to A during E[w : s2), proving 2.

Lemma 9. Suppose at scan s, A = σ is a full signature,
and there is an i ∈ {0, 1, 2} such that B[i] = (p, σ). Let w
(respectively, wi) be the last write to A (respectively, B[i])
preceding s. Then, w precedes wi.

Proof. By way of contradiction suppose wi precedes w.
Then at p’s scan that precedes wi, A must have signature σ.
Let ŝ be the most recent preceding scan before w in which
the signature of A is σ. Let ŵ be the first write to A in
E[ŝ : s). This write exists because w ∈ E[ŝ : s). The write
wi does not precede ŵ because, by Lemma 8 item 1, there is
process that executes a complete knockout(σ′) in E[ŵ : s),
where σ 6= σ′, and in this execution that process over-writes
every register in B.

We now show that wi /∈ E[ŵ : w). By Lemma 8 item 2,
p must write to A in the interval E[ŵ : s). Since p did no
operations between ŵ and wi, this required write would be
after wi and before w. This is impossible because p does
a scan after wi, before this write. Since the signature of
A between wi and w is not σ, this scan would be a losing
scan.

Lemma 10. There is no execution in which all processes
return lose.

Proof. By way of contradiction, assume that there is an
execution in which all processes return lose. Let u be the
process that performs the last write to A, let wA

u be that
write, and let σ be the signature of A after wA

u . Let su be
the last scan by u. Then u returns lose in Line 8 or 10.



First consider the case in which u returns lose in Line 8.
At su, num(u, au) is not equal to 0 because the last write to
A is performed by u and su happens after wA

u . Therefore,
num(u, au)= 1 and there is a process y such that in su,
num(y, au) = 2. Let wA

y be the last write by y to A. Since

u performs the last write to A, wA
y precedes wA

u . Because

no process writes y to A after wA
y and no process writes to

A after wA
u and, later, at su, num(y, au) = 2, it follow that

num(y,A) ≥ 2 for the entire execution after wA
y . Therefore

any scan by y after wA
y must satisfy num(y, ay)≥ 2. This

implies y cannot return lose, contradicting the assumption.
Next consider the case in which u returns lose in Line 10.

This implies u calls knockout(σ) after wA
u from which it

returns true in Line 16 or in Line 18. But u cannot return
true in Line 16 because the value of array A remains σ after
wA

u . Therefore u returns true in Line 18.
Let S = {q | ∃i, B[i] = (q, σ) at some point after wA

u }.
By Lemma 9, for each q ∈ S, q performs a write (q, σ) to
B after wA

u and, by assumption, subsequently does a losing
scan. Because u returns true in Line 18, S is not empty.
For each q ∈ S, q cannot return lose at Line 8 because this
would imply q writes to A after wA

u . Therefore q returns
lose at Line 10 implying that q returns true at Line 16 or
Line 18. It does not return true in Line 16 because sigq = σ

and the value of A remains σ after wA
u . Therefore for each

q ∈ S, q returns true in Line 18, following a losing scan
that is after wA

u . Let z be the last process in S to do its
losing scan, sz. At sz two registers in B contain (z′, σ),
where z′ 6= z. Thus, between the last write by z′ and the
last scan by z′, these two registers in B contain (z′, σ). So
after z′’s last scan at most one register of B contains an id
not equal to z′. Therefore z′ cannot return true in Line 18,
contradicting the assumption that the last scan of z′ is a
losing scan.

Lemma 11. Suppose an interval between a write and the
next scan by the same process, say p, contains a winning
write. Then the scan by p is a losing scan.

Proof. At the winning write all registers in A contain
the id of the process that performs this winning write. In
the sub-interval from the winning write to the scan by p
there is no write by p. Since only p writes its id, at p’s scan,
num(p, ap) = 0. Hence p returns lose after this scan.

Observation 12. Every sifting interval contains at least
two writes to A.

Proof. Consider the sifting interval I = E[s∗ : w∗).
Since w∗ is a winning write, writer(I) must have performed
at least two writes to A before w∗, and these two writes
must be after the previous winning scan, which is s∗.

A sifting interval that does not contain a write to A by
a process whose next scan is a losing scan is called a slow
sifting interval.

Lemma 13. For any slow sifting interval I, there exists a
signature σ = (q0, q1, q2) and a set Z ⊆ {0, 1, 2} satisfying:
|Z| = 2 and for each z ∈ Z during I, qz performs a write and
then a scan in compete() and then invokes knockout(σ)
and becomes poised to write (qz, σ) to B. Furthermore, there
is no write to A between these two scans.

Proof. Let I be E[s∗ : w∗). Suppose that
wA

1 , w
A
2 , . . . , w

A
` is the sequence of all writes to A during

I. By Observation 12, ` ≥ 2. For each i, 1 ≤ i ≤ `, let si
denote the next scan by the process that executes wA

i . Each
si is at Line 4 following wi at Line 3 of compete(). Let S

denote the set of all these scans. Let Î denote the interval
E[wA

2 : w∗).
By Lemma 11, if si happens after w∗ then si is a los-

ing scan and hence E[s∗ : w∗) is not a slow sifting interval.
Therefore ∀i, 1 ≤ i ≤ `, si occurs in E[wA

i : w∗). Let q be the
process that performs s1. At s∗, num(scanner(I), A) = 3.
Because only one write happens to A during E[s∗ : wA

2 ),
q would return lose at Line 8 if s1 precedes wA

2 implying
E[s∗ : w∗) is not a slow sifting interval. Hence ∀i, 1 ≤ i ≤ `,
si must happen in Î. Interval Î consists of the `− 1 disjoint
sub-intervals E[wA

2 : wA
3 ), E[wA

3 : wA
4 ), . . . , E[wA

` : w∗ =
wA

`+1). Since ` scans happen in these `− 1 intervals, by the
pigeonhole principal, there is a j, 2 ≤ j ≤ ` such that (at
least) two scans in S, say s′ and s′′ occur in E[wA

j : wA
j+1).

Because no process performs two scans in compete() with-
out writing to A in between, s′ and s′′ are performed by
two distinct processes say qz and qz′ . Because E[s∗ : w∗)
is a slow sifting interval, neither qz nor qz′ return lose at
Line 10. Since no write happens to A during E[wA

j , w
A
j+1),

the scans by qz and qz′ in compete() return the same sig-
nature for A, say, σ where σ contains qz and qz′ . Therefore
qz and qz′ both invoke knockout(σ).

Lemma 14. Let s be the scan by p immediately before p
invokes knockout(σ) and s′ be any scan by p in this invo-
cation. Let w be the first write to A after s. If w precedes
s′, then s′ is a losing scan.

Proof. Since p invokes knockout(σ), σ is a full signature
and p is in σ. By way of contradiction suppose s′ is not a
losing scan. Hence at s′, the signature of A is σ. Therefore,
by Lemma 8(point 2), p writes to A in the interval E[w : s′).
This is a contradiction because p is performing knockout(σ)
in this entire interval and there are no writes to A during
the knockout method call.

Lemma 15. For every slow sifting interval I, there is a
process p that performs a write during I and either the first
or the second scan by p following this write is a losing scan.

Proof. Let I = E[s∗ : w∗) be a slow sifting interval. By
Lemma 13, there exists a full signature σ = (q0, q1, q2), a set
Q ⊆ {q0, q1, q2} satisfying 2 ≤ |Q| ≤ 3 and for each q ∈ Q
during I, q performs a write to A and a scan in compete()

and calls knockout(σ) and becomes poised, at Line 14, to
write (q, σ) to B[0]. Furthermore, there is no write to A
between these scans. Let ŝ be the earliest of these scans.
At ŝ, the signature in A is full and at w∗ the same id is in
all locations of A. Hence there is at least one write to A in
E[ŝ : w∗). Let w be the first write to A in E[ŝ : w∗).

Suppose there is q ∈ Q, such that q performs a scan, say
s, in Line 15 of its current call to knockout after w. Then
by Lemma 14, s is a losing scan. Since q writes at least once
in E[s∗ : w∗) and at most once after w, it follows that q
performs its last or second last write during E[s∗ : w∗), and
so s is either q’s first or second scan following this write, and
the lemma holds.

Otherwise, all processes in Q execute at least one write
and perform their last scan of their current call to knockout

before w. We partition this case into three subcases.
Case 1: There is q ∈ Q such that q calls knockout(σ)

and returns true (Line 16 or 18). Then q’s last scan before
returning true is a losing scan, and the lemma follows.



Case 2: For each process q ∈ Q, q’s current knockout call
returns false and there is a process p /∈ Q that performs
a write wp to B with value (p, σ′) in the interval E[ŝ : w)
where σ′ 6= σ. When p did its scan in compete() just before
invoking knockout(σ′), the signature of A was σ′. At wp,
the signature of A is σ 6= σ′, so there is a write to A between
this scan by p and wp. Hence, by Lemma 14, p’s next scan
after wp is a losing scan, and again the lemma follows.

Case 3: For each process q ∈ Q, q’s current knockout

call returns false and there is no write to B in E[ŝ : w)
that contains a signature different from σ. We show that
this case is impossible. Let S be the set of last scans of
knockout calls by processes in Q. Let s′′ be the last scan
and s′ be the second last scan in set S. Let q′ and q′′ be the
processes performing s′ and s′′ respectively. Since q′ returns
false, all three registers in B contain (q′, σ) at s′. After s′,
there can be at most one write to B by q′′. Because q′′’s next
scan after such a write would be a losing scan, contradicting
that q′′ returns false.

Lemma 16. For every sifting interval, there is a process
p and a write w by p satisfying: either the first operation by
p or the third operation by p that follows w is a losing scan.

Proof. For any sifting interval that is not slow, the
lemma holds by definition. For any slow sifting interval,
the lemma follows from Lemma 15, because each process
alternates between writes and scans.

Lemma 17. If k processes invoke the compete() method,
then at most

⌊
2k+1

3

⌋
processes return win.

Proof. If k′ processes return win, then by definition,
there are k′ − 1 sifting intervals. By Lemma 15, for each
sifting interval there is a process that performs its last or
second last write and it cannot return win. Hence there
are at least

⌈
k′−1

2

⌉
processes which have invoked compete()

and cannot return win. Since
⌈

k′−1
2

⌉
+ k′ ≤ k, k′ is at most⌊

2k+1
3

⌋
.

Lemma 18. The Sifter implementation is obstruction-free
where each process terminates in O(1) solo steps.

Proof. Suppose a process, p, begins a solo run while it
is executing knockout. If it returns true in either Line 16
or Line 18, then it terminates due to Line 10. Otherwise
in each iteration of the while loop, it writes a new location
in B. Therefore after three iterations, all locations in B
contain (p, sigp), and p returns false in Line 20. When p
executes knockout during its solo run, the value of A is equal
to sigp because otherwise p returns true from its knockout

call. In sigp, exactly one location in A contains p and no
other process writes to A after it returns from its knockout

call. Hence p writes two more times to A and, by Line 6
returns win.

Suppose p starts its solo run in a compete() call. After
at most one write it performs a scan. Then it either returns
win due to Line 5 or returns lose in Line 8, or it invokes
a knockout call. If it calls knockout, then by the argument
above it terminates.

By Lemmas 17 and 18, the algorithm in Figure 1 imple-
ments an obstruction-free (

⌊
2k+1

3

⌋
)-Sifter using 6 O(logn)-

bit registers, if a linearizable scan() is available.

Optimizing the sifter for TAS
We presented the sifter object with the smallest possible
sizes for components A and B. Both consist of 3 registers.
However a natural question is whether or not the space can
be reduced by increasing the size of B. In fact, if we use a B
component of size 4 instead of 3, for sufficiently large n, the
space result for TAS is slightly smaller because fewer sifters
are required. Here is the intuition. Suppose that B has size
b. For every sifting interval that is not slow we associate a
process that performs its last write to A and returns lose

subsequently. For every slow sifting interval there exists at
least two processes that invoke knockout with the same sig-
nature σ. One possibility in this case is that, from these two
processes, one gets knocked out in B and performs its sec-
ond last write in this interval and returns lose subsequently.
The only way to have both of these processes returned false

from knockout(σ), is by obliterating the trace of the first
process that returns false so the other one can also return
false. This obliteration can happen only by accumulating
at least b−2 processes that have performed their second last
writes in previous sifting intervals and are poised to perform
their last writes. Therefore, the worst case of our analysis is
when there are b− 2 sifting intervals such that in each, one
process performs its second last write, followed by a single
sifting interval, I, in which these b − 2 processes perform
their last writes and return lose. These last writes manage
to prevent a new process from being knocked out in B during
interval I. Hence, for every b − 1 sifting intervals there are
at least b− 2 losers. Suppose k processes invoke compete().
If k′ processes return win, then by definition, there are k′−1

sifting intervals. Therefore there are at least
⌈

b−2
b−1

(k′ − 1)
⌉

processes which have invoked compete() and cannot return

win. Since b−2
b−1

(k′−1)+k′ ≤
⌈

b−2
b−1

(k′ − 1)
⌉

+k′ ≤ k, we have

k′ ≤ ( b−1
2b−3

)k + b−2
2b−3

. Thus, we need at most log 2b−3
b−1

n + 2

sifters each of size 3 + b. Therefore the space complexity of
our test-and-set object is at most (3+ b)(log 2b−3

b−1
n+2). For

b = 4 this function is less than 9.5 logn + 14. For b = 3,
the space used in the worst case by our algorithm is at
least 6 log 3

2
n ≥ 10.25 logn. So we can conclude that for

n ≥ 218.46, our algorithm requires less space when compo-
nent B has 4 registers instead of 3.

4. RANDOMIZED TEST-AND-SET
We can combine our TAS algorithm with existing algo-

rithms and techniques from [11,12], to obtain a randomized
TAS implementation from registers that uses logarithmic
space, and has almost constant, O(log∗ n), expected step
complexity against an oblivious adversary. Next we present
such an implementation, that has the properties stated in
Theorem 2.

In [11, Theorem 2] it was shown that any obstruction-free
TAS algorithm, in which any process finishes after at most
b steps if it runs solo, can be transformed into a randomized
one with the same space complexity, where each process fin-
ishes after at most O

(
b(n + b) log(n/δ)

)
steps with proba-

bility at least 1 − δ, for any 0 < δ < 1. Since b = O(logn)
for our obstruction-free algorithm (see Theorem 1), it fol-
lows that it can be transformed into a randomized algorithm
without increasing its logarithmic space, and with each pro-



cess finishing in at most O(n log2 n) steps, both in expecta-
tion and w.h.p.

To achieve the O(log∗ n) step complexity, we combine the
above randomized algorithm with another randomized TAS
construction proposed in [12]. The construction in [12] uses
a chain of n sifter objects F1, . . . , Fn alternating with n de-
terministic splitters S1, . . . , Sn, and a chain of n 2-process
consensus objects C1, . . . , Cn. (A splitter returns win, lose,
or continue, such that at most one process wins, not all pro-
cesses lose, and not all continue.) A process p proceeds by
accessing the sifters in increasing index order. If p loses in
some sifter Fi then it loses immediately in the implemented
TAS; if it wins sifter Fi, it tries then to win splitter Si. If p
loses Si, it loses also the TAS; if Si returns continue, p con-
tinues to the next sifter, Fi+1; and if p wins Si, it switches
to the chain of 2-process consensus objects. In the last case,
p then tries to win Ci, Ci−1, . . . , C1 (in this order). If it
succeeds, it wins the TAS, otherwise it loses.

In [12], a randomized sifter implementation from s ≥ 1
single-bit registers is proposed. In this implementation each
process takes O(1) steps, and if at most 2s processes access
the sifter then at most O(s) of them win in expectation.
Further, for s = logn, we have that w.h.p. at most O(log2 n)
processes win.1 Finally, if s = 2 and k processes access the
sifter, then at most k/2 + 1 processes win in expectation.
In the following, we will refer to the above sifter object as
GW-sifter of size s.

The TAS implementation in [12] uses n GW-sifters of
size logn each, and thus requires Θ(n logn) registers in
total. We modify this implementation as follows: The
first sifter object, F1, is a GW-sifters of size logn, as be-
fore. The next ` =

√
logn sifters, F2, . . . , F`+1, are GW-

sifters of size
√

logn. Then, the next m = 3 logn sifters,
F`+2, . . . , F`+m+1 are GW-sifters of size 2. Finally, sifter
F`+m+2 is the randomized variant of our TAS algorithm de-
scribed earlier. All objects Fi, Si, and Ci for i > `+m+ 2
are dismissed.

It is straightforward to verify that this implementation
uses Θ(logn) registers (note that O(1) registers are needed
to implement each of the objects Si and Ci). The reason
we can use sifters of size only

√
logn instead of logn start-

ing from the second sifter, is that, w.h.p. at most O(log2 n)
processes win the first sifter (of size logn), as we mentioned
earlier. (So, in fact, it would suffice that those sifters be of
size Θ(log logn) <

√
logn.) Then from the analysis in [12]

we have that in expectation only the first O(log∗ n) sifter ob-
jects are used, and with probability 1−O(1/ logn), at most
the first O(log log n) < ` sifters are used. Thus, only with
probability O(1/ logn) the constant-size sifters will be used.
Since in each of these sifters half of the processes lose in
expectation, and we have m = 3 logn such sifters, it follows
that with probability 1−O(1/n2) no process will access the
last sifter, F`+m+2. From the above, it follows that the ex-
pected value of the maximum number of steps by a process
is O(log∗ n) +O(1/ logn) · 3 logn+O(1/n2) ·O(n log2 n) =
O(log∗ n).
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