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ABSTRACT
We consider Kleinberg’s celebrated small-world model
(2000). This model is based on a d-dimensional grid graph
of n nodes, augmented by a constant number of “long-range
links” per node. It is known that this graph has diameter
Θ(log n), and that a simple greedy search algorithm visits
an expected number of O(log2 n) nodes, which is asymp-
totically optimal over all decentralized search algorithms.
Besides the number of nodes visited, a relevant measure is
the length of the path constructed by the search algorithm.
A decentralized algorithm by Lebhar and Schabanel (2003)
constructs paths of expected length O(log n(log log n)2) by
visiting the same number of nodes as greedy search. A nat-
ural question, posed by Kleinberg (2006), is whether there
are decentralized algorithms that construct paths of length
O(log n) while visiting only a poly-logarithmic number of
nodes.
In this paper we resolve this question. For grid dimen-

sion d = 1, we answer the question in the negative, by
showing that any decentralized algorithm that visits a poly-
logarithmic number of nodes constructs paths of expected
length Ω(log n log log n). Further we show that this bound
is tight; a simple variant of the algorithm by Lebhar and
Schabanel matches this bound. For dimension d � 2, how-
ever, we answer the question in the affirmative; the bound is
achieved by essentially the same algorithm we used for d = 1.
This is the first time that such a dichotomy, based on the
dimension d, has been observed for an aspect of this model.
Our results may be applicable to the design of peer-to-peer
networks, where the length of the path along which data are
transferred is critical for the network’s performance.
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1. INTRODUCTION
The famous “six-degrees-of-separation” experiments con-

ducted in the 1960s by Milgram [16] revealed that not only
individuals are a few handshakes away from each other, but
they are also able to find such short paths between them, in
spite of their extremely local view of the world-wide social
network. In 2000, Kleinberg [8] proposed a simple random
network model exhibiting this surprising small-world prop-
erty of social networks. Besides the sociological aspect, this
model had an important impact on the design on several
peer-to-peer protocols [12, 1, 19, 17, 18], because it addresses
the general question of how decentralized algorithms can find
short paths in a partially unknown network. Kleinberg’s
small-world model consists of an augmented d-dimensional
grid with nd nodes: besides its 2d local neighbors in the grid
(representing its local acquaintances, such as geographic or
professional), each node is given one long-range directed link
pointing to a random node at distance r from it chosen with
probability proportional to 1/rs, where s is a parameter of
the model (this long-range contact represents, e.g., a ran-
dom acquaintance met in the past). Kleinberg defined a
decentralized search algorithm as an algorithm that has to
deliver a message from a given source node to a given target
without knowing in advance the long-range contacts of the
nodes it has not visited yet. He showed that if s �= d then no
decentralized algorithm can find short paths (i.e., of length
poly-logarithmic in the size of the grid), even if the diameter
of the augmented graph is short (as in the cases s < 2d [14,
15]). Only when d = s, may a decentralized algorithm find
short paths for arbitrary source–target pairs. In fact, the
simple greedy algorithm that just forwards the message to
the neighbor (local or long-range) of the current message
holder that is the closest to the target node in the grid,



computes paths of expected length O(log2 n) [8]. Several
decentralized algorithms [11, 5, 3, 13] have been proposed to
compute shorter paths when s = d, efficiently (i.e., by visit-
ing no more than a poly-logarithmic number of nodes). The
best algorithm so far ([11]) for Kleinberg’s original model
computes path of length O(log n(log log n)2) for arbitrary
source–target pairs, which is still significantly larger than
the diameter of the graph that is Θ(log n). The question
whether there exists efficient decentralized algorithms that
can find optimal paths was highlighted by Kleinberg in 2006
(open problem n◦3 in [9]).

We answer this question: first, by showing that if d = 1
no efficient decentralized algorithm can find paths shorter
than Ω(log n log log n) in expectation; and second, by pro-
viding an efficient decentralized algorithm (largely based on
the work of [11]) which computes paths of expected length
O(log n log log n) for d = 1, and O(log n) for d � 2. To our
knowledge, this is the first time that such a transition in
performance is observed in Kleinberg’s model when s = d.

Path length is a critical indicator of performance in rout-
ing protocols (e.g., with respect to speed and fault toler-
ance). Several peer-to-peer networks (e.g., Chord [17] and
Symphony [12]) are based on an augmented ring (d = 1).
Our paper shows that using a 2-dimensional torus instead
may improve considerably the performances while paying
only a modest overhead cost (the degree of each node re-
mains constant: 5 for d = 2).

A relevant question is if other networks (such as the one
in [6]) would present similar transitions where, although the
diameter is small and short paths can be computed by ef-
ficient decentralized algorithms, diameter may not be ob-
tained by any such algorithm.

2. DEFINITIONS AND MAIN RESULTS

The network.

We consider Kleinberg’s d-dimensional small-world net-
work Kd

n with one long-range link per node [8, 2, 4].1

This network consists of the d-dimensional toric lat-
tice Ld

n = {−n, . . . , 0, . . . , n}d with N = (2n + 1)d

nodes, where each node u has links to its 2d neigh-
bors in the lattice (its local contacts), and one extra di-
rected link to a random node v �= u (its long-range con-

tact). Node v is chosen independently with probability
1/(Zd · β||u−v||), where ||u− v|| denotes the (�1-)distance in

Ld
n (i.e., ||u− v|| =

�d
i=1 min{|ui − vi|, 2n+ 1− |ui − vi|}),

βr denotes the size of a ball of radius r in Ld
n (i.e.,

βr = |{u : ||u|| � r}|), and Zd =
�

v �=0 1/β||v|| is the nor-
malizing constant. We denote by �u the long-range contact
of u.

In all the following, we denote by ‘ln’ the natural log-
arithm (to the base e), and by ‘log’ the logarithm to the
base 2. We denote by Hn =

�n
i=1 1/i the harmonic sum;

note that ln(n+ 1) < Hn � lnn+ 1.

Efficient decentralized search algorithms.

We study algorithms that compute a path to transmit a
message from a source node to a target node, along the lo-
cal and (directed) long-range links of the network. Following

1Note that our results are still valid for O(1) long-range links
per node instead of one.

Kleinberg’s definition, such an algorithm is decentralized if
it navigates through the network using only local informa-
tion to compute the path. Precisely, it has knowledge of
1) the underlying lattice structure (i.e., the d-dimensional
torus), 2) the coordinates of the target in the lattice, and
3) the nodes it has previously visited as well as their long-
range contacts. But, crucially, 4) it can only visit nodes
that are local or long-range contacts of previously visited
nodes, and 5) it does not know the long-range contacts of
any node that has not yet been visited. However, 6) the
algorithm (but not the path it computes) is allowed to travel
backwards along any directed links it has already followed.
As remarked in [7], Point 6 is a crucial component of the
human ability to find short paths: one can interpret it as a
web user pushing the back button, or an individual in Mil-
gram’s experiment returning the letter to its previous holder
(who wrote his address on the envelope before sending it).
Further, we require that the algorithm be efficient, in the
sense that the number of intermediate nodes it visits when
computing a path between a pair of nodes should be at most
poly-logarithmic in the size of the network with high proba-
bility. This is a natural requirement (at least) in the context
of social networks, where the size of the network is typically
in the order of millions or even billions. Efficient decen-
tralized algorithms are thus likely to model the capacity of
individuals to find short paths in a social network.

Since each node in Kd
n has a constant degree (equal to

2d + 1), the diameter of Kd
n is at least Ω(log n). It was

shown in [14] that the diameter of Kd
n is indeed Θ(log n)

for any fixed d. The analysis of [14] suggests a decentral-
ized algorithm that would have to visit Ω(

√
n) nodes to

compute a path of length O(log n) for each pair of nodes,
which is clearly unrealistic in the framework of social net-
works. In [8] it was shown that greedy search (which passes
the message to the neighbor of the current message holder
that is the closest to the target) computes paths of expected
length O(log2 n) while visiting O(log2 n) nodes (since it does
not visit any additional nodes other than those in the path
it constructs). Then, in [13] it was shown that any decen-
tralized search algorithm must visit at least Ω(log2 n) nodes
in expectation to compute a path between a random pair of
nodes. In [10, 11] an efficient decentralized algorithm was
proposed that computes “near-optimal” paths of expected
length O(log n(log log n)2) between each pair of nodes, while
visiting an optimal expected number of nodes O(log2 n).

Our contribution.

In [9] Kleinberg posed the question of finding efficient de-
centralized algorithms that compute optimal paths of length
O(log n) between any pair of nodes. The following theorem,
which summarizes our main results, answers this question.

Theorem 1.

(a) For dimension d = 1 and any fixed ε > 0, there is

an efficient decentralized search algorithm for Kd
n that

computes a path of expected length O(log n log log n)
for any source–target pair, while visiting O(log2+ε n)
nodes with high probability.

(b) For any fixed d � 2 and any fixed ε > 0, there is

an efficient decentralized algorithm for Kd
n that com-

putes a path of optimal expected length O(log n) for any
source–target pair, while visiting O(log2+ε n) nodes

with high probability.



(c) For d = 1, for any efficient decentralized search al-

gorithm for Kd
n, the expected length of the path com-

puted by the algorithm is Ω(log n log log n) for almost

all source-target pairs.
2

(Thus, (a) is asymptotically optimal.)

Intuition behind our results.

Our optimal decentralized search algorithms (Theo-
rem 1(a) and 1(b)) rely on simplifying and improving the
approach of [10, 11]. The key steps of the results in [10,
11] were obtained through rather complicated calculations.
We obtain here a simple geometric rereading of these re-
sults that allows us to improve them and get optimal search
algorithms. If we forget about the technical details, the al-
gorithms in [10, 11] rely on the fact that in Kleinberg’s net-
work, the long-range contact of any node u has an equal
probability ≈ 1

logn to be in each of the log n rings cen-

tered at u and whose distance from u ranges in (2i−1, 2i],
for each i ∈ {1, . . . , log n}. It follows that if u is at dis-
tance r ∈ (2i−1, 2i] from the target t, then its long-range
contact has probability ≈ i

logn ≈ log r
logn to be closer to t than

u. If one neglects the possible overlapping (which is fine
for large enough r), the BFS tree rooted at u expands at
a rate of at least ≈ 1 + i

logn towards the target (the 1 is
because there is always at least one local contact which is
closer to t, and the i

logn is the probability that the long-
range contact of the current node is closer to t). It follows
that after roughly h = logn log logn

i steps, the BFS tree con-

tains at least ≈ (1 + i
logn )

log n log log n
i ≈ log n leaves, among

which one has a positive constant probability to fall in the
ith ring (the one that contains t) and thus has a positive
constant probability to be at distance at most r/2 from t.
Routing the message from u to this leaf and repeating the
process until t is reached yields a path of expected length
at most ≈

�logn
i=1

logn log logn
i = log n · log log n · Hlogn ≈

log n (log log n)2.

In order to obtain Theorem 1(a), we fix some ε >
0 and consider concentric rings of radius logεj n, for
j ∈ {1, . . . , loglogεn n}, centered at the target. Sup-
pose that the message has reached a node u at distance
r ∈ (logε(i−1) n, logεi n]. As in [10, 11], we explore the BFS
tree rooted at u but (1 + ε) times deeper, up to depth h =
logn (1+ε) log logn

log r . This ensures that we get, with constant

probability, at least ≈ (1 + log r
logn )

log n (1+ε) log log n
log r ≈ log1+ε n

leaves, among which one has its long-range contact logε n
times closer to the target with constant positive probabil-
ity. A constant number of BFS are thus explored in each
ring around the target on expectation. It follows that the
expected length of the computed path between any pair of
nodes is now at most:

≈
loglogεn n�

i=1

(1 + ε) log n log log n

logεi n

� log n · log log n · 1

1− 1
logε n

≈ log n log log n.

2i.e., for a fraction 1− o(1) of the source-target pairs.

The details of our algorithm (including how we handle the
cases where overlapping cannot be neglected because we are
close to the target) are presented in Section 3.3.

To obtain Theorem 1(b), we improve the analysis of the
algorithm above by taking into account that the cardinal
of a sphere grows at least linearly with its radius when
d � 2. From our calculations, it follows that the ex-
pansion factor of the BFS tree rooted at a node at dis-

tance r ∈ (logε(i−1) n, logεi n] is now at least ≈ 1 +
�

log r
logn .

Thus, we just need to explore each BFS tree up to depth

h = (1 + ε) log log n
�

logn
log r to gather, with constant prob-

ability, log1+ε n leaves among which one has its long-range
contact at least logε n times closer to the target. It follows
that the expected length of the computed path between any
pair of nodes is at most

≈ (1 + ε) log log n

loglogεn n�

i=1

�
log n

log logεi n

≈ log log n
�

log n

loglogεn n�

i=1

1√
εi log log n

≈ 1√
ε

�
log log n log n

�
loglogεn n

=
1
ε
log n.

It follows that this exploration-based efficient decentralized
algorithm computes asymptotically optimal paths in expec-
tation for any pair of nodes. The complete description and
analysis of this algorithm are given in Section 3.4.

Our last result, Theorem 1(c), states that for the one-
dimensional case, no efficient decentralized algorithm can
achieve paths of diameter-length, and that, in fact, the up-
per bound of Theorem 1(a) is tight. Consider an efficient
decentralized search algorithm that is bounded to visit at
most m = O(logc n) nodes, for some constant c > 0. Note
that, with high enough probability, none of the long-range
contacts of a set S of m nodes can be more than O(logc−1 n)
times closer to the target than any node in S. It follows
that the algorithm has to visit at least one node in each
ring of radius mi centered at the target. The first step
consists in partitioning the underlying grid into concentric
rings of radius m9i, for i ∈ {1, . . . , logm9 n}, centered at
the target. According to the above, no matter how large
the exponent c is, the algorithm will need to go through
Ω(logm9 n) = Ω(logn/ log log n) rings. The second step con-
sists in proving by a coupling argument that the algorithm
has almost no control over the first nodes it will visit each
time it enters a ring. Indeed, we prove that since the al-
gorithm visits at most m nodes in total, we can force the
algorithm to enter each ring through a set of at most O(m)
nodes (the entry points), which are close to the farthest bor-
der of the ring from the target, and chosen randomly and
independently of the algorithm. The third and last step con-
sists then in bounding the extent of the BFS trees rooted
at these entry points. Since the entry points are indepen-
dent of the algorithm, we are left with a purely geometric
analysis of these trees. This requires a finer analysis than
for the search algorithm we proposed before, since we need



to bound precisely the total cumulated length of the possi-
bly explored long-range links. By bounding the cumulated
length of the long-range links used in these BFS trees, we
are able to prove that, with high enough probability, none
of these BFS trees reaches the next ring, closer to the tar-
get, before depth � logn log logn

log r , at least for the range of

distances r ∈ [2log
0.1 n, 2log

0.9 n]. We conclude that the ex-
pected length of the computed path is at least:

logm9 (2log
0.9 n)�

i=logm9 (2log
0.1 n)

log n log log n
logm9i

� log n log log n
9 logm

(H log0.9 n
2 log m

−H log0.1 n
2 log m

)

� log n log log n
9c log log n

0.8 log logn

= Ω(log n log log n).

It follows that no efficient decentralized search algorithm
can do asymptotically better than our algorithm in Theo-
rem 1(a). The detailed proof is given in Section 4.

3. OPTIMAL SEARCH ALGORITHM

3.1 Exploration-based search
Our algorithm takes its inspiration in the work of [10, 11]

with three important differences. First, as opposed to their
work, each phase consists of a real BFS which allows to ex-
plore more nodes together with a shorter path length when
d � 2. Second, at the end of each such BFS phase, with
constant positive probability, the distance to the target is
divided by some poly-logarithmic factor in n (instead of a
constant factor). Third, our proofs are almost purely ge-
ometric (as opposed to direct calculations) which allows a
finer understanding of the underlying principles.

Our exploration-based algorithm.

As in [10, 11], our algorithm is parameterized by three
functions:

• hmax(r) is the maximum depth of the BFS performed
from a node at distance r from the target,

• bmax is the maximum number of nodes that the BFS
will have on one level, and

• now-go-greedy is the distance to the target from which
we switch from exploration-based search to greedy
search.

Algorithm 1 proceeds as follows (see Figure 1 and 2).
As long as the current message holder u is at distance
r > now-go-greedy, it starts a BFS from u of maximum
depth hmax(r) including only the long-range contacts which
are at distance < r from the target, and that are at least
2hmax(r) away from any other previously seen long-range
contact. The long-range contacts meeting these two con-
ditions are stored in a set F allowing to perform this test
easily. We denote by Bh the nodes visited at the h-th level
of the BFS. The BFS is stoped prematurely if at some point
|Bh| > bmax, else it continues up to h = hmax(r). This
guarantees that not too many nodes are visited. Once the
BFS is completed, the message is forwarded along the links

of the BFS to the node y which is the closest to the target
among the contacts (long-range or local) of the nodes ex-
plored in the BFS. It is then forwarded again to a node z
chosen 2hmax(r) local steps closer to the target These extra
steps guarantee that the next BFS will not overlap the pre-
vious ones (see Figure 1). Then, a new BFS is started from z
if z is at distance > now-go-greedy from the target. Once
the message reaches a node at distance � now-go-greedy,
the algorithm switches to the “greedy mode” and routes the
message using the improved greedy search algorithm of [5]:
the current message holder looks at the log n closer nodes
(which are within a radius of log1/d n in Ld

n) and routes the
message to the closest node to the target among the con-
tacts (local or long-range) of theses nodes; this algorithm
computes a path of length O(log1/d n log r) between nodes
at distance r from each other in Ld

n [5].

Christmas trees.

The nodes visited during each BFS during the exploration
phase of the algorithm are structured as a tree of non-
overlapping local balls of Ld

n: its edges are the long-range
links that are followed during the BFS, and its vertices are
the balls of local links that grow from the extremities of the
edges as the BFS goes deeper (see Figure 1). We will call
such a structure a Christmas tree. Our main concern will be
to evaluate the growth rate of a Christmas tree in Kd

n.

3.2 Preliminary geometrical facts
We adopt a geometrical approach to the problem based

on simple properties of the metric of the underlying grid.
We denote by Bu(r) = {v : ||u− v|| � r} the ball of radius r
centered at u, and by βr = |Bu(r)| its cardinal. We have
2d

d! r
d � βr � 2d

d! (r + 1)d. A useful fact is that grids have

bounded doubling dimension: β2r � 2dβr for any integer r.
It follows that: Zd � 2d log n. We denote by �u the long-
range contact of u. We can now bound the probability that
a long-range link is followed during each exploration phase.

Lemma 2. Consider two integers f and h, a node u at

distance r > f2/d · h2
from the target t and a set of f nodes

F ⊂ Bt(r − 1). Then:

Pr{||�u − t|| < r and (∀w ∈ F ) ||�u − w|| � h} � 1
25d+2

log r
log n

.

Proof Sketch. The geometrical intuition behind this
result is based on Figure 3. Indeed, one can bound the
probability to get closer to the target t by the sum of the
probabilities of falling into one of the ≈ log r disjoint balls
with radius 2i−2 and centered at distance 2i from u on a

u3u1 u2 ui

2i
2i−2

2i + 2i−2

tΓu

Figure 3: Bounding the probability of following a

link.
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Algorithm 1 Exploration-based efficient decentralized search

input: a source s and a target t in Kd
n.

parameters: hmax(r), bmax, and now-go-greedy. // their values are given in Equations (3.1) for d = 1, and in (3.2) for

d � 2 .

initialization: u := s.

1. 1) Exploration

2. while ||u− t|| > now-go-greedy do

3. 1.a) BFS exploration

4. Init sets B0 and C to {u}, and set h := 1, and r := ||u− t||.
5. try

6. while h � hmax(r) do
7. Init set Bh to an empty set of maximal size bmax, throwing the exception is_full! if the size of Bh reaches bmax.

8. for each v ∈ Bh−1 do

9. Add all not yet visited local contacts of v to Bh.
10. if ||�v − t|| < r and (∀w ∈ F ) ||�v − w|| � 2 · hmax(r) then

11. Add �v to F and Bh.
12. h := h+ 1.
13. catch is_full!h := h+ 1 and goto line 14. // exit the while if |Bh| � bmax

14. Let hstop := h− 1 and A :=
�hstop

h=0 Bh. // By construction, |Bhstop | � bmax

15. 1.b) Message passing

16. Let y be the closest node to the target among the local and long-range contacts of the nodes in Bhstop . Let z be a
node 2hmax(r) local steps closer to the target than y. Route the message along the path from u to z passing through
y along the Christmas tree A. Set u := z.

17. 2) Final steps (improved greedy search algorithm of [5])

18. Visit the log n closest local unexplored contacts of the current message holder and pass the message to the local or
long-range contact of them which is the closest to the target until it reaches the target.

shortest path from u to t, for i = 1, ..., log r. The doubling
dimension property ensures that we have a uniform proba-
bility ≈ 1

logn to fall into each of these balls. We conclude
that by showing that excluding a constant fraction of the
balls is enough to subtract the probability of falling too close
to F .

A last useful lemma bounds the probability that one of
the long-range contacts of a set of nodes is at least logε n
closer to the target t. The proof is omitted.

Lemma 3. Given a set B of at least
log1+εd n

2 nodes at

distance at most r from the target in Ld
n, the probability that

at least one long-range contact of a node in B is a distance

at most
r

logε n from the target is at least 1− e2
−(2d+1)

> 0.

3.3 Analysis of the search algorithm in dimen-
sion d = 1

Let us now fix the values of the parameters hmax(r), bmax

and now-go-greedy for d = 1. For some ε > 0, we choose:

bmax = log1+ε n,

hmax(r) = log1+�r
(bmax),

now-go-greedy =
�
(2hmax(log n) + 1) · bmax

�2 · logε n,
(3.1)

where �r = log(r/ logε n)
25d+2 logn

= log r−ε log logn
25d+2 logn

. Note that:

hmax(r) = Θ

�
(1 + ε) log n log log n

log r

�

and now-go-greedy = Θ((1 + ε)2 log2+3ε n).

(Further, note that now-go-greedy � log n for all n).

Now, consider any exploration phase starting at a node
u at distance r > now-go-greedy from the target t. The
following lemma is a direct corollary of Lemma 2.

Lemma 4. For all h and v ∈ Bh, if ||v− t|| > r
logε n , then

when �v is tested (Line 10 of Algorithm 1), we have:

Pr
�
||v − t|| < r and (∀w ∈ F ) ||v − w|| > hmax(r)

�
� �r.

It follows that the long-range contact of every node v in
Bh, located at distance at least r/ logε n from the target,
is added to F independently at step h with probability at
least �r.

We say that an exploration phase is a success if (i) a node
at distance at most r

logε n from t is reached during the ex-

ploration, or (ii) |Bhstop | � bmax
2 , i.e., if the last level of the

Christmas tree contains at least bmax
2 nodes (each of them

having its long-range link still unobserved). We will prove
the following lemma.

Lemma 5. Every exploration phase starting at distance

r � now-go-greedy is a success with probability at least
1
5 .

Proof Sketch. The proof follows mainly the steps
of [11]. It simply explores a little bit deeper which allows
to gather log1+ε n nodes at the deepest level with constant
probability.

We can now conclude the analysis of Algorithm 1 for
d = 1.



Theorem 6. For d = 1, Algorithm 1 computes

for any source–target pair a path of expected length

O( 1ε log n log log n) while visiting O( 1ε log
2+2ε n) nodes with

high probability.

Proof Sketch. Partition the grid into rings
of radius logiε n centered at the target, for i =
loglogεn(now-go-greedy) . . . loglogεn(n). Each exploration
in the ith ring is a success with constant probability
and if so, a contact in one of the next closer rings is
found with constant probability. Each exploration in
the i-th ring adds O(hmax(log

iε n)) = O( 1i log n) nodes
to the path. It follows that the computed path un-
til distance now-go-greedy to the target has expected
length O(log n

�
i�loglogεn n

1
i ) = O(log n log log n).

The expected length of the second part of the path is
O(log n log(now-go-greedy)) = O(log n log log n) by [8].

3.4 Analysis of the search algorithm in dimen-
sion d � 2

In dimension d � 2, the size of the spheres grow at least
linearly with their radius. It follows that the expansion rate
of the Christmas tree is higher than in dimension 1, so we do
not need to explore the Christmas tree as deep to find the
bmax nodes necessary to decrease the distance to the target
by some poly-logarithmic factor in n. In fact, we will show
that the expansion rate of the Christmas tree is at least
(1 + Θ(

√
�r)) (instead of (1 + �r) in dimension 1), which

will allow us to a log log n factor on the length of the path,
obtaining an asymptotically optimal path.
Precisely, for d � 2 we choose:

bmax = log1+εd n

hmax(r) = logλ(4bmax)

now-go-greedy = 2log
1−1/d n

(3.2)

where �r = log r−ε log logn
25d+2 logn

as before, and

λ = 1 + 2�
1+ 4

�r
−1

= 1 + Θ(
√
�r). The enigmatic (for

now) choice of λ comes from Lemma 8: λ is a natural
lower bound on the expansion rate of the Christmas tree
computed in each exploration phase.
Consider an exploration starting at a node u at distance

r > now-go-greedy from the target. As in dimension 1, the
following lemma is a direct corollary of Lemma 2.

Lemma 7. For all h and v ∈ Bh, if ||v− t|| > r
logε n , then

when �v is tested (Line 10 of Algorithm 1), we have:

Pr
�
||v − t|| < r and (∀w ∈ F ) ||v − w|| > hmax(r)

�
� �r.

As in dimension 1, we say that the exploration phase suc-

ceeds if either (i) a node at distance at most r
logε n from t

is found during the exploration, or (ii) |Bhstop | � bmax
2 , i.e.,

if the last level of the Christmas tree contains at least bmax
2

nodes (each having a still unobserved long-range link). The
following lemma shows that each exploration succeeds with
constant probability.

Lemma 8. Every exploration phase starting at distance

r � now-go-greedy succeeds with probability at least
1
17 .

Proof Sketch. The proof relies on demonstrating that
the number of nodes at distance < r from the target which

are at most h local or long-range contacts away from u grows
exponentially at a rate λh with constant probability. The
evaluation of this growth is complicated by the fact that the
growth of the Christmas tree in dimension d � 2 is heteroge-
nous: a polynomial component of the growth comes from the
growth of the already present balls; and an exponential com-
ponent comes from the discovery of new good long-range
contacts that will creates new balls; and both polynomial
and exponential growth are required to obtain the result.
We thus use two random variables: one which counts the
number of nodes h contacts away from u, while the other
counts the current number of balls in the Christmas tree.
We then solve the recursive system of equations that relate
these two variables to show that their expected value indeed
grows as λh and that their variance is just a constant factor
times the square of their expected value, which ensures by
the second moment method (see [11]) that they remain close
to their expected value with constant probability.

We can now conclude the analysis of our algorithm for
dimension d � 2, showing that it computes paths of optimal
expected length O(log n), that is, at most asymptotically
equal to the diameter of the graph Kd

n.

Theorem 9. For dimension d � 2, Algorithm 1 com-

putes, for all source-target pairs, a path of expected length

O( 1ε log n) while visiting O( 1ε log
2+O(ε) n) nodes with high

probability.

Proof Sketch. As before, we partition the underly-
ing grid into rings of radii logiε n centered at the target.
The key observation is that now each exploration in the

ith ring adds only logλ(log
1+dε n) = O(

�
1
i log n log log n)

nodes to the path. It follows that the expected length
of the computed path during the exploration part is at
most O(

√
log n log log n

�
i�loglogεn n

1√
i
) = O(log n). For

the second part, we use the fact that the search algo-
rithm of [5] computes a path of expected length at most
O(log1/d n log(now-go-greedy)) = O(log n).

4. LOWER BOUND FOR THE ONE-
DIMENSIONAL CASE

We consider Kleinberg’s ring-based graph K1
n on 2n + 1

nodes {−n, . . . , n} and an efficient decentralized search algo-
rithm A that computes paths between any source-target pair
while visiting at mostm = logO(1) n nodes — w.l.o.g. and for
technical reasons, we assume that m � log2 n. The distance

between two nodes u and v, denoted ||u− v|| ∈ {0, . . . , n},
is the length of the shortest path along the ring between u
and v. The long-range link �u of each node u is chosen in-
dependently at random to be �u = v (�= u) with probability
p||u−v||, where pd = 1

2Hn
· 1d and Hn =

�n
i=1

1
i = lnn+O(1).

We denote by A(r1, r2] = Bt(r2)�Bt(r1) the annulus of radii
(r1, r2] around the target t.

4.1 The Lower Bound
Theorem 1(c) is a direct corollary of the following result

which will be proved in this section.

Theorem 10. For any efficient decentralized search al-

gorithm A, there exists two constants pA > 0 and cA > 0
(independent of n), such that for all large enough n, for all



source–target pairs (s, t) in K1
n with |s − t| � 2(logn)0.9 =

o(n), the length of the computed path from s to t is at least

cA · log n log log n with probability at least pA.

This theorem follows from the following lemma which re-
duces the analysis to the study of the length of the computed
path restricted to each annulus of radii ( d

m9 , d] around the

target for 2log
0.1 n � d � 2log

0.9 n.

Lemma 11. Consider an arbitrary decentralized algo-

rithm that visits at most m = (log n)O(1)
nodes (w.l.o.g.

m � log2 n). There exists a constant c > 0 such that: for

all distances d with 2log
0.1 n � d � 2log

0.9 n
, and all source–

target pairs (s, t) with ||s− t|| � d, the number K of nodes in

the path output by the algorithm which lie inside the annulus

A( d
m9 , d] satisfies

Pr

�
K � c · log n · logm

log d

�
= 1−O

�
1

log n

�
.

Proof of Theorem 10. Consider some source-target

pair (s, t) such that ||s− t|| � 2log
0.9 n. Let di = 2log

0.9 n

m9i , for

i = 0, . . . , log0.9m9 n − log0.1m9 n. According to Lemma 11, the
intersection of the path with each annulus A(di+1, di] counts
at least ki = c· logn·logm

log di
nodes with probability 1−O( 1

logn ).
It follows by the union bound that with probability at least

1 − O( log
0.9 n−log0.1 n

9 logm · 1
logn ) = 1 − o(1), the length of this

path is at least:

log0.9
m9 n−log0.1

m9 n�

i=1

ki =

log0.9
m9 n−log0.1

m9 n�

i=1

c · log n logm

log0.9 n− 9i · logm

=
c
9
· log n

log0.9
m9 n−log0.1

m9 n�

i=1

1
log0.9 n
9 logm − i

=
c
9
· log n ·

�
ln

log0.9 n
9 logm

− ln
log0.1 n
9 logm

+O(1)

�

=
c
9
· log n · (0.8 ln log n+O(1))

It follows that the expect length of the path computed from
s to t is at least (1− o(1)) · 0.8c ln 2

9 log n log log n.

The following sections are devoted to the proof of
Lemma 11. Let us now fix some source-target pair (s, t)

such that ||s − t|| � d for some distance d with 2log
0.1 n �

d � 2log
0.9 n. W.l.o.g., t = 0 and from now on, we denote

by B(d) = B0(d) the ball of radius d centered on the target
(note that ||s− t|| = |s|).

4.2 Getting rid of the algorithm: reduction to
geometrical analysis

Consider the (random) set of nodes visited by the algo-

rithm while computing a path from s to 0 with |s| � 2log
0.9 n.

We say that a node u ∈ B(d) is an entry point in B(d) if
it is a (local or long-range) contact of a node not in B(d)
visited by the algorithm. The following lemma shows by a
coupling argument that the set of entry points is included
in a random set, of size at most m+2, which is independent
of the algorithm.

Lemma 12. There exists a random set R ⊂ B(d) of size

at most m + 2, which is independent of the algorithm and

of the long-range links originating from B(d), such that for

every run of the algorithm, all of its entry points belong to R
with probability 1.

Proof sketch. We use the principle of differed deci-
sion: the long-range links originating outside Bt(d) in
K1

n are revealed only when their origin will be visited
by the algorithm. In order to control their destination
when they fall inside B(d), we generate beforehand m ran-
dom numbers r1, . . . , rm ∈ {−n, . . . ,−1, 1, . . . , n} chosen in-
dependently with probability Pr{ri = r} = p|r|. We set:

R = {−d− 1 + ri : 1 � ri � 2d+ 1}
∪ {d+ 1 + ri : −2d− 1 � ri � −1} ∪ {−d, d}

to be our random set of “authorized” entry points. Let us
now show we can force the algorithm to enter B(d) through
these points only without corrupting the distribution of K1

n.
Let u1, . . . , um� (m� � m) be the sequence of the nodes

visited by the algorithm ordered by time of first visit. We set
the long-range contact �ui of each ui at the time it is visited
as follows. If ui ∈ B(d), then set its long-range contact
�ui = v for some v drawn independently with probability
p||u−v||. Consider now the case where ui �∈ Bt(d). We use
the fact that the probability distribution of each long-range
contact decreases with the distance and then use a reject-
based strategy to select the long-range contact of ui. Let
us denote by u�v and v�u in {0, . . . , 2n} the clockwise
and counterclockwise distances from u to v. We extend the
probability distribution pr to {1, . . . , 2n} simply by setting
pr = 0 for r > n. Now, we have two cases: either ri is
positive or negative. If ri > 0, then the long-range contact
of ui will be chosen clockwise, among ui + 1, . . . , ui + n as
follows:

• if 1 � ri � 2d + 1, let λi = −d− 1 + ri ∈ B(d).
Note that since ri = (−d − 1)�λi � ui�λi,
we have pri � p(ui�λi). We then choose

�ui := λi with probability
p(ui�λi)

pri
; other-

wise we reject λi and choose �ui := ui + k with
k ∈ {1, . . . , n}� {ui�−d, . . . , ui�d} with probability
p�k = pk

1
2−

�
v∈B(d) p(ui�v)

. (p�k is the conditional proba-

bility that the long-range contact of ui is at distance
k given that it is chosen clockwise and outside the
ball B(d))

• otherwise, i.e. if ri > 2d+ 1, choose �ui = ui + k with
k ∈ {1, . . . , n}�{ui�−d, . . . , ui�d} chosen according
to distribution p�k.

The case ri < 0 is obtained by clockwise/counterclockwise
symmetry and is omitted. One can easily check that the
distribution of the long-range links of any visited node ui is
identical to the one in K1

n and ensures that the long-range
contact of any node visited by the algorithm outside B(d)
either lies outside B(d) or belongs to R, a random set of at
most m+2 nodes which is independent of the algorithm.

The following lemma shows that we can furthermore as-
sume that the entry points are fairly close to the boundary
of B(d).

Lemma 13. Pr{R ⊂ A( d
m , d]} = 1−O( 1

logn ).



Proof sketch. Pr{R ⊂ A( d
m , d]}

=
�
1− Pr{d(1− 1

m ) � |ri| � d(1 + 1
m )}

�m

∼ exp(m · ln(1− 2
m lnn )) = 1−O( 1

logn ).

We now want to bound from bellow the number K of
nodes of the path from s to t = 0 computed by the algorithm
inside the annulus A( d

m9 , d]. We know from above that this
path necessarily enters B(d) through nodes in the random
set R which is independent of the algorithm and of the long-
range links originating fromB(d). For any set of m+2 nodes
S ⊂ A(md , d], let us denote by D(S) the minimum depth of
the BFS forest restricted to B(d) which starts from the nodes
in S and reaches some node in B( d

m ). Clearly,

Lemma 14. If there exists some k and q such that for all

sets S ⊂ A(md , d] with |S| = m+2, Pr{D(S) � k} � q, then:

Pr{K � k} � q · (1−O( 1
logn )).

Proof sketch. With probability 1 − O( 1
logn ),

R ⊂ A(md , d], independently of the long-range links
originating from B(d). But since with probability at least q
(taken over the long-range links originating from B(d) only
and thus independent from R) for S = R we have D(R) � k,
it follows that with probability at least q · (1 − O( 1

logn )),
K � D(R) � k.

4.3 Geometrical analysis
We are now left with answering a purely geometrical ques-

tion about K1
n: provide a lower bound on the minimum

depth D(S) of a BFS forest restricted to B(d), starting from
nodes in a set S ⊂ A( d

m , d] of size m+ 2 and reaching some
node in B( d

m9 ). We know from [8] that with high probability

D(S) = O(log2 n). Given that for our purposes d � 2log
0.1 n,

any progress made by local links is negligible. We will just
ignore them and focus only on the progresses made by long-
range links. In order to lower-bound D(S) we will have to
watch two parameters: (1) the frequency of the long-range
links in the forest; and (2) their total length along each path
of the forest. Lemma 15 handles (1) and Lemma 19 treats
(2). We will also need to get rid of the dependencies between
the paths inside the forest, which is achieved by a sequence
of reductions of the original BFS forest from S, to a random
abstract path embedded in B(d).
Let us first bound the frequency of the long-range links in

the BFS forest restricted inside B(d). Clearly,

Lemma 15. For all u ∈ B(d),

Pr{�u ∈ B(d)} � � =def
Hd
Hn

= log d
logn +O( 1

logn ).

Since none of the long-range links are allowed to exit B(d)
in the BFS, the long-range link of any node in the BFS be-
longs to the BFS with probability at most � independently.

Reduction to the analysis of an abstract path embedded

in B(d).

Step 1. Each node in S and each long-range contact in the
BFS forest gives birth to two chains of local neighbors. In
order to get an homogeneous representation, we duplicate

each of these nodes (Step 1 in Figure 4) so that every node
in the BFS has exactly one local son and, with probability
�, two long-range sons, embedded at the same location (for
now) in B(d).

Step 2. A simple probabilistic domination argument shows
that if one draws, with probability �, for each node in the for-
est two long-range links pointing to two (possibly different)
long-range contacts (instead of one) according to distribu-
tion pr restricted to be in B(d) (one for each copy of the
original long-range contact), then the length of the overall
path can only increase stochastically and thus the depth of
the forest can only decrease stochastically. We call such a
structure the (random) embedded enhanced BFS forest FS of
S (Step 2 in Figure 4): starting from the (duplicated) nodes
in S at level 0, each node at level i − 1 has one local son
at level i (embedded at the same location—recall we neglect
the local steps in the analysis) plus, with probability �, two
long-range sons drawn independently at random according
to the distribution pr restricted to be inside B(d). We de-
note by D(FS) the minimum length of a path in FS reaching
a node in B( d

m9 ). Clearly,

Lemma 16. D(S) dominates stochastically D(FS).

Step 3. We would now like to study how close each path
connecting a node in S to a node at level i in FS can get to
the target. The lengths of these paths are highly correlated
because each pair of paths share the same long-range links in
their common part. We then seek for a bound on how close
each of these paths can get to the target with high enough
probability so that we get a satisfying lower bound for all of
them together. In order to do so, we need to evaluate: (1)
the number of nodes at level i in FS and (2) the frequency
of the long-range links along each path. Obtaining a crude
bound on the number of nodes at level i is easy (and similar
to the analysis in Section 3.3):

Lemma 17. The number of nodes Ni at level i in FS is at

most 2(m+2)(1+ 3�)i for all levels i in FS with probability

1− n−ω(1)
.

Counterintuitively, because long-range links appears to-
gether in an embedded enhanced forest, the frequency of
long-range links along each path in FS is higher than �, but
still no larger than 3�. This fact is established by studying
how paths merge together from bottom to top.

Lemma 18. The number of long-range links in a path

joining a node in S to a node at level i in FS is stochas-

tically dominated by Binomial(i, 3�).

We have thus reduced the problem to evaluating how close
a path of size i including Binomial(i, 3�) long-range links
restricted to land inB(d), starting from a location in A( d

m , d]
can get to B( d

m9 ). This is done by the following lemma:

Lemma 19. The shortest distance L to the target from a

node in an embedded path inside B(d) starting from a lo-

cation in A( d
m , d] and containing at most b long-range links

verifies: Pr{L � d
3m27b logn

} � 1−O( 1
m2 logn

).

Taking i = lnm
6� , and using the Union Bound over all

O(m
√
m) resulting paths w.h.p., yields the following corol-

lary that concludes the proof of Lemma 11:

Corollary 20. Pr{D(FS) � lnm
6� } � 1−O( 1

logn ).
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Figure 4: Outline of the reduction to abstract paths embedded in B(d).
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